Spaces:
Running
Running
_base_ = [ | |
'_base_fcenet_resnet50-dcnv2_fpn.py', | |
'../_base_/datasets/ctw1500.py', | |
'../_base_/default_runtime.py', | |
'../_base_/schedules/schedule_sgd_base.py', | |
] | |
optim_wrapper = dict(optimizer=dict(lr=1e-3, weight_decay=5e-4)) | |
train_cfg = dict(max_epochs=1500) | |
# learning policy | |
param_scheduler = [ | |
dict(type='PolyLR', power=0.9, eta_min=1e-7, end=1500), | |
] | |
# dataset settings | |
ctw1500_textdet_train = _base_.ctw1500_textdet_train | |
ctw1500_textdet_test = _base_.ctw1500_textdet_test | |
# test pipeline for CTW1500 | |
ctw_test_pipeline = [ | |
dict(type='LoadImageFromFile', color_type='color_ignore_orientation'), | |
dict(type='Resize', scale=(1080, 736), keep_ratio=True), | |
# add loading annotation after ``Resize`` because ground truth | |
# does not need to do resize data transform | |
dict( | |
type='LoadOCRAnnotations', | |
with_polygon=True, | |
with_bbox=True, | |
with_label=True), | |
dict( | |
type='PackTextDetInputs', | |
meta_keys=('img_path', 'ori_shape', 'img_shape', 'scale_factor')) | |
] | |
ctw1500_textdet_train.pipeline = _base_.train_pipeline | |
ctw1500_textdet_test.pipeline = ctw_test_pipeline | |
train_dataloader = dict( | |
batch_size=8, | |
num_workers=4, | |
persistent_workers=True, | |
sampler=dict(type='DefaultSampler', shuffle=True), | |
dataset=ctw1500_textdet_train) | |
val_dataloader = dict( | |
batch_size=1, | |
num_workers=1, | |
persistent_workers=True, | |
sampler=dict(type='DefaultSampler', shuffle=False), | |
dataset=ctw1500_textdet_test) | |
test_dataloader = val_dataloader | |
auto_scale_lr = dict(base_batch_size=8) | |