Spaces:
Sleeping
Sleeping
Added model_config file
Browse files- model.py +48 -0
- model_config.py +13 -0
model.py
ADDED
@@ -0,0 +1,48 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import AutoModel, AutoConfig
|
2 |
+
import torch.nn as nn
|
3 |
+
from transformers import BertPreTrainedModel, AutoModel, PreTrainedModel
|
4 |
+
from model_config import PragFormerConfig
|
5 |
+
|
6 |
+
|
7 |
+
|
8 |
+
class BERT_Arch(PreTrainedModel): #(BertPreTrainedModel):
|
9 |
+
config_class = PragFormerConfig
|
10 |
+
|
11 |
+
def __init__(self, config):
|
12 |
+
super().__init__(config)
|
13 |
+
print(config.bert)
|
14 |
+
self.bert = AutoModel.from_pretrained(config.bert['_name_or_path'])
|
15 |
+
|
16 |
+
# dropout layer
|
17 |
+
self.dropout = nn.Dropout(config.dropout)
|
18 |
+
|
19 |
+
# relu activation function
|
20 |
+
self.relu = nn.ReLU()
|
21 |
+
|
22 |
+
# dense layer 1
|
23 |
+
self.fc1 = nn.Linear(self.config.bert['hidden_size'], config.fc1)
|
24 |
+
# self.fc1 = nn.Linear(768, 512)
|
25 |
+
|
26 |
+
# dense layer 2 (Output layer)
|
27 |
+
self.fc2 = nn.Linear(config.fc1, config.fc2)
|
28 |
+
|
29 |
+
# softmax activation function
|
30 |
+
self.softmax = nn.LogSoftmax(dim = config.softmax_dim)
|
31 |
+
|
32 |
+
# define the forward pass
|
33 |
+
def forward(self, input_ids, attention_mask):
|
34 |
+
# pass the inputs to the model
|
35 |
+
_, cls_hs = self.bert(input_ids, attention_mask = attention_mask, return_dict=False)
|
36 |
+
|
37 |
+
x = self.fc1(cls_hs)
|
38 |
+
|
39 |
+
x = self.relu(x)
|
40 |
+
|
41 |
+
x = self.dropout(x)
|
42 |
+
|
43 |
+
# output layer
|
44 |
+
x = self.fc2(x)
|
45 |
+
|
46 |
+
# apply softmax activation
|
47 |
+
x = self.softmax(x)
|
48 |
+
return x
|
model_config.py
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import PretrainedConfig
|
2 |
+
|
3 |
+
|
4 |
+
class PragFormerConfig(PretrainedConfig):
|
5 |
+
model_type = "pragformer"
|
6 |
+
|
7 |
+
def __init__(self, bert=None, dropout=0.2, fc1=512, fc2=2, softmax_dim=1, **kwargs):
|
8 |
+
self.bert = bert
|
9 |
+
self.dropout = dropout
|
10 |
+
self.fc1 = fc1
|
11 |
+
self.fc2 = fc2
|
12 |
+
self.softmax_dim = softmax_dim
|
13 |
+
super().__init__(**kwargs)
|