Pavel Duchovny
Stability fixes
df3f326
raw
history blame
6.51 kB
import gradio as gr
from time import sleep
import json
from pymongo import MongoClient
from bson import ObjectId
from openai import OpenAI
openai_client = OpenAI()
import os
## Get the restaurants based on the search and location
def get_restaurants(search, location, meters):
try:
uri = os.environ.get('MONGODB_ATLAS_URI')
client = MongoClient(uri)
db_name = 'whatscooking'
collection_name = 'restaurants'
restaurants_collection = client[db_name][collection_name]
trips_collection = client[db_name]['smart_trips']
except:
print("Error Connecting to the MongoDB Atlas Cluster")
# Pre aggregate restaurants collection based on chosen location and radius, the output is stored into
# trips_collection
try:
newTrip, pre_agg = pre_aggregate_meters(restaurants_collection, location, meters)
## Get openai embeddings
response = openai_client.embeddings.create(
input=search,
model="text-embedding-3-small",
dimensions=256
)
## prepare the similarity search on current trip
vectorQuery = {
"$vectorSearch": {
"index" : "vector_index",
"queryVector": response.data[0].embedding,
"path" : "embedding",
"numCandidates": 10,
"limit": 3,
"filter": {"searchTrip": newTrip}
}}
## Run the retrieved documents through a RAG system.
restaurant_docs = list(trips_collection.aggregate([vectorQuery,
{"$project": {"_id" : 0, "embedding": 0}}]))
chat_response = openai_client.chat.completions.create(
model="gpt-3.5-turbo-0125",
messages=[
{"role": "system", "content": "You are a helpful restaurant assistant. You will get a context if the context is not relevat to the user query please address that and not provide by default the restaurants as is."},
{ "role": "user", "content": f"Find me the 2 best restaurant and why based on {search} and {restaurant_docs}. explain trades offs and why I should go to each one. You can mention the third option as a possible alternative."}
]
)
## Removed the temporary documents
trips_collection.delete_many({"searchTrip": newTrip})
if len(restaurant_docs) == 0:
return "No restaurants found", '<iframe style="background: #FFFFFF;border: none;border-radius: 2px;box-shadow: 0 2px 10px 0 rgba(70, 76, 79, .2);" width="640" height="480" src="https://charts.mongodb.com/charts-paveldev-wiumf/embed/charts?id=65c24b0c-2215-4e6f-829c-f484dfd8a90c&filter={\'restaurant_id\':\'\'}&maxDataAge=3600&theme=light&autoRefresh=true"></iframe>', str(pre_agg), str(vectorQuery)
## Build the map filter
first_restaurant = restaurant_docs[0]['restaurant_id']
second_restaurant = restaurant_docs[1]['restaurant_id']
third_restaurant = restaurant_docs[2]['restaurant_id']
restaurant_string = f"'{first_restaurant}', '{second_restaurant}', '{third_restaurant}'"
iframe = '<iframe style="background: #FFFFFF;border: none;border-radius: 2px;box-shadow: 0 2px 10px 0 rgba(70, 76, 79, .2);" width="640" height="480" src="https://charts.mongodb.com/charts-paveldev-wiumf/embed/charts?id=65c24b0c-2215-4e6f-829c-f484dfd8a90c&filter={\'restaurant_id\':{$in:[' + restaurant_string + ']}}&maxDataAge=3600&theme=light&autoRefresh=true"></iframe>'
client.close()
return chat_response.choices[0].message.content, iframe,str(pre_agg), str(vectorQuery)
except Exception as e:
print(e)
return "Your query caused an error, please retry with allowed input only ...", '<iframe style="background: #FFFFFF;border: none;border-radius: 2px;box-shadow: 0 2px 10px 0 rgba(70, 76, 79, .2);" width="640" height="480" src="https://charts.mongodb.com/charts-paveldev-wiumf/embed/charts?id=65c24b0c-2215-4e6f-829c-f484dfd8a90c&filter={\'restaurant_id\':\'\'}&maxDataAge=3600&theme=light&autoRefresh=true"></iframe>', str(pre_agg), str(vectorQuery)
def pre_aggregate_meters(restaurants_collection, location, meters):
## Do the geo location preaggregate and assign the search trip id.
tripId = ObjectId()
pre_aggregate_pipeline = [{
"$geoNear": {
"near": location,
"distanceField": "distance",
"maxDistance": meters,
"spherical": True,
},
},
{
"$addFields": {
"searchTrip" : tripId,
"date" : tripId.generation_time
}
},
{
"$merge": {
"into": "smart_trips"
}
} ]
result = restaurants_collection.aggregate(pre_aggregate_pipeline);
sleep(3)
return tripId, pre_aggregate_pipeline
with gr.Blocks() as demo:
gr.Markdown(
"""
# MongoDB's Vector Restaurant planner
Start typing below to see the results. You can search a specific cuisine for you and choose 3 predefined locations.
The radius specify the distance from the start search location. This space uses the dataset called [whatscooking.restaurants](https://huggingface.co/datasets/AIatMongoDB/whatscooking.restaurants)
""")
# Create the interface
gr.Interface(
get_restaurants,
[gr.Textbox(placeholder="What type of dinner are you looking for?"),
gr.Radio(choices=[
("Timesquare Manhattan", {
"type": "Point",
"coordinates": [-73.98527039999999, 40.7589099]
}),
("Westside Manhattan", {
"type": "Point",
"coordinates": [-74.013686, 40.701975]
}),
("Downtown Manhattan", {
"type": "Point",
"coordinates": [-74.000468, 40.720777]
})
], label="Location", info="What location you need?"),
gr.Slider(minimum=500, maximum=10000, randomize=False, step=5, label="Radius in meters")],
[gr.Textbox(label="MongoDB Vector Recommendations", placeholder="Results will be displayed here"), "html",
gr.Code(label="Pre-aggregate pipeline",language="json" ),
gr.Code(label="Vector Query", language="json")]
)
if __name__ == "__main__":
demo.launch()