Spaces:
Sleeping
Sleeping
Upload 2 files
Browse files- app.py +147 -0
- requirements.txt +3 -0
app.py
ADDED
@@ -0,0 +1,147 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from pymongo import MongoClient
|
2 |
+
import os
|
3 |
+
import time
|
4 |
+
import gradio as gr
|
5 |
+
import requests
|
6 |
+
import traceback
|
7 |
+
import google.generativeai as genai
|
8 |
+
|
9 |
+
|
10 |
+
|
11 |
+
|
12 |
+
genai.configure(api_key=os.environ["GOOGLE_API_KEY"])
|
13 |
+
try:
|
14 |
+
# Initialize MongoDB python client
|
15 |
+
MONGODB_URI = os.getenv("MONGODB_ATLAS_URI")
|
16 |
+
client = MongoClient(MONGODB_URI, appname="devrel.content.python")
|
17 |
+
|
18 |
+
DB_NAME = "google-ai"
|
19 |
+
COLLECTION_NAME = "embedded_docs"
|
20 |
+
ATLAS_VECTOR_SEARCH_INDEX_NAME = "vector_index"
|
21 |
+
collection = client[DB_NAME][COLLECTION_NAME]
|
22 |
+
|
23 |
+
### Insert data about 5 individual employees
|
24 |
+
collection.delete_many({})
|
25 |
+
collection.insert_many([
|
26 |
+
{
|
27 |
+
'_id' : '54633',
|
28 |
+
'content' : 'Employee number 54633, name John Doe, department Sales, location New York, salary 100000'
|
29 |
+
},
|
30 |
+
{
|
31 |
+
'_id' : '54634',
|
32 |
+
'content' : 'Employee number 54634, name Jane Doe, department Marketing, location Los Angeles, salary 120000',
|
33 |
+
|
34 |
+
},
|
35 |
+
{
|
36 |
+
'_id' : '54635',
|
37 |
+
'content' : 'Employee number 54635, name John Smith, department Engineering, location San Francisco, salary 150000'
|
38 |
+
},
|
39 |
+
{
|
40 |
+
'_id' : '54636',
|
41 |
+
'content' : 'Employee number 54636, name Jane Smith, department Finance, location Chicago, salary 130000'
|
42 |
+
},
|
43 |
+
{
|
44 |
+
'_id' : '54637',
|
45 |
+
'content' : 'Employee number 54637, name John Johnson, department HR, location Miami, salary 110000'
|
46 |
+
},
|
47 |
+
{
|
48 |
+
'_id' : '54638',
|
49 |
+
'content' : 'Employee number 54638, name Jane Johnson, department Operations, location Seattle, salary 140000'
|
50 |
+
}
|
51 |
+
])
|
52 |
+
|
53 |
+
|
54 |
+
# Exception handling to catch and display errors during the pipeline execution.
|
55 |
+
except Exception as erorr_message:
|
56 |
+
print("An error occurred: \n" + erorr_message)
|
57 |
+
|
58 |
+
gemini_pro = genai.GenerativeModel('gemini-pro')
|
59 |
+
|
60 |
+
def embed_text(text):
|
61 |
+
result = genai.embed_content(
|
62 |
+
model="models/embedding-001",
|
63 |
+
content=text,
|
64 |
+
task_type="retrieval_document",
|
65 |
+
title="Embedding of single string")
|
66 |
+
|
67 |
+
return result['embedding']
|
68 |
+
|
69 |
+
def get_rag_output(context, question):
|
70 |
+
|
71 |
+
template = f""" You are an hr assistant, answer in detail. Answer the question based only on the following context:
|
72 |
+
```
|
73 |
+
{context}
|
74 |
+
```
|
75 |
+
Question: {question}
|
76 |
+
"""
|
77 |
+
response = gemini_pro.generate_content([template], stream=False)
|
78 |
+
return response.text
|
79 |
+
|
80 |
+
def mongodb_vector_query(message):
|
81 |
+
docs = collection.aggregate([
|
82 |
+
{
|
83 |
+
'$vectorSearch' : {
|
84 |
+
'index' : 'vector_index',
|
85 |
+
'queryVector' : embed_text(message),
|
86 |
+
'path' : 'embedding',
|
87 |
+
'numCandidates' : 10,
|
88 |
+
'limit' : 5
|
89 |
+
}
|
90 |
+
},
|
91 |
+
{
|
92 |
+
'$project': {
|
93 |
+
'embedding': 0
|
94 |
+
}
|
95 |
+
}
|
96 |
+
])
|
97 |
+
|
98 |
+
return list(docs)
|
99 |
+
|
100 |
+
|
101 |
+
|
102 |
+
|
103 |
+
def get_rag(message, history):
|
104 |
+
|
105 |
+
try:
|
106 |
+
context = mongodb_vector_query(message)
|
107 |
+
result = get_rag_output(context, message)
|
108 |
+
|
109 |
+
# print(result)
|
110 |
+
print_llm_text = result
|
111 |
+
for i in range(len(print_llm_text)):
|
112 |
+
time.sleep(0.03)
|
113 |
+
yield print_llm_text[: i+1]
|
114 |
+
|
115 |
+
|
116 |
+
except Exception as e:
|
117 |
+
error_message = traceback.format_exc()
|
118 |
+
print("An error occurred: \n" + error_message)
|
119 |
+
yield error_message
|
120 |
+
|
121 |
+
|
122 |
+
|
123 |
+
|
124 |
+
def fetch_url_data(url):
|
125 |
+
try:
|
126 |
+
response = requests.get(url)
|
127 |
+
response.raise_for_status() # Raises an HTTPError if the HTTP request returned an unsuccessful status code
|
128 |
+
return response.text
|
129 |
+
except requests.RequestException as e:
|
130 |
+
return f"Error: {e}"
|
131 |
+
|
132 |
+
# Setup Gradio interface
|
133 |
+
with gr.Blocks() as demo:
|
134 |
+
with gr.Tab("Demo"):
|
135 |
+
|
136 |
+
## value=[(None, "Hi, I'm a MongoDB and Heystack based question and answer bot 🤖, I can help you answer on the knowledge base above…")]
|
137 |
+
gr.ChatInterface(get_rag,examples=["List all employees", "Where does jane work?", "Who has the highest salary? List it"], title="Atlas Vector Search Chat",description="This small chat uses a similarity search to find relevant plots as listed above, it uses MongoDB Atlas and Google Gemini.",submit_btn="Search").queue()
|
138 |
+
|
139 |
+
with gr.Tab("Code"):
|
140 |
+
gr.Code(label="Code", language="python", value=fetch_url_data('https://huggingface.co/spaces/MongoDB/Haystack-MongoDB-Integration-Chat/raw/main/app.py'))
|
141 |
+
|
142 |
+
|
143 |
+
|
144 |
+
|
145 |
+
|
146 |
+
if __name__ == "__main__":
|
147 |
+
demo.launch()
|
requirements.txt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
google-generativeai
|
2 |
+
pymongo
|
3 |
+
requests
|