Spaces:
Runtime error
Runtime error
File size: 19,855 Bytes
255eac3 9885b48 255eac3 9885b48 255eac3 113b2e2 255eac3 e2afd53 255eac3 113b2e2 453e0c4 255eac3 453e0c4 255eac3 e2afd53 255eac3 e2afd53 255eac3 9885b48 255eac3 22c391b 113b2e2 22c391b 9885b48 22c391b 9885b48 22c391b 9885b48 28c99b9 9885b48 22c391b 113b2e2 255eac3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 |
import gradio as gr
from time import sleep
import json
from pymongo import MongoClient
from bson import ObjectId
from openai import OpenAI
import os
from PIL import Image
import time
import traceback
import asyncio
from langchain_community.vectorstores import MongoDBAtlasVectorSearch
from langchain_openai import OpenAIEmbeddings
from langchain_openai import ChatOpenAI
from langchain_core.prompts import ChatPromptTemplate
from langchain_core.output_parsers import StrOutputParser
import base64
import io
from reportlab.pdfgen import canvas
from reportlab.lib.pagesizes import letter
from reportlab.lib.utils import ImageReader
import boto3
import re
import qrcode
output_parser = StrOutputParser()
import json
import requests
openai_client = OpenAI()
def fetch_url_data(url):
try:
response = requests.get(url)
response.raise_for_status() # Raises an HTTPError if the HTTP request returned an unsuccessful status code
return response.text
except requests.RequestException as e:
return f"Error: {e}"
uri = os.environ.get('MONGODB_ATLAS_URI')
email = "[email protected]"
email_pattern = r"^[a-zA-Z0-9._%+-]+@[a-zA-Z0-9.-]+\.[a-zA-Z]{2,}$"
# AWS Bedrock client setup
bedrock_runtime = boto3.client('bedrock-runtime',
aws_access_key_id=os.environ.get('AWS_ACCESS_KEY'),
aws_secret_access_key=os.environ.get('AWS_SECRET_KEY'),
region_name="us-east-1")
chatClient = MongoClient(uri)
db_name = 'sample_mflix'
collection_name = 'embedded_movies'
collection = chatClient[db_name][collection_name]
## Chat RAG Functions
try:
vector_store = MongoDBAtlasVectorSearch(embedding=OpenAIEmbeddings(), collection=collection, index_name='vector_index', text_key='plot', embedding_key='plot_embedding')
llm = ChatOpenAI(temperature=0)
prompt = ChatPromptTemplate.from_messages([
("system", "You are a movie recommendation engine which post a concise and short summary on relevant movies."),
("user", "List of movies: {input}")
])
chain = prompt | llm | output_parser
except:
#If open ai key is wrong
print ('Open AI key is wrong')
vector_store = None
print("An error occurred: \n" + error_message)
def get_movies(message, history):
try:
movies = vector_store.similarity_search(query=message, k=3, embedding_key='plot_embedding')
return_text = ''
for movie in movies:
return_text = return_text + 'Title : ' + movie.metadata['title'] + '\n------------\n' + 'Plot: ' + movie.page_content + '\n\n'
print_llm_text = chain.invoke({"input": return_text})
for i in range(len(print_llm_text)):
time.sleep(0.05)
yield "Found: " + "\n\n" + print_llm_text[: i+1]
except Exception as e:
error_message = traceback.format_exc()
print("An error occurred: \n" + error_message)
yield "Please clone the repo and add your open ai key as well as your MongoDB Atlas URI in the Secret Section of you Space\n OPENAI_API_KEY (your Open AI key) and MONGODB_ATLAS_CLUSTER_URI (0.0.0.0/0 whitelisted instance with Vector index created) \n\n For more information : https://mongodb.com/products/platform/atlas-vector-search"
## Restaurant Advisor RAG Functions
def get_restaurants(search, location, meters):
try:
client = MongoClient(uri)
db_name = 'whatscooking'
collection_name = 'restaurants'
restaurants_collection = client[db_name][collection_name]
trips_collection = client[db_name]['smart_trips']
except:
print("Error Connecting to the MongoDB Atlas Cluster")
# Pre aggregate restaurants collection based on chosen location and radius, the output is stored into
# trips_collection
try:
newTrip, pre_agg = pre_aggregate_meters(restaurants_collection, location, meters)
## Get openai embeddings
response = openai_client.embeddings.create(
input=search,
model="text-embedding-3-small",
dimensions=256
)
## prepare the similarity search on current trip
vectorQuery = {
"$vectorSearch": {
"index" : "vector_index",
"queryVector": response.data[0].embedding,
"path" : "embedding",
"numCandidates": 10,
"limit": 3,
"filter": {"searchTrip": newTrip}
}}
## Run the retrieved documents through a RAG system.
restaurant_docs = list(trips_collection.aggregate([vectorQuery,
{"$project": {"_id" : 0, "embedding": 0}}]))
chat_response = openai_client.chat.completions.create(
model="gpt-3.5-turbo",
messages=[
{"role": "system", "content": "You are a helpful restaurant assistant. You will get a context if the context is not relevat to the user query please address that and not provide by default the restaurants as is."},
{ "role": "user", "content": f"Find me the 2 best restaurant and why based on {search} and {restaurant_docs}. explain trades offs and why I should go to each one. You can mention the third option as a possible alternative."}
]
)
## Removed the temporary documents
trips_collection.delete_many({"searchTrip": newTrip})
if len(restaurant_docs) == 0:
return "No restaurants found", '<iframe style="background: #FFFFFF;border: none;border-radius: 2px;box-shadow: 0 2px 10px 0 rgba(70, 76, 79, .2);" width="640" height="480" src="https://charts.mongodb.com/charts-paveldev-wiumf/embed/charts?id=65c24b0c-2215-4e6f-829c-f484dfd8a90c&filter={\'restaurant_id\':\'\'}&maxDataAge=3600&theme=light&autoRefresh=true"></iframe>', str(pre_agg), str(vectorQuery)
## Build the map filter
first_restaurant = restaurant_docs[0]['restaurant_id']
second_restaurant = restaurant_docs[1]['restaurant_id']
third_restaurant = restaurant_docs[2]['restaurant_id']
restaurant_string = f"'{first_restaurant}', '{second_restaurant}', '{third_restaurant}'"
iframe = '<iframe style="background: #FFFFFF;border: none;border-radius: 2px;box-shadow: 0 2px 10px 0 rgba(70, 76, 79, .2);" width="640" height="480" src="https://charts.mongodb.com/charts-paveldev-wiumf/embed/charts?id=65c24b0c-2215-4e6f-829c-f484dfd8a90c&filter={\'restaurant_id\':{$in:[' + restaurant_string + ']}}&maxDataAge=3600&theme=light&autoRefresh=true"></iframe>'
client.close()
return chat_response.choices[0].message.content, iframe,str(pre_agg), str(vectorQuery)
except Exception as e:
print(e)
return "Your query caused an error, please retry with allowed input only ...", '<iframe style="background: #FFFFFF;border: none;border-radius: 2px;box-shadow: 0 2px 10px 0 rgba(70, 76, 79, .2);" width="640" height="480" src="https://charts.mongodb.com/charts-paveldev-wiumf/embed/charts?id=65c24b0c-2215-4e6f-829c-f484dfd8a90c&filter={\'restaurant_id\':\'\'}&maxDataAge=3600&theme=light&autoRefresh=true"></iframe>', str(pre_agg), str(vectorQuery)
def pre_aggregate_meters(restaurants_collection, location, meters):
## Do the geo location preaggregate and assign the search trip id.
tripId = ObjectId()
pre_aggregate_pipeline = [{
"$geoNear": {
"near": location,
"distanceField": "distance",
"maxDistance": meters,
"spherical": True,
},
},
{
"$addFields": {
"searchTrip" : tripId,
"date" : tripId.generation_time
}
},
{
"$merge": {
"into": "smart_trips"
}
} ]
result = restaurants_collection.aggregate(pre_aggregate_pipeline);
sleep(3)
return tripId, pre_aggregate_pipeline
## Celeb Matcher RAG Functions
def construct_bedrock_body(base64_string, text):
if text:
return json.dumps({
"inputImage": base64_string,
"embeddingConfig": {"outputEmbeddingLength": 1024},
"inputText": text
})
return json.dumps({
"inputImage": base64_string,
"embeddingConfig": {"outputEmbeddingLength": 1024},
})
# Function to get the embedding from Bedrock model
def get_embedding_from_titan_multimodal(body):
response = bedrock_runtime.invoke_model(
body=body,
modelId="amazon.titan-embed-image-v1",
accept="application/json",
contentType="application/json",
)
response_body = json.loads(response.get("body").read())
return response_body["embedding"]
# MongoDB setup
uri = os.environ.get('MONGODB_ATLAS_URI')
client = MongoClient(uri)
db_name = 'celebrity_1000_embeddings'
collection_name = 'celeb_images'
celeb_images = client[db_name][collection_name]
participants_db = client[db_name]['participants']
# Function to record participant details
def record_participant(email, company, description, images):
if not email or not company:
## regex to validate email
if not re.match(email_pattern, email):
raise gr.Error("Please enter a valid email address")
raise gr.Error("Please enter your email and company name to record the participant details.")
if not images:
raise gr.Error("Please search for an image first before recording the participant.")
participant_data = {'email': email, 'company': company}
participants_db.insert_one(participant_data)
# Create PDF after recording participant
qr_image = create_pdf(images, description, email, company)
return pdf_file
def create_pdf(images, description, email, company):
print(images)
filename = f"image_search_results_{email}.pdf"
c = canvas.Canvas(filename, pagesize=letter)
width, height = letter
y_position = height
c.drawString(50, y_position - 30, f"Thanks for participating, {email}! Here are your celeb match results:")
c.drawString(50, y_position - 70, "Claude 3 summary of the MongoDB celeb comparison:")
# Split the description into words
words = description.split()
# Initialize variables
lines = []
current_line = []
# Iterate through words and group them into lines
for word in words:
current_line.append(word)
if len(current_line) == 10: # Split every 10 words
lines.append(" ".join(current_line))
current_line = []
# Add the remaining words to the last line
if current_line:
lines.append(" ".join(current_line))
# Write each line of the description
y_position -= 90 # Initial Y position
for line in lines:
c.drawString(50, y_position, line)
y_position -= 15 # Adjust for line spacing
image_position = y_position
for image in images:
print(image)
image_position -= 300 # Adjust this based on your image sizes
if image_position <= 150:
c.showPage()
image_position = height - 50
buffered = io.BytesIO()
pil_image = Image.open(image[0])
pil_image.save(buffered, format='JPEG')
c.drawImage(ImageReader(buffered), 50, image_position - 150, width=200, height=200)
c.save()
return filename
# Function to generate image description using Claude 3 Sonnet
def generate_image_description_with_claude(images_base64_strs, image_base64):
claude_body = json.dumps({
"anthropic_version": "bedrock-2023-05-31",
"max_tokens": 1000,
"system": "Please act as face comperison analyzer.",
"messages": [{
"role": "user",
"content": [
{"type": "image", "source": {"type": "base64", "media_type": "image/jpeg", "data": image_base64}},
{"type": "image", "source": {"type": "base64", "media_type": "image/jpeg", "data": images_base64_strs[0]}},
{"type": "image", "source": {"type": "base64", "media_type": "image/jpeg", "data": images_base64_strs[1]}},
{"type": "image", "source": {"type": "base64", "media_type": "image/jpeg", "data": images_base64_strs[2]}},
{"type": "text", "text": "Please let the user know how his first image is similar to the other 3 and which one is the most similar?"}
]
}]
})
claude_response = bedrock_runtime.invoke_model(
body=claude_body,
modelId="anthropic.claude-3-sonnet-20240229-v1:0",
accept="application/json",
contentType="application/json",
)
response_body = json.loads(claude_response.get("body").read())
# Assuming the response contains a field 'content' with the description
return response_body["content"][0].get("text", "No description available")
# Main function to start image search
def start_image_search(image, text):
if not image:
raise gr.Error("Please upload an image first, make sure to press the 'Submit' button after selecting the image.")
buffered = io.BytesIO()
image = image.resize((800, 600))
image.save(buffered, format="JPEG", quality=85)
img_byte = buffered.getvalue()
img_base64 = base64.b64encode(img_byte)
img_base64_str = img_base64.decode('utf-8')
body = construct_bedrock_body(img_base64_str, text)
embedding = get_embedding_from_titan_multimodal(body)
doc = list(celeb_images.aggregate([
{
"$vectorSearch": {
"index": "vector_index",
"path": "embeddings",
"queryVector": embedding,
"numCandidates": 15,
"limit": 3
}
}, {"$project": {"image": 1}}
]))
images = []
images_base64_strs = []
for image_doc in doc:
pil_image = Image.open(io.BytesIO(base64.b64decode(image_doc['image'])))
img_byte = io.BytesIO()
pil_image.save(img_byte, format='JPEG')
img_base64 = base64.b64encode(img_byte.getvalue()).decode('utf-8')
images_base64_strs.append(img_base64)
images.append(pil_image)
description = generate_image_description_with_claude(images_base64_strs, img_base64_str)
return images, description
def generate_qr_code(url):
# Generate QR code
qr = qrcode.QRCode(
version=1,
error_correction=qrcode.constants.ERROR_CORRECT_L,
box_size=10,
border=4,
)
qr.add_data(url)
qr.make(fit=True)
img_qr = qr.make_image(fill_color="black", back_color="white")
# Convert PIL Image to bytes for displaying or saving
img_byte_arr = io.BytesIO()
img_qr.save(img_byte_arr, format='PNG')
img_byte_arr = img_byte_arr.getvalue()
return img_byte_arr
with gr.Blocks() as demo:
with gr.Tab("Celeb Matcher Demo"):
with gr.Tab("Demo"):
gr.Markdown("""
# MongoDB's Vector Celeb Image Matcher
Upload an image and find the most similar celeb image from the database, along with an AI-generated description.
💪 Make a great pose to impact the search! 🤯
""")
with gr.Row():
with gr.Column():
image_input = gr.Image(type="pil", label="Upload an image")
text_input = gr.Textbox(label="Enter an adjustment to the image")
search_button = gr.Button("Search")
with gr.Column():
output_gallery = gr.Gallery(label="Located images", show_label=False, elem_id="gallery",
columns=[3], rows=[1], object_fit="contain", height="auto")
output_description = gr.Textbox(label="AI Based vision description")
gr.Markdown("""
""")
with gr.Row():
email_input = gr.Textbox(label="Enter your email")
company_input = gr.Textbox(label="Enter your company name")
record_button = gr.Button("Record & Download PDF")
search_button.click(
fn=start_image_search,
inputs=[image_input, text_input],
outputs=[output_gallery, output_description]
)
pdf_file=gr.File(label="Download Search Results as PDF")
record_button.click(
fn=record_participant,
inputs=[email_input, company_input, output_description, output_gallery],
outputs=pdf_file
)
gr.Interface(
generate_qr_code,
inputs=pdf_file,
outputs=gr.outputs.Image(type="numpy", label="Generated QR Code"),
title="Filename to QR Code Generator",
description="Enter the filename to generate its QR code"
)
with gr.Tab("Code"):
gr.Code(label="Code", language="python", value=fetch_url_data('https://huggingface.co/spaces/MongoDB/aws-bedrock-celeb-matcher/raw/main/app.py'))
with gr.Tab("Chat RAG Demo"):
with gr.Tab("Demo"):
gr.ChatInterface(get_movies, examples=["What movies are scary?", "Find me a comedy", "Movies for kids"], title="Movies Atlas Vector Search",description="This small chat uses a similarity search to find relevant movies, it uses MongoDB Atlas Vector Search read more here: https://www.mongodb.com/docs/atlas/atlas-vector-search/vector-search-tutorial",submit_btn="Search").queue()
with gr.Tab("Code"):
gr.Code(label="Code", language="python", value=fetch_url_data('https://huggingface.co/spaces/MongoDB/MongoDB-Movie-Search/raw/main/app.py'))
with gr.Tab("Restaruant advisor RAG Demo"):
with gr.Tab("Demo"):
gr.Markdown(
"""
# MongoDB's Vector Restaurant planner
Start typing below to see the results. You can search a specific cuisine for you and choose 3 predefined locations.
The radius specify the distance from the start search location. This space uses the dataset called [whatscooking.restaurants](https://huggingface.co/datasets/AIatMongoDB/whatscooking.restaurants)
""")
# Create the interface
gr.Interface(
get_restaurants,
[gr.Textbox(placeholder="What type of dinner are you looking for?"),
gr.Radio(choices=[
("Timesquare Manhattan", {
"type": "Point",
"coordinates": [-73.98527039999999, 40.7589099]
}),
("Westside Manhattan", {
"type": "Point",
"coordinates": [-74.013686, 40.701975]
}),
("Downtown Manhattan", {
"type": "Point",
"coordinates": [-74.000468, 40.720777]
})
], label="Location", info="What location you need?"),
gr.Slider(minimum=500, maximum=10000, randomize=False, step=5, label="Radius in meters")],
[gr.Textbox(label="MongoDB Vector Recommendations", placeholder="Results will be displayed here"), "html",
gr.Code(label="Pre-aggregate pipeline",language="json" ),
gr.Code(label="Vector Query", language="json")]
)
with gr.Tab("Code"):
gr.Code(label="Code", language="python", value=fetch_url_data('https://huggingface.co/spaces/MongoDB/whatscooking-advisor/raw/main/app.py'))
if __name__ == "__main__":
demo.launch() |