|
import os,shutil,sys,pdb,re |
|
now_dir = os.getcwd() |
|
sys.path.append(now_dir) |
|
import json,yaml,warnings,torch |
|
import platform |
|
import psutil |
|
import signal |
|
|
|
warnings.filterwarnings("ignore") |
|
torch.manual_seed(233333) |
|
tmp = os.path.join(now_dir, "TEMP") |
|
os.makedirs(tmp, exist_ok=True) |
|
os.environ["TEMP"] = tmp |
|
if(os.path.exists(tmp)): |
|
for name in os.listdir(tmp): |
|
if(name=="jieba.cache"):continue |
|
path="%s/%s"%(tmp,name) |
|
delete=os.remove if os.path.isfile(path) else shutil.rmtree |
|
try: |
|
delete(path) |
|
except Exception as e: |
|
print(str(e)) |
|
pass |
|
import site |
|
site_packages_roots = [] |
|
for path in site.getsitepackages(): |
|
if "packages" in path: |
|
site_packages_roots.append(path) |
|
if(site_packages_roots==[]):site_packages_roots=["%s/runtime/Lib/site-packages" % now_dir] |
|
|
|
os.environ["no_proxy"] = "localhost, 127.0.0.1, ::1" |
|
os.environ["all_proxy"] = "" |
|
for site_packages_root in site_packages_roots: |
|
if os.path.exists(site_packages_root): |
|
try: |
|
with open("%s/users.pth" % (site_packages_root), "w") as f: |
|
f.write( |
|
"%s\n%s/tools\n%s/tools/damo_asr\n%s/GPT_SoVITS\n%s/tools/uvr5" |
|
% (now_dir, now_dir, now_dir, now_dir, now_dir) |
|
) |
|
break |
|
except PermissionError: |
|
pass |
|
from tools import my_utils |
|
import traceback |
|
import shutil |
|
import pdb |
|
import gradio as gr |
|
from subprocess import Popen |
|
import signal |
|
from config import python_exec,infer_device,is_half,exp_root,webui_port_main,webui_port_infer_tts,webui_port_uvr5,webui_port_subfix,is_share |
|
from tools.i18n.i18n import I18nAuto |
|
i18n = I18nAuto() |
|
from scipy.io import wavfile |
|
from tools.my_utils import load_audio |
|
from multiprocessing import cpu_count |
|
|
|
os.environ['PYTORCH_ENABLE_MPS_FALLBACK'] = '1' |
|
|
|
n_cpu=cpu_count() |
|
|
|
ngpu = torch.cuda.device_count() |
|
gpu_infos = [] |
|
mem = [] |
|
if_gpu_ok = False |
|
|
|
|
|
if torch.cuda.is_available() or ngpu != 0: |
|
for i in range(ngpu): |
|
gpu_name = torch.cuda.get_device_name(i) |
|
if any(value in gpu_name.upper()for value in ["10","16","20","30","40","A2","A3","A4","P4","A50","500","A60","70","80","90","M4","T4","TITAN","L","4060"]): |
|
|
|
if_gpu_ok = True |
|
gpu_infos.append("%s\t%s" % (i, gpu_name)) |
|
mem.append(int(torch.cuda.get_device_properties(i).total_memory/ 1024/ 1024/ 1024+ 0.4)) |
|
|
|
if torch.backends.mps.is_available(): |
|
if_gpu_ok = True |
|
gpu_infos.append("%s\t%s" % ("0", "Apple GPU")) |
|
mem.append(psutil.virtual_memory().total/ 1024 / 1024 / 1024) |
|
|
|
if if_gpu_ok and len(gpu_infos) > 0: |
|
gpu_info = "\n".join(gpu_infos) |
|
default_batch_size = min(mem) // 2 |
|
else: |
|
gpu_info = i18n("很遗憾您这没有能用的显卡来支持您训练") |
|
default_batch_size = 1 |
|
gpus = "-".join([i[0] for i in gpu_infos]) |
|
|
|
pretrained_sovits_name="GPT_SoVITS/pretrained_models/s2G488k.pth" |
|
pretrained_gpt_name="GPT_SoVITS/pretrained_models/s1bert25hz-2kh-longer-epoch=68e-step=50232.ckpt" |
|
def get_weights_names(): |
|
SoVITS_names = [pretrained_sovits_name] |
|
for name in os.listdir(SoVITS_weight_root): |
|
if name.endswith(".pth"):SoVITS_names.append(name) |
|
GPT_names = [pretrained_gpt_name] |
|
for name in os.listdir(GPT_weight_root): |
|
if name.endswith(".ckpt"): GPT_names.append(name) |
|
return SoVITS_names,GPT_names |
|
SoVITS_weight_root="SoVITS_weights" |
|
GPT_weight_root="GPT_weights" |
|
os.makedirs(SoVITS_weight_root,exist_ok=True) |
|
os.makedirs(GPT_weight_root,exist_ok=True) |
|
SoVITS_names,GPT_names = get_weights_names() |
|
|
|
def custom_sort_key(s): |
|
|
|
parts = re.split('(\d+)', s) |
|
|
|
parts = [int(part) if part.isdigit() else part for part in parts] |
|
return parts |
|
|
|
def change_choices(): |
|
SoVITS_names, GPT_names = get_weights_names() |
|
return {"choices": sorted(SoVITS_names,key=custom_sort_key), "__type__": "update"}, {"choices": sorted(GPT_names,key=custom_sort_key), "__type__": "update"} |
|
|
|
p_label=None |
|
p_uvr5=None |
|
p_asr=None |
|
p_tts_inference=None |
|
|
|
def kill_proc_tree(pid, including_parent=True): |
|
try: |
|
parent = psutil.Process(pid) |
|
except psutil.NoSuchProcess: |
|
|
|
return |
|
|
|
children = parent.children(recursive=True) |
|
for child in children: |
|
try: |
|
os.kill(child.pid, signal.SIGTERM) |
|
except OSError: |
|
pass |
|
if including_parent: |
|
try: |
|
os.kill(parent.pid, signal.SIGTERM) |
|
except OSError: |
|
pass |
|
|
|
system=platform.system() |
|
def kill_process(pid): |
|
if(system=="Windows"): |
|
cmd = "taskkill /t /f /pid %s" % pid |
|
os.system(cmd) |
|
else: |
|
kill_proc_tree(pid) |
|
|
|
|
|
def change_label(if_label,path_list): |
|
global p_label |
|
if(if_label==True and p_label==None): |
|
cmd = '"%s" tools/subfix_webui.py --load_list "%s" --webui_port %s --is_share %s'%(python_exec,path_list,webui_port_subfix,is_share) |
|
yield i18n("打标工具WebUI已开启") |
|
print(cmd) |
|
p_label = Popen(cmd, shell=True) |
|
elif(if_label==False and p_label!=None): |
|
kill_process(p_label.pid) |
|
p_label=None |
|
yield i18n("打标工具WebUI已关闭") |
|
|
|
def change_uvr5(if_uvr5): |
|
global p_uvr5 |
|
if(if_uvr5==True and p_uvr5==None): |
|
cmd = '"%s" tools/uvr5/webui.py "%s" %s %s %s'%(python_exec,infer_device,is_half,webui_port_uvr5,is_share) |
|
yield i18n("UVR5已开启") |
|
print(cmd) |
|
p_uvr5 = Popen(cmd, shell=True) |
|
elif(if_uvr5==False and p_uvr5!=None): |
|
kill_process(p_uvr5.pid) |
|
p_uvr5=None |
|
yield i18n("UVR5已关闭") |
|
|
|
def change_tts_inference(if_tts,bert_path,cnhubert_base_path,gpu_number,gpt_path,sovits_path): |
|
global p_tts_inference |
|
if(if_tts==True and p_tts_inference==None): |
|
os.environ["gpt_path"]=gpt_path if "/" in gpt_path else "%s/%s"%(GPT_weight_root,gpt_path) |
|
os.environ["sovits_path"]=sovits_path if "/"in sovits_path else "%s/%s"%(SoVITS_weight_root,sovits_path) |
|
os.environ["cnhubert_base_path"]=cnhubert_base_path |
|
os.environ["bert_path"]=bert_path |
|
os.environ["_CUDA_VISIBLE_DEVICES"]=gpu_number |
|
os.environ["is_half"]=str(is_half) |
|
os.environ["infer_ttswebui"]=str(webui_port_infer_tts) |
|
os.environ["is_share"]=str(is_share) |
|
cmd = '"%s" GPT_SoVITS/inference_webui.py'%(python_exec) |
|
yield i18n("TTS推理进程已开启") |
|
print(cmd) |
|
p_tts_inference = Popen(cmd, shell=True) |
|
elif(if_tts==False and p_tts_inference!=None): |
|
kill_process(p_tts_inference.pid) |
|
p_tts_inference=None |
|
yield i18n("TTS推理进程已关闭") |
|
|
|
|
|
def open_asr(asr_inp_dir): |
|
global p_asr |
|
if(p_asr==None): |
|
cmd = '"%s" tools/damo_asr/cmd-asr.py "%s"'%(python_exec,asr_inp_dir) |
|
yield "ASR任务开启:%s"%cmd,{"__type__":"update","visible":False},{"__type__":"update","visible":True} |
|
print(cmd) |
|
p_asr = Popen(cmd, shell=True) |
|
p_asr.wait() |
|
p_asr=None |
|
yield "ASR任务完成",{"__type__":"update","visible":True},{"__type__":"update","visible":False} |
|
else: |
|
yield "已有正在进行的ASR任务,需先终止才能开启下一次任务",{"__type__":"update","visible":False},{"__type__":"update","visible":True} |
|
|
|
def close_asr(): |
|
global p_asr |
|
if(p_asr!=None): |
|
kill_process(p_asr.pid) |
|
p_asr=None |
|
return "已终止ASR进程",{"__type__":"update","visible":True},{"__type__":"update","visible":False} |
|
|
|
p_train_SoVITS=None |
|
def open1Ba(batch_size,total_epoch,exp_name,text_low_lr_rate,if_save_latest,if_save_every_weights,save_every_epoch,gpu_numbers1Ba,pretrained_s2G,pretrained_s2D): |
|
global p_train_SoVITS |
|
if(p_train_SoVITS==None): |
|
with open("GPT_SoVITS/configs/s2.json")as f: |
|
data=f.read() |
|
data=json.loads(data) |
|
s2_dir="%s/%s"%(exp_root,exp_name) |
|
os.makedirs("%s/logs_s2"%(s2_dir),exist_ok=True) |
|
if(is_half==False): |
|
data["train"]["fp16_run"]=False |
|
batch_size=max(1,batch_size//2) |
|
data["train"]["batch_size"]=batch_size |
|
data["train"]["epochs"]=total_epoch |
|
data["train"]["text_low_lr_rate"]=text_low_lr_rate |
|
data["train"]["pretrained_s2G"]=pretrained_s2G |
|
data["train"]["pretrained_s2D"]=pretrained_s2D |
|
data["train"]["if_save_latest"]=if_save_latest |
|
data["train"]["if_save_every_weights"]=if_save_every_weights |
|
data["train"]["save_every_epoch"]=save_every_epoch |
|
data["train"]["gpu_numbers"]=gpu_numbers1Ba |
|
data["data"]["exp_dir"]=data["s2_ckpt_dir"]=s2_dir |
|
data["save_weight_dir"]=SoVITS_weight_root |
|
data["name"]=exp_name |
|
tmp_config_path="%s/tmp_s2.json"%tmp |
|
with open(tmp_config_path,"w")as f:f.write(json.dumps(data)) |
|
|
|
cmd = '"%s" GPT_SoVITS/s2_train.py --config "%s"'%(python_exec,tmp_config_path) |
|
yield "SoVITS训练开始:%s"%cmd,{"__type__":"update","visible":False},{"__type__":"update","visible":True} |
|
print(cmd) |
|
p_train_SoVITS = Popen(cmd, shell=True) |
|
p_train_SoVITS.wait() |
|
p_train_SoVITS=None |
|
yield "SoVITS训练完成",{"__type__":"update","visible":True},{"__type__":"update","visible":False} |
|
else: |
|
yield "已有正在进行的SoVITS训练任务,需先终止才能开启下一次任务",{"__type__":"update","visible":False},{"__type__":"update","visible":True} |
|
|
|
def close1Ba(): |
|
global p_train_SoVITS |
|
if(p_train_SoVITS!=None): |
|
kill_process(p_train_SoVITS.pid) |
|
p_train_SoVITS=None |
|
return "已终止SoVITS训练",{"__type__":"update","visible":True},{"__type__":"update","visible":False} |
|
|
|
p_train_GPT=None |
|
def open1Bb(batch_size,total_epoch,exp_name,if_save_latest,if_save_every_weights,save_every_epoch,gpu_numbers,pretrained_s1): |
|
global p_train_GPT |
|
if(p_train_GPT==None): |
|
with open("GPT_SoVITS/configs/s1longer.yaml")as f: |
|
data=f.read() |
|
data=yaml.load(data, Loader=yaml.FullLoader) |
|
s1_dir="%s/%s"%(exp_root,exp_name) |
|
os.makedirs("%s/logs_s1"%(s1_dir),exist_ok=True) |
|
if(is_half==False): |
|
data["train"]["precision"]="32" |
|
batch_size = max(1, batch_size // 2) |
|
data["train"]["batch_size"]=batch_size |
|
data["train"]["epochs"]=total_epoch |
|
data["pretrained_s1"]=pretrained_s1 |
|
data["train"]["save_every_n_epoch"]=save_every_epoch |
|
data["train"]["if_save_every_weights"]=if_save_every_weights |
|
data["train"]["if_save_latest"]=if_save_latest |
|
data["train"]["half_weights_save_dir"]=GPT_weight_root |
|
data["train"]["exp_name"]=exp_name |
|
data["train_semantic_path"]="%s/6-name2semantic.tsv"%s1_dir |
|
data["train_phoneme_path"]="%s/2-name2text.txt"%s1_dir |
|
data["output_dir"]="%s/logs_s1"%s1_dir |
|
|
|
os.environ["_CUDA_VISIBLE_DEVICES"]=gpu_numbers.replace("-",",") |
|
os.environ["hz"]="25hz" |
|
tmp_config_path="%s/tmp_s1.yaml"%tmp |
|
with open(tmp_config_path, "w") as f:f.write(yaml.dump(data, default_flow_style=False)) |
|
|
|
cmd = '"%s" GPT_SoVITS/s1_train.py --config_file "%s" '%(python_exec,tmp_config_path) |
|
yield "GPT训练开始:%s"%cmd,{"__type__":"update","visible":False},{"__type__":"update","visible":True} |
|
print(cmd) |
|
p_train_GPT = Popen(cmd, shell=True) |
|
p_train_GPT.wait() |
|
p_train_GPT=None |
|
yield "GPT训练完成",{"__type__":"update","visible":True},{"__type__":"update","visible":False} |
|
else: |
|
yield "已有正在进行的GPT训练任务,需先终止才能开启下一次任务",{"__type__":"update","visible":False},{"__type__":"update","visible":True} |
|
|
|
def close1Bb(): |
|
global p_train_GPT |
|
if(p_train_GPT!=None): |
|
kill_process(p_train_GPT.pid) |
|
p_train_GPT=None |
|
return "已终止GPT训练",{"__type__":"update","visible":True},{"__type__":"update","visible":False} |
|
|
|
ps_slice=[] |
|
def open_slice(inp,opt_root,threshold,min_length,min_interval,hop_size,max_sil_kept,_max,alpha,n_parts): |
|
global ps_slice |
|
inp = my_utils.clean_path(inp) |
|
opt_root = my_utils.clean_path(opt_root) |
|
if(os.path.exists(inp)==False): |
|
yield "输入路径不存在",{"__type__":"update","visible":True},{"__type__":"update","visible":False} |
|
return |
|
if os.path.isfile(inp):n_parts=1 |
|
elif os.path.isdir(inp):pass |
|
else: |
|
yield "输入路径存在但既不是文件也不是文件夹",{"__type__":"update","visible":True},{"__type__":"update","visible":False} |
|
return |
|
if (ps_slice == []): |
|
for i_part in range(n_parts): |
|
cmd = '"%s" tools/slice_audio.py "%s" "%s" %s %s %s %s %s %s %s %s %s''' % (python_exec,inp, opt_root, threshold, min_length, min_interval, hop_size, max_sil_kept, _max, alpha, i_part, n_parts) |
|
print(cmd) |
|
p = Popen(cmd, shell=True) |
|
ps_slice.append(p) |
|
yield "切割执行中", {"__type__": "update", "visible": False}, {"__type__": "update", "visible": True} |
|
for p in ps_slice: |
|
p.wait() |
|
ps_slice=[] |
|
yield "切割结束",{"__type__":"update","visible":True},{"__type__":"update","visible":False} |
|
else: |
|
yield "已有正在进行的切割任务,需先终止才能开启下一次任务", {"__type__": "update", "visible": False}, {"__type__": "update", "visible": True} |
|
|
|
def close_slice(): |
|
global ps_slice |
|
if (ps_slice != []): |
|
for p_slice in ps_slice: |
|
try: |
|
kill_process(p_slice.pid) |
|
except: |
|
traceback.print_exc() |
|
ps_slice=[] |
|
return "已终止所有切割进程", {"__type__": "update", "visible": True}, {"__type__": "update", "visible": False} |
|
|
|
ps1a=[] |
|
def open1a(inp_text,inp_wav_dir,exp_name,gpu_numbers,bert_pretrained_dir): |
|
global ps1a |
|
if (ps1a == []): |
|
opt_dir="%s/%s"%(exp_root,exp_name) |
|
config={ |
|
"inp_text":inp_text, |
|
"inp_wav_dir":inp_wav_dir, |
|
"exp_name":exp_name, |
|
"opt_dir":opt_dir, |
|
"bert_pretrained_dir":bert_pretrained_dir, |
|
} |
|
gpu_names=gpu_numbers.split("-") |
|
all_parts=len(gpu_names) |
|
for i_part in range(all_parts): |
|
config.update( |
|
{ |
|
"i_part": str(i_part), |
|
"all_parts": str(all_parts), |
|
"_CUDA_VISIBLE_DEVICES": gpu_names[i_part], |
|
"is_half": str(is_half) |
|
} |
|
) |
|
os.environ.update(config) |
|
cmd = '"%s" GPT_SoVITS/prepare_datasets/1-get-text.py'%python_exec |
|
print(cmd) |
|
p = Popen(cmd, shell=True) |
|
ps1a.append(p) |
|
yield "文本进程执行中", {"__type__": "update", "visible": False}, {"__type__": "update", "visible": True} |
|
for p in ps1a: |
|
p.wait() |
|
opt = [] |
|
for i_part in range(all_parts): |
|
txt_path = "%s/2-name2text-%s.txt" % (opt_dir, i_part) |
|
with open(txt_path, "r", encoding="utf8") as f: |
|
opt += f.read().strip("\n").split("\n") |
|
os.remove(txt_path) |
|
path_text = "%s/2-name2text.txt" % opt_dir |
|
with open(path_text, "w", encoding="utf8") as f: |
|
f.write("\n".join(opt) + "\n") |
|
ps1a=[] |
|
yield "文本进程结束",{"__type__":"update","visible":True},{"__type__":"update","visible":False} |
|
else: |
|
yield "已有正在进行的文本任务,需先终止才能开启下一次任务", {"__type__": "update", "visible": False}, {"__type__": "update", "visible": True} |
|
|
|
def close1a(): |
|
global ps1a |
|
if (ps1a != []): |
|
for p1a in ps1a: |
|
try: |
|
kill_process(p1a.pid) |
|
except: |
|
traceback.print_exc() |
|
ps1a=[] |
|
return "已终止所有1a进程", {"__type__": "update", "visible": True}, {"__type__": "update", "visible": False} |
|
|
|
ps1b=[] |
|
def open1b(inp_text,inp_wav_dir,exp_name,gpu_numbers,ssl_pretrained_dir): |
|
global ps1b |
|
if (ps1b == []): |
|
config={ |
|
"inp_text":inp_text, |
|
"inp_wav_dir":inp_wav_dir, |
|
"exp_name":exp_name, |
|
"opt_dir":"%s/%s"%(exp_root,exp_name), |
|
"cnhubert_base_dir":ssl_pretrained_dir, |
|
"is_half": str(is_half) |
|
} |
|
gpu_names=gpu_numbers.split("-") |
|
all_parts=len(gpu_names) |
|
for i_part in range(all_parts): |
|
config.update( |
|
{ |
|
"i_part": str(i_part), |
|
"all_parts": str(all_parts), |
|
"_CUDA_VISIBLE_DEVICES": gpu_names[i_part], |
|
} |
|
) |
|
os.environ.update(config) |
|
cmd = '"%s" GPT_SoVITS/prepare_datasets/2-get-hubert-wav32k.py'%python_exec |
|
print(cmd) |
|
p = Popen(cmd, shell=True) |
|
ps1b.append(p) |
|
yield "SSL提取进程执行中", {"__type__": "update", "visible": False}, {"__type__": "update", "visible": True} |
|
for p in ps1b: |
|
p.wait() |
|
ps1b=[] |
|
yield "SSL提取进程结束",{"__type__":"update","visible":True},{"__type__":"update","visible":False} |
|
else: |
|
yield "已有正在进行的SSL提取任务,需先终止才能开启下一次任务", {"__type__": "update", "visible": False}, {"__type__": "update", "visible": True} |
|
|
|
def close1b(): |
|
global ps1b |
|
if (ps1b != []): |
|
for p1b in ps1b: |
|
try: |
|
kill_process(p1b.pid) |
|
except: |
|
traceback.print_exc() |
|
ps1b=[] |
|
return "已终止所有1b进程", {"__type__": "update", "visible": True}, {"__type__": "update", "visible": False} |
|
|
|
ps1c=[] |
|
def open1c(inp_text,exp_name,gpu_numbers,pretrained_s2G_path): |
|
global ps1c |
|
if (ps1c == []): |
|
opt_dir="%s/%s"%(exp_root,exp_name) |
|
config={ |
|
"inp_text":inp_text, |
|
"exp_name":exp_name, |
|
"opt_dir":opt_dir, |
|
"pretrained_s2G":pretrained_s2G_path, |
|
"s2config_path":"GPT_SoVITS/configs/s2.json", |
|
"is_half": str(is_half) |
|
} |
|
gpu_names=gpu_numbers.split("-") |
|
all_parts=len(gpu_names) |
|
for i_part in range(all_parts): |
|
config.update( |
|
{ |
|
"i_part": str(i_part), |
|
"all_parts": str(all_parts), |
|
"_CUDA_VISIBLE_DEVICES": gpu_names[i_part], |
|
} |
|
) |
|
os.environ.update(config) |
|
cmd = '"%s" GPT_SoVITS/prepare_datasets/3-get-semantic.py'%python_exec |
|
print(cmd) |
|
p = Popen(cmd, shell=True) |
|
ps1c.append(p) |
|
yield "语义token提取进程执行中", {"__type__": "update", "visible": False}, {"__type__": "update", "visible": True} |
|
for p in ps1c: |
|
p.wait() |
|
opt = ["item_name\tsemantic_audio"] |
|
path_semantic = "%s/6-name2semantic.tsv" % opt_dir |
|
for i_part in range(all_parts): |
|
semantic_path = "%s/6-name2semantic-%s.tsv" % (opt_dir, i_part) |
|
with open(semantic_path, "r", encoding="utf8") as f: |
|
opt += f.read().strip("\n").split("\n") |
|
os.remove(semantic_path) |
|
with open(path_semantic, "w", encoding="utf8") as f: |
|
f.write("\n".join(opt) + "\n") |
|
ps1c=[] |
|
yield "语义token提取进程结束",{"__type__":"update","visible":True},{"__type__":"update","visible":False} |
|
else: |
|
yield "已有正在进行的语义token提取任务,需先终止才能开启下一次任务", {"__type__": "update", "visible": False}, {"__type__": "update", "visible": True} |
|
|
|
def close1c(): |
|
global ps1c |
|
if (ps1c != []): |
|
for p1c in ps1c: |
|
try: |
|
kill_process(p1c.pid) |
|
except: |
|
traceback.print_exc() |
|
ps1c=[] |
|
return "已终止所有语义token进程", {"__type__": "update", "visible": True}, {"__type__": "update", "visible": False} |
|
|
|
ps1abc=[] |
|
def open1abc(inp_text,inp_wav_dir,exp_name,gpu_numbers1a,gpu_numbers1Ba,gpu_numbers1c,bert_pretrained_dir,ssl_pretrained_dir,pretrained_s2G_path): |
|
global ps1abc |
|
if (ps1abc == []): |
|
opt_dir="%s/%s"%(exp_root,exp_name) |
|
try: |
|
|
|
path_text="%s/2-name2text.txt" % opt_dir |
|
if(os.path.exists(path_text)==False or (os.path.exists(path_text)==True and len(open(path_text,"r",encoding="utf8").read().strip("\n").split("\n"))<2)): |
|
config={ |
|
"inp_text":inp_text, |
|
"inp_wav_dir":inp_wav_dir, |
|
"exp_name":exp_name, |
|
"opt_dir":opt_dir, |
|
"bert_pretrained_dir":bert_pretrained_dir, |
|
"is_half": str(is_half) |
|
} |
|
gpu_names=gpu_numbers1a.split("-") |
|
all_parts=len(gpu_names) |
|
for i_part in range(all_parts): |
|
config.update( |
|
{ |
|
"i_part": str(i_part), |
|
"all_parts": str(all_parts), |
|
"_CUDA_VISIBLE_DEVICES": gpu_names[i_part], |
|
} |
|
) |
|
os.environ.update(config) |
|
cmd = '"%s" GPT_SoVITS/prepare_datasets/1-get-text.py'%python_exec |
|
print(cmd) |
|
p = Popen(cmd, shell=True) |
|
ps1abc.append(p) |
|
yield "进度:1a-ing", {"__type__": "update", "visible": False}, {"__type__": "update", "visible": True} |
|
for p in ps1abc:p.wait() |
|
|
|
opt = [] |
|
for i_part in range(all_parts): |
|
txt_path = "%s/2-name2text-%s.txt" % (opt_dir, i_part) |
|
with open(txt_path, "r",encoding="utf8") as f: |
|
opt += f.read().strip("\n").split("\n") |
|
os.remove(txt_path) |
|
with open(path_text, "w",encoding="utf8") as f: |
|
f.write("\n".join(opt) + "\n") |
|
|
|
yield "进度:1a-done", {"__type__": "update", "visible": False}, {"__type__": "update", "visible": True} |
|
ps1abc=[] |
|
|
|
config={ |
|
"inp_text":inp_text, |
|
"inp_wav_dir":inp_wav_dir, |
|
"exp_name":exp_name, |
|
"opt_dir":opt_dir, |
|
"cnhubert_base_dir":ssl_pretrained_dir, |
|
} |
|
gpu_names=gpu_numbers1Ba.split("-") |
|
all_parts=len(gpu_names) |
|
for i_part in range(all_parts): |
|
config.update( |
|
{ |
|
"i_part": str(i_part), |
|
"all_parts": str(all_parts), |
|
"_CUDA_VISIBLE_DEVICES": gpu_names[i_part], |
|
} |
|
) |
|
os.environ.update(config) |
|
cmd = '"%s" GPT_SoVITS/prepare_datasets/2-get-hubert-wav32k.py'%python_exec |
|
print(cmd) |
|
p = Popen(cmd, shell=True) |
|
ps1abc.append(p) |
|
yield "进度:1a-done, 1b-ing", {"__type__": "update", "visible": False}, {"__type__": "update", "visible": True} |
|
for p in ps1abc:p.wait() |
|
yield "进度:1a1b-done", {"__type__": "update", "visible": False}, {"__type__": "update", "visible": True} |
|
ps1abc=[] |
|
|
|
path_semantic = "%s/6-name2semantic.tsv" % opt_dir |
|
if(os.path.exists(path_semantic)==False or (os.path.exists(path_semantic)==True and os.path.getsize(path_semantic)<31)): |
|
config={ |
|
"inp_text":inp_text, |
|
"exp_name":exp_name, |
|
"opt_dir":opt_dir, |
|
"pretrained_s2G":pretrained_s2G_path, |
|
"s2config_path":"GPT_SoVITS/configs/s2.json", |
|
} |
|
gpu_names=gpu_numbers1c.split("-") |
|
all_parts=len(gpu_names) |
|
for i_part in range(all_parts): |
|
config.update( |
|
{ |
|
"i_part": str(i_part), |
|
"all_parts": str(all_parts), |
|
"_CUDA_VISIBLE_DEVICES": gpu_names[i_part], |
|
} |
|
) |
|
os.environ.update(config) |
|
cmd = '"%s" GPT_SoVITS/prepare_datasets/3-get-semantic.py'%python_exec |
|
print(cmd) |
|
p = Popen(cmd, shell=True) |
|
ps1abc.append(p) |
|
yield "进度:1a1b-done, 1cing", {"__type__": "update", "visible": False}, {"__type__": "update", "visible": True} |
|
for p in ps1abc:p.wait() |
|
|
|
opt = ["item_name\tsemantic_audio"] |
|
for i_part in range(all_parts): |
|
semantic_path = "%s/6-name2semantic-%s.tsv" % (opt_dir, i_part) |
|
with open(semantic_path, "r",encoding="utf8") as f: |
|
opt += f.read().strip("\n").split("\n") |
|
os.remove(semantic_path) |
|
with open(path_semantic, "w",encoding="utf8") as f: |
|
f.write("\n".join(opt) + "\n") |
|
yield "进度:all-done", {"__type__": "update", "visible": False}, {"__type__": "update", "visible": True} |
|
ps1abc = [] |
|
yield "一键三连进程结束", {"__type__": "update", "visible": True}, {"__type__": "update", "visible": False} |
|
except: |
|
traceback.print_exc() |
|
close1abc() |
|
yield "一键三连中途报错", {"__type__": "update", "visible": True}, {"__type__": "update", "visible": False} |
|
else: |
|
yield "已有正在进行的一键三连任务,需先终止才能开启下一次任务", {"__type__": "update", "visible": False}, {"__type__": "update", "visible": True} |
|
|
|
def close1abc(): |
|
global ps1abc |
|
if (ps1abc != []): |
|
for p1abc in ps1abc: |
|
try: |
|
kill_process(p1abc.pid) |
|
except: |
|
traceback.print_exc() |
|
ps1abc=[] |
|
return "已终止所有一键三连进程", {"__type__": "update", "visible": True}, {"__type__": "update", "visible": False} |
|
|
|
with gr.Blocks(title="GPT-SoVITS WebUI") as app: |
|
gr.Markdown( |
|
value= |
|
i18n("本软件以MIT协议开源, 作者不对软件具备任何控制力, 使用软件者、传播软件导出的声音者自负全责. <br>如不认可该条款, 则不能使用或引用软件包内任何代码和文件. 详见根目录<b>LICENSE</b>.") |
|
) |
|
with gr.Tabs(): |
|
with gr.TabItem(i18n("0-前置数据集获取工具")): |
|
gr.Markdown(value=i18n("0a-UVR5人声伴奏分离&去混响去延迟工具")) |
|
with gr.Row(): |
|
if_uvr5 = gr.Checkbox(label=i18n("是否开启UVR5-WebUI"),show_label=True) |
|
uvr5_info = gr.Textbox(label=i18n("UVR5进程输出信息")) |
|
gr.Markdown(value=i18n("0b-语音切分工具")) |
|
with gr.Row(): |
|
with gr.Row(): |
|
slice_inp_path=gr.Textbox(label=i18n("音频自动切分输入路径,可文件可文件夹"),value="") |
|
slice_opt_root=gr.Textbox(label=i18n("切分后的子音频的输出根目录"),value="output/slicer_opt") |
|
threshold=gr.Textbox(label=i18n("threshold:音量小于这个值视作静音的备选切割点"),value="-34") |
|
min_length=gr.Textbox(label=i18n("min_length:每段最小多长,如果第一段太短一直和后面段连起来直到超过这个值"),value="4000") |
|
min_interval=gr.Textbox(label=i18n("min_interval:最短切割间隔"),value="300") |
|
hop_size=gr.Textbox(label=i18n("hop_size:怎么算音量曲线,越小精度越大计算量越高(不是精度越大效果越好)"),value="10") |
|
max_sil_kept=gr.Textbox(label=i18n("max_sil_kept:切完后静音最多留多长"),value="500") |
|
with gr.Row(): |
|
open_slicer_button=gr.Button(i18n("开启语音切割"), variant="primary",visible=True) |
|
close_slicer_button=gr.Button(i18n("终止语音切割"), variant="primary",visible=False) |
|
_max=gr.Slider(minimum=0,maximum=1,step=0.05,label=i18n("max:归一化后最大值多少"),value=0.9,interactive=True) |
|
alpha=gr.Slider(minimum=0,maximum=1,step=0.05,label=i18n("alpha_mix:混多少比例归一化后音频进来"),value=0.25,interactive=True) |
|
n_process=gr.Slider(minimum=1,maximum=n_cpu,step=1,label=i18n("切割使用的进程数"),value=4,interactive=True) |
|
slicer_info = gr.Textbox(label=i18n("语音切割进程输出信息")) |
|
gr.Markdown(value=i18n("0c-中文批量离线ASR工具")) |
|
with gr.Row(): |
|
open_asr_button = gr.Button(i18n("开启离线批量ASR"), variant="primary",visible=True) |
|
close_asr_button = gr.Button(i18n("终止ASR进程"), variant="primary",visible=False) |
|
asr_inp_dir = gr.Textbox( |
|
label=i18n("批量ASR(中文only)输入文件夹路径"), |
|
value="D:\\RVC1006\\GPT-SoVITS\\raw\\xxx", |
|
interactive=True, |
|
) |
|
asr_info = gr.Textbox(label=i18n("ASR进程输出信息")) |
|
gr.Markdown(value=i18n("0d-语音文本校对标注工具")) |
|
with gr.Row(): |
|
if_label = gr.Checkbox(label=i18n("是否开启打标WebUI"),show_label=True) |
|
path_list = gr.Textbox( |
|
label=i18n(".list标注文件的路径"), |
|
value="D:\\RVC1006\\GPT-SoVITS\\raw\\xxx.list", |
|
interactive=True, |
|
) |
|
label_info = gr.Textbox(label=i18n("打标工具进程输出信息")) |
|
if_label.change(change_label, [if_label,path_list], [label_info]) |
|
if_uvr5.change(change_uvr5, [if_uvr5], [uvr5_info]) |
|
open_asr_button.click(open_asr, [asr_inp_dir], [asr_info,open_asr_button,close_asr_button]) |
|
close_asr_button.click(close_asr, [], [asr_info,open_asr_button,close_asr_button]) |
|
open_slicer_button.click(open_slice, [slice_inp_path,slice_opt_root,threshold,min_length,min_interval,hop_size,max_sil_kept,_max,alpha,n_process], [slicer_info,open_slicer_button,close_slicer_button]) |
|
close_slicer_button.click(close_slice, [], [slicer_info,open_slicer_button,close_slicer_button]) |
|
with gr.TabItem(i18n("1-GPT-SoVITS-TTS")): |
|
with gr.Row(): |
|
exp_name = gr.Textbox(label=i18n("*实验/模型名"), value="xxx", interactive=True) |
|
gpu_info = gr.Textbox(label=i18n("显卡信息"), value=gpu_info, visible=True, interactive=False) |
|
pretrained_s2G = gr.Textbox(label=i18n("预训练的SoVITS-G模型路径"), value="GPT_SoVITS/pretrained_models/s2G488k.pth", interactive=True) |
|
pretrained_s2D = gr.Textbox(label=i18n("预训练的SoVITS-D模型路径"), value="GPT_SoVITS/pretrained_models/s2D488k.pth", interactive=True) |
|
pretrained_s1 = gr.Textbox(label=i18n("预训练的GPT模型路径"), value="GPT_SoVITS/pretrained_models/s1bert25hz-2kh-longer-epoch=68e-step=50232.ckpt", interactive=True) |
|
with gr.TabItem(i18n("1A-训练集格式化工具")): |
|
gr.Markdown(value=i18n("输出logs/实验名目录下应有23456开头的文件和文件夹")) |
|
with gr.Row(): |
|
inp_text = gr.Textbox(label=i18n("*文本标注文件"),value=r"D:\RVC1006\GPT-SoVITS\raw\xxx.list",interactive=True) |
|
inp_wav_dir = gr.Textbox( |
|
label=i18n("*训练集音频文件目录"), |
|
|
|
interactive=True, |
|
placeholder=i18n("填切割后音频所在目录!读取的音频文件完整路径=该目录-拼接-list文件里波形对应的文件名(不是全路径)。") |
|
) |
|
gr.Markdown(value=i18n("1Aa-文本内容")) |
|
with gr.Row(): |
|
gpu_numbers1a = gr.Textbox(label=i18n("GPU卡号以-分割,每个卡号一个进程"),value="%s-%s"%(gpus,gpus),interactive=True) |
|
bert_pretrained_dir = gr.Textbox(label=i18n("预训练的中文BERT模型路径"),value="GPT_SoVITS/pretrained_models/chinese-roberta-wwm-ext-large",interactive=False) |
|
button1a_open = gr.Button(i18n("开启文本获取"), variant="primary",visible=True) |
|
button1a_close = gr.Button(i18n("终止文本获取进程"), variant="primary",visible=False) |
|
info1a=gr.Textbox(label=i18n("文本进程输出信息")) |
|
gr.Markdown(value=i18n("1Ab-SSL自监督特征提取")) |
|
with gr.Row(): |
|
gpu_numbers1Ba = gr.Textbox(label=i18n("GPU卡号以-分割,每个卡号一个进程"),value="%s-%s"%(gpus,gpus),interactive=True) |
|
cnhubert_base_dir = gr.Textbox(label=i18n("预训练的SSL模型路径"),value="GPT_SoVITS/pretrained_models/chinese-hubert-base",interactive=False) |
|
button1b_open = gr.Button(i18n("开启SSL提取"), variant="primary",visible=True) |
|
button1b_close = gr.Button(i18n("终止SSL提取进程"), variant="primary",visible=False) |
|
info1b=gr.Textbox(label=i18n("SSL进程输出信息")) |
|
gr.Markdown(value=i18n("1Ac-语义token提取")) |
|
with gr.Row(): |
|
gpu_numbers1c = gr.Textbox(label=i18n("GPU卡号以-分割,每个卡号一个进程"),value="%s-%s"%(gpus,gpus),interactive=True) |
|
button1c_open = gr.Button(i18n("开启语义token提取"), variant="primary",visible=True) |
|
button1c_close = gr.Button(i18n("终止语义token提取进程"), variant="primary",visible=False) |
|
info1c=gr.Textbox(label=i18n("语义token提取进程输出信息")) |
|
gr.Markdown(value=i18n("1Aabc-训练集格式化一键三连")) |
|
with gr.Row(): |
|
button1abc_open = gr.Button(i18n("开启一键三连"), variant="primary",visible=True) |
|
button1abc_close = gr.Button(i18n("终止一键三连"), variant="primary",visible=False) |
|
info1abc=gr.Textbox(label=i18n("一键三连进程输出信息")) |
|
button1a_open.click(open1a, [inp_text,inp_wav_dir,exp_name,gpu_numbers1a,bert_pretrained_dir], [info1a,button1a_open,button1a_close]) |
|
button1a_close.click(close1a, [], [info1a,button1a_open,button1a_close]) |
|
button1b_open.click(open1b, [inp_text,inp_wav_dir,exp_name,gpu_numbers1Ba,cnhubert_base_dir], [info1b,button1b_open,button1b_close]) |
|
button1b_close.click(close1b, [], [info1b,button1b_open,button1b_close]) |
|
button1c_open.click(open1c, [inp_text,exp_name,gpu_numbers1c,pretrained_s2G], [info1c,button1c_open,button1c_close]) |
|
button1c_close.click(close1c, [], [info1c,button1c_open,button1c_close]) |
|
button1abc_open.click(open1abc, [inp_text,inp_wav_dir,exp_name,gpu_numbers1a,gpu_numbers1Ba,gpu_numbers1c,bert_pretrained_dir,cnhubert_base_dir,pretrained_s2G], [info1abc,button1abc_open,button1abc_close]) |
|
button1abc_close.click(close1abc, [], [info1abc,button1abc_open,button1abc_close]) |
|
with gr.TabItem(i18n("1B-微调训练")): |
|
gr.Markdown(value=i18n("1Ba-SoVITS训练。用于分享的模型文件输出在SoVITS_weights下。")) |
|
with gr.Row(): |
|
batch_size = gr.Slider(minimum=1,maximum=40,step=1,label=i18n("每张显卡的batch_size"),value=default_batch_size,interactive=True) |
|
total_epoch = gr.Slider(minimum=1,maximum=25,step=1,label=i18n("总训练轮数total_epoch,不建议太高"),value=8,interactive=True) |
|
text_low_lr_rate = gr.Slider(minimum=0.2,maximum=0.6,step=0.05,label=i18n("文本模块学习率权重"),value=0.4,interactive=True) |
|
save_every_epoch = gr.Slider(minimum=1,maximum=25,step=1,label=i18n("保存频率save_every_epoch"),value=4,interactive=True) |
|
if_save_latest = gr.Checkbox(label=i18n("是否仅保存最新的ckpt文件以节省硬盘空间"), value=True, interactive=True, show_label=True) |
|
if_save_every_weights = gr.Checkbox(label=i18n("是否在每次保存时间点将最终小模型保存至weights文件夹"), value=True, interactive=True, show_label=True) |
|
gpu_numbers1Ba = gr.Textbox(label=i18n("GPU卡号以-分割,每个卡号一个进程"), value="%s" % (gpus), interactive=True) |
|
with gr.Row(): |
|
button1Ba_open = gr.Button(i18n("开启SoVITS训练"), variant="primary",visible=True) |
|
button1Ba_close = gr.Button(i18n("终止SoVITS训练"), variant="primary",visible=False) |
|
info1Ba=gr.Textbox(label=i18n("SoVITS训练进程输出信息")) |
|
gr.Markdown(value=i18n("1Bb-GPT训练。用于分享的模型文件输出在GPT_weights下。")) |
|
with gr.Row(): |
|
batch_size1Bb = gr.Slider(minimum=1,maximum=40,step=1,label=i18n("每张显卡的batch_size"),value=default_batch_size,interactive=True) |
|
total_epoch1Bb = gr.Slider(minimum=2,maximum=50,step=1,label=i18n("总训练轮数total_epoch"),value=15,interactive=True) |
|
if_save_latest1Bb = gr.Checkbox(label=i18n("是否仅保存最新的ckpt文件以节省硬盘空间"), value=True, interactive=True, show_label=True) |
|
if_save_every_weights1Bb = gr.Checkbox(label=i18n("是否在每次保存时间点将最终小模型保存至weights文件夹"), value=True, interactive=True, show_label=True) |
|
save_every_epoch1Bb = gr.Slider(minimum=1,maximum=50,step=1,label=i18n("保存频率save_every_epoch"),value=5,interactive=True) |
|
gpu_numbers1Bb = gr.Textbox(label=i18n("GPU卡号以-分割,每个卡号一个进程"), value="%s" % (gpus), interactive=True) |
|
with gr.Row(): |
|
button1Bb_open = gr.Button(i18n("开启GPT训练"), variant="primary",visible=True) |
|
button1Bb_close = gr.Button(i18n("终止GPT训练"), variant="primary",visible=False) |
|
info1Bb=gr.Textbox(label=i18n("GPT训练进程输出信息")) |
|
button1Ba_open.click(open1Ba, [batch_size,total_epoch,exp_name,text_low_lr_rate,if_save_latest,if_save_every_weights,save_every_epoch,gpu_numbers1Ba,pretrained_s2G,pretrained_s2D], [info1Ba,button1Ba_open,button1Ba_close]) |
|
button1Ba_close.click(close1Ba, [], [info1Ba,button1Ba_open,button1Ba_close]) |
|
button1Bb_open.click(open1Bb, [batch_size1Bb,total_epoch1Bb,exp_name,if_save_latest1Bb,if_save_every_weights1Bb,save_every_epoch1Bb,gpu_numbers1Bb,pretrained_s1], [info1Bb,button1Bb_open,button1Bb_close]) |
|
button1Bb_close.click(close1Bb, [], [info1Bb,button1Bb_open,button1Bb_close]) |
|
with gr.TabItem(i18n("1C-推理")): |
|
gr.Markdown(value=i18n("选择训练完存放在SoVITS_weights和GPT_weights下的模型。默认的一个是底模,体验5秒Zero Shot TTS用。")) |
|
with gr.Row(): |
|
GPT_dropdown = gr.Dropdown(label=i18n("*GPT模型列表"), choices=sorted(GPT_names,key=custom_sort_key),value=pretrained_gpt_name,interactive=True) |
|
SoVITS_dropdown = gr.Dropdown(label=i18n("*SoVITS模型列表"), choices=sorted(SoVITS_names,key=custom_sort_key),value=pretrained_sovits_name,interactive=True) |
|
gpu_number_1C=gr.Textbox(label=i18n("GPU卡号,只能填1个整数"), value=gpus, interactive=True) |
|
refresh_button = gr.Button(i18n("刷新模型路径"), variant="primary") |
|
refresh_button.click(fn=change_choices,inputs=[],outputs=[SoVITS_dropdown,GPT_dropdown]) |
|
with gr.Row(): |
|
if_tts = gr.Checkbox(label=i18n("是否开启TTS推理WebUI"), show_label=True) |
|
tts_info = gr.Textbox(label=i18n("TTS推理WebUI进程输出信息")) |
|
if_tts.change(change_tts_inference, [if_tts,bert_pretrained_dir,cnhubert_base_dir,gpu_number_1C,GPT_dropdown,SoVITS_dropdown], [tts_info]) |
|
with gr.TabItem(i18n("2-GPT-SoVITS-变声")):gr.Markdown(value=i18n("施工中,请静候佳音")) |
|
app.queue(concurrency_count=511, max_size=1022).launch( |
|
server_name="0.0.0.0", |
|
inbrowser=True, |
|
share=is_share, |
|
server_port=webui_port_main, |
|
quiet=True, |
|
) |
|
|