File size: 16,751 Bytes
b108546
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
"""
# api.py usage

` python api.py -dr "123.wav" -dt "一二三。" -dl "zh" `

## 执行参数:

`-s` - `SoVITS模型路径, 可在 config.py 中指定`
`-g` - `GPT模型路径, 可在 config.py 中指定`

调用请求缺少参考音频时使用
`-dr` - `默认参考音频路径`
`-dt` - `默认参考音频文本`
`-dl` - `默认参考音频语种, "中文","英文","日文","zh","en","ja"`

`-d` - `推理设备, "cuda","cpu","mps"`
`-a` - `绑定地址, 默认"127.0.0.1"`
`-p` - `绑定端口, 默认9880, 可在 config.py 中指定`
`-fp` - `覆盖 config.py 使用全精度`
`-hp` - `覆盖 config.py 使用半精度`

`-hb` - `cnhubert路径`
`-b` - `bert路径`

## 调用:

### 推理

endpoint: `/`

使用执行参数指定的参考音频:
GET:
    `http://127.0.0.1:9880?text=先帝创业未半而中道崩殂,今天下三分,益州疲弊,此诚危急存亡之秋也。&text_language=zh`
POST:
```json
{
    "text": "先帝创业未半而中道崩殂,今天下三分,益州疲弊,此诚危急存亡之秋也。",
    "text_language": "zh"
}
```

手动指定当次推理所使用的参考音频:
GET:
    `http://127.0.0.1:9880?refer_wav_path=123.wav&prompt_text=一二三。&prompt_language=zh&text=先帝创业未半而中道崩殂,今天下三分,益州疲弊,此诚危急存亡之秋也。&text_language=zh`
POST:
```json
{
    "refer_wav_path": "123.wav",
    "prompt_text": "一二三。",
    "prompt_language": "zh",
    "text": "先帝创业未半而中道崩殂,今天下三分,益州疲弊,此诚危急存亡之秋也。",
    "text_language": "zh"
}
```

RESP:
成功: 直接返回 wav 音频流, http code 200
失败: 返回包含错误信息的 json, http code 400


### 更换默认参考音频

endpoint: `/change_refer`

key与推理端一样

GET:
    `http://127.0.0.1:9880/change_refer?refer_wav_path=123.wav&prompt_text=一二三。&prompt_language=zh`
POST:
```json
{
    "refer_wav_path": "123.wav",
    "prompt_text": "一二三。",
    "prompt_language": "zh"
}
```

RESP:
成功: json, http code 200
失败: json, 400


### 命令控制

endpoint: `/control`

command:
"restart": 重新运行
"exit": 结束运行

GET:
    `http://127.0.0.1:9880/control?command=restart`
POST:
```json
{
    "command": "restart"
}
```

RESP: 无

"""


import argparse
import os
import signal
import sys
from time import time as ttime
import torch
import librosa
import soundfile as sf
from fastapi import FastAPI, Request, HTTPException
from fastapi.responses import StreamingResponse, JSONResponse
import uvicorn
from transformers import AutoModelForMaskedLM, AutoTokenizer
import numpy as np
from feature_extractor import cnhubert
from io import BytesIO
from module.models import SynthesizerTrn
from AR.models.t2s_lightning_module import Text2SemanticLightningModule
from text import cleaned_text_to_sequence
from text.cleaner import clean_text
from module.mel_processing import spectrogram_torch
from my_utils import load_audio
import config as global_config

g_config = global_config.Config()

# AVAILABLE_COMPUTE = "cuda" if torch.cuda.is_available() else "cpu"

parser = argparse.ArgumentParser(description="GPT-SoVITS api")

parser.add_argument("-s", "--sovits_path", type=str, default=g_config.sovits_path, help="SoVITS模型路径")
parser.add_argument("-g", "--gpt_path", type=str, default=g_config.gpt_path, help="GPT模型路径")

parser.add_argument("-dr", "--default_refer_path", type=str, default="", help="默认参考音频路径")
parser.add_argument("-dt", "--default_refer_text", type=str, default="", help="默认参考音频文本")
parser.add_argument("-dl", "--default_refer_language", type=str, default="", help="默认参考音频语种")

parser.add_argument("-d", "--device", type=str, default=g_config.infer_device, help="cuda / cpu / mps")
parser.add_argument("-a", "--bind_addr", type=str, default="127.0.0.1", help="default: 127.0.0.1")
parser.add_argument("-p", "--port", type=int, default=g_config.api_port, help="default: 9880")
parser.add_argument("-fp", "--full_precision", action="store_true", default=False, help="覆盖config.is_half为False, 使用全精度")
parser.add_argument("-hp", "--half_precision", action="store_true", default=False, help="覆盖config.is_half为True, 使用半精度")
# bool值的用法为 `python ./api.py -fp ...`
# 此时 full_precision==True, half_precision==False

parser.add_argument("-hb", "--hubert_path", type=str, default=g_config.cnhubert_path, help="覆盖config.cnhubert_path")
parser.add_argument("-b", "--bert_path", type=str, default=g_config.bert_path, help="覆盖config.bert_path")

args = parser.parse_args()

sovits_path = args.sovits_path
gpt_path = args.gpt_path


class DefaultRefer:
    def __init__(self, path, text, language):
        self.path = args.default_refer_path
        self.text = args.default_refer_text
        self.language = args.default_refer_language

    def is_ready(self) -> bool:
        return is_full(self.path, self.text, self.language)


default_refer = DefaultRefer(args.default_refer_path, args.default_refer_text, args.default_refer_language)

device = args.device
port = args.port
host = args.bind_addr

if sovits_path == "":
    sovits_path = g_config.pretrained_sovits_path
    print(f"[WARN] 未指定SoVITS模型路径, fallback后当前值: {sovits_path}")
if gpt_path == "":
    gpt_path = g_config.pretrained_gpt_path
    print(f"[WARN] 未指定GPT模型路径, fallback后当前值: {gpt_path}")

# 指定默认参考音频, 调用方 未提供/未给全 参考音频参数时使用
if default_refer.path == "" or default_refer.text == "" or default_refer.language == "":
    default_refer.path, default_refer.text, default_refer.language = "", "", ""
    print("[INFO] 未指定默认参考音频")
else:
    print(f"[INFO] 默认参考音频路径: {default_refer.path}")
    print(f"[INFO] 默认参考音频文本: {default_refer.text}")
    print(f"[INFO] 默认参考音频语种: {default_refer.language}")

is_half = g_config.is_half
if args.full_precision:
    is_half = False
if args.half_precision:
    is_half = True
if args.full_precision and args.half_precision:
    is_half = g_config.is_half  # 炒饭fallback

print(f"[INFO] 半精: {is_half}")

cnhubert_base_path = args.hubert_path
bert_path = args.bert_path

cnhubert.cnhubert_base_path = cnhubert_base_path
tokenizer = AutoTokenizer.from_pretrained(bert_path)
bert_model = AutoModelForMaskedLM.from_pretrained(bert_path)
if is_half:
    bert_model = bert_model.half().to(device)
else:
    bert_model = bert_model.to(device)


def is_empty(*items):  # 任意一项不为空返回False
    for item in items:
        if item is not None and item != "":
            return False
    return True


def is_full(*items):  # 任意一项为空返回False
    for item in items:
        if item is None or item == "":
            return False
    return True


def get_bert_feature(text, word2ph):
    with torch.no_grad():
        inputs = tokenizer(text, return_tensors="pt")
        for i in inputs:
            inputs[i] = inputs[i].to(device)  #####输入是long不用管精度问题,精度随bert_model
        res = bert_model(**inputs, output_hidden_states=True)
        res = torch.cat(res["hidden_states"][-3:-2], -1)[0].cpu()[1:-1]
    assert len(word2ph) == len(text)
    phone_level_feature = []
    for i in range(len(word2ph)):
        repeat_feature = res[i].repeat(word2ph[i], 1)
        phone_level_feature.append(repeat_feature)
    phone_level_feature = torch.cat(phone_level_feature, dim=0)
    # if(is_half==True):phone_level_feature=phone_level_feature.half()
    return phone_level_feature.T


n_semantic = 1024
dict_s2 = torch.load(sovits_path, map_location="cpu")
hps = dict_s2["config"]


class DictToAttrRecursive:
    def __init__(self, input_dict):
        for key, value in input_dict.items():
            if isinstance(value, dict):
                # 如果值是字典,递归调用构造函数
                setattr(self, key, DictToAttrRecursive(value))
            else:
                setattr(self, key, value)


hps = DictToAttrRecursive(hps)
hps.model.semantic_frame_rate = "25hz"
dict_s1 = torch.load(gpt_path, map_location="cpu")
config = dict_s1["config"]
ssl_model = cnhubert.get_model()
if is_half:
    ssl_model = ssl_model.half().to(device)
else:
    ssl_model = ssl_model.to(device)

vq_model = SynthesizerTrn(
    hps.data.filter_length // 2 + 1,
    hps.train.segment_size // hps.data.hop_length,
    n_speakers=hps.data.n_speakers,
    **hps.model)
if is_half:
    vq_model = vq_model.half().to(device)
else:
    vq_model = vq_model.to(device)
vq_model.eval()
print(vq_model.load_state_dict(dict_s2["weight"], strict=False))
hz = 50
max_sec = config['data']['max_sec']
t2s_model = Text2SemanticLightningModule(config, "****", is_train=False)
t2s_model.load_state_dict(dict_s1["weight"])
if is_half:
    t2s_model = t2s_model.half()
t2s_model = t2s_model.to(device)
t2s_model.eval()
total = sum([param.nelement() for param in t2s_model.parameters()])
print("Number of parameter: %.2fM" % (total / 1e6))


def get_spepc(hps, filename):
    audio = load_audio(filename, int(hps.data.sampling_rate))
    audio = torch.FloatTensor(audio)
    audio_norm = audio
    audio_norm = audio_norm.unsqueeze(0)
    spec = spectrogram_torch(audio_norm, hps.data.filter_length, hps.data.sampling_rate, hps.data.hop_length,
                             hps.data.win_length, center=False)
    return spec


dict_language = {
    "中文": "zh",
    "英文": "en",
    "日文": "ja",
    "ZH": "zh",
    "EN": "en",
    "JA": "ja",
    "zh": "zh",
    "en": "en",
    "ja": "ja"
}


def get_tts_wav(ref_wav_path, prompt_text, prompt_language, text, text_language):
    t0 = ttime()
    prompt_text = prompt_text.strip("\n")
    prompt_language, text = prompt_language, text.strip("\n")
    zero_wav = np.zeros(int(hps.data.sampling_rate * 0.3), dtype=np.float16 if is_half == True else np.float32)
    with torch.no_grad():
        wav16k, sr = librosa.load(ref_wav_path, sr=16000)
        wav16k = torch.from_numpy(wav16k)
        zero_wav_torch = torch.from_numpy(zero_wav)
        if (is_half == True):
            wav16k = wav16k.half().to(device)
            zero_wav_torch = zero_wav_torch.half().to(device)
        else:
            wav16k = wav16k.to(device)
            zero_wav_torch = zero_wav_torch.to(device)
        wav16k = torch.cat([wav16k, zero_wav_torch])
        ssl_content = ssl_model.model(wav16k.unsqueeze(0))["last_hidden_state"].transpose(1, 2)  # .float()
        codes = vq_model.extract_latent(ssl_content)
        prompt_semantic = codes[0, 0]
    t1 = ttime()
    prompt_language = dict_language[prompt_language]
    text_language = dict_language[text_language]
    phones1, word2ph1, norm_text1 = clean_text(prompt_text, prompt_language)
    phones1 = cleaned_text_to_sequence(phones1)
    texts = text.split("\n")
    audio_opt = []

    for text in texts:
        phones2, word2ph2, norm_text2 = clean_text(text, text_language)
        phones2 = cleaned_text_to_sequence(phones2)
        if (prompt_language == "zh"):
            bert1 = get_bert_feature(norm_text1, word2ph1).to(device)
        else:
            bert1 = torch.zeros((1024, len(phones1)), dtype=torch.float16 if is_half == True else torch.float32).to(
                device)
        if (text_language == "zh"):
            bert2 = get_bert_feature(norm_text2, word2ph2).to(device)
        else:
            bert2 = torch.zeros((1024, len(phones2))).to(bert1)
        bert = torch.cat([bert1, bert2], 1)

        all_phoneme_ids = torch.LongTensor(phones1 + phones2).to(device).unsqueeze(0)
        bert = bert.to(device).unsqueeze(0)
        all_phoneme_len = torch.tensor([all_phoneme_ids.shape[-1]]).to(device)
        prompt = prompt_semantic.unsqueeze(0).to(device)
        t2 = ttime()
        with torch.no_grad():
            # pred_semantic = t2s_model.model.infer(
            pred_semantic, idx = t2s_model.model.infer_panel(
                all_phoneme_ids,
                all_phoneme_len,
                prompt,
                bert,
                # prompt_phone_len=ph_offset,
                top_k=config['inference']['top_k'],
                early_stop_num=hz * max_sec)
        t3 = ttime()
        # print(pred_semantic.shape,idx)
        pred_semantic = pred_semantic[:, -idx:].unsqueeze(0)  # .unsqueeze(0)#mq要多unsqueeze一次
        refer = get_spepc(hps, ref_wav_path)  # .to(device)
        if (is_half == True):
            refer = refer.half().to(device)
        else:
            refer = refer.to(device)
        # audio = vq_model.decode(pred_semantic, all_phoneme_ids, refer).detach().cpu().numpy()[0, 0]
        audio = \
            vq_model.decode(pred_semantic, torch.LongTensor(phones2).to(device).unsqueeze(0),
                            refer).detach().cpu().numpy()[
                0, 0]  ###试试重建不带上prompt部分
        audio_opt.append(audio)
        audio_opt.append(zero_wav)
        t4 = ttime()
    print("%.3f\t%.3f\t%.3f\t%.3f" % (t1 - t0, t2 - t1, t3 - t2, t4 - t3))
    yield hps.data.sampling_rate, (np.concatenate(audio_opt, 0) * 32768).astype(np.int16)


def handle_control(command):
    if command == "restart":
        os.execl(g_config.python_exec, g_config.python_exec, *sys.argv)
    elif command == "exit":
        os.kill(os.getpid(), signal.SIGTERM)
        exit(0)


def handle_change(path, text, language):
    if is_empty(path, text, language):
        return JSONResponse({"code": 400, "message": '缺少任意一项以下参数: "path", "text", "language"'}, status_code=400)

    if path != "" or path is not None:
        default_refer.path = path
    if text != "" or text is not None:
        default_refer.text = text
    if language != "" or language is not None:
        default_refer.language = language

    print(f"[INFO] 当前默认参考音频路径: {default_refer.path}")
    print(f"[INFO] 当前默认参考音频文本: {default_refer.text}")
    print(f"[INFO] 当前默认参考音频语种: {default_refer.language}")
    print(f"[INFO] is_ready: {default_refer.is_ready()}")

    return JSONResponse({"code": 0, "message": "Success"}, status_code=200)


def handle(refer_wav_path, prompt_text, prompt_language, text, text_language):
    if (
            refer_wav_path == "" or refer_wav_path is None
            or prompt_text == "" or prompt_text is None
            or prompt_language == "" or prompt_language is None
    ):
        refer_wav_path, prompt_text, prompt_language = (
            default_refer.path,
            default_refer.text,
            default_refer.language,
        )
        if not default_refer.is_ready():
            return JSONResponse({"code": 400, "message": "未指定参考音频且接口无预设"}, status_code=400)

    with torch.no_grad():
        gen = get_tts_wav(
            refer_wav_path, prompt_text, prompt_language, text, text_language
        )
        sampling_rate, audio_data = next(gen)

    wav = BytesIO()
    sf.write(wav, audio_data, sampling_rate, format="wav")
    wav.seek(0)

    torch.cuda.empty_cache()
    torch.mps.empty_cache()
    return StreamingResponse(wav, media_type="audio/wav")


app = FastAPI()


@app.post("/control")
async def control(request: Request):
    json_post_raw = await request.json()
    return handle_control(json_post_raw.get("command"))


@app.get("/control")
async def control(command: str = None):
    return handle_control(command)


@app.post("/change_refer")
async def change_refer(request: Request):
    json_post_raw = await request.json()
    return handle_change(
        json_post_raw.get("refer_wav_path"),
        json_post_raw.get("prompt_text"),
        json_post_raw.get("prompt_language")
    )


@app.get("/change_refer")
async def change_refer(
        refer_wav_path: str = None,
        prompt_text: str = None,
        prompt_language: str = None
):
    return handle_change(refer_wav_path, prompt_text, prompt_language)


@app.post("/")
async def tts_endpoint(request: Request):
    json_post_raw = await request.json()
    return handle(
        json_post_raw.get("refer_wav_path"),
        json_post_raw.get("prompt_text"),
        json_post_raw.get("prompt_language"),
        json_post_raw.get("text"),
        json_post_raw.get("text_language"),
    )


@app.get("/")
async def tts_endpoint(
        refer_wav_path: str = None,
        prompt_text: str = None,
        prompt_language: str = None,
        text: str = None,
        text_language: str = None,
):
    return handle(refer_wav_path, prompt_text, prompt_language, text, text_language)


if __name__ == "__main__":
    uvicorn.run(app, host=host, port=port, workers=1)