Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from transformers import pipeline
|
3 |
+
from PIL import Image
|
4 |
+
|
5 |
+
# Load Hugging Face models
|
6 |
+
@st.cache_resource
|
7 |
+
def load_image_classifier():
|
8 |
+
return pipeline("image-classification", model="google/vit-base-patch16-224")
|
9 |
+
|
10 |
+
@st.cache_resource
|
11 |
+
def load_text_classifier():
|
12 |
+
return pipeline("sentiment-analysis") # Default model for sentiment analysis
|
13 |
+
|
14 |
+
# Initialize models
|
15 |
+
image_classifier = load_image_classifier()
|
16 |
+
text_classifier = load_text_classifier()
|
17 |
+
|
18 |
+
# App title and navigation
|
19 |
+
st.title("Hugging Face Classification App")
|
20 |
+
st.sidebar.title("Choose Task")
|
21 |
+
task = st.sidebar.selectbox("Select a task", ["Image Classification", "Text Classification"])
|
22 |
+
|
23 |
+
if task == "Image Classification":
|
24 |
+
st.header("Image Classification")
|
25 |
+
uploaded_file = st.file_uploader("Upload an image", type=["jpg", "jpeg", "png"])
|
26 |
+
if uploaded_file is not None:
|
27 |
+
# Display uploaded image
|
28 |
+
image = Image.open(uploaded_file)
|
29 |
+
st.image(image, caption="Uploaded Image", use_column_width=True)
|
30 |
+
|
31 |
+
# Classify the image
|
32 |
+
if st.button("Classify Image"):
|
33 |
+
with st.spinner("Classifying..."):
|
34 |
+
results = image_classifier(image)
|
35 |
+
st.subheader("Classification Results")
|
36 |
+
for result in results:
|
37 |
+
st.write(f"**{result['label']}**: {result['score']:.2f}")
|
38 |
+
|
39 |
+
elif task == "Text Classification":
|
40 |
+
st.header("Text Classification")
|
41 |
+
text_input = st.text_area("Enter text for classification", "Streamlit is an amazing tool!")
|
42 |
+
|
43 |
+
# Classify the text
|
44 |
+
if st.button("Classify Text"):
|
45 |
+
with st.spinner("Classifying..."):
|
46 |
+
results = text_classifier(text_input)
|
47 |
+
st.subheader("Classification Results")
|
48 |
+
for result in results:
|
49 |
+
st.write(f"**{result['label']}**: {result['score']:.2f}")
|
50 |
+
|
51 |
+
st.write("Powered by Streamlit and Hugging Face 🤗")
|