Spaces:
Runtime error
Runtime error
MohsenParsa
commited on
Commit
•
0380f92
1
Parent(s):
d6c96dd
Delete app.py
Browse files
app.py
DELETED
@@ -1,140 +0,0 @@
|
|
1 |
-
import os
|
2 |
-
from typing import List, Tuple
|
3 |
-
from langchain_community.llms import GPT4All
|
4 |
-
from langchain_core.output_parsers import StrOutputParser
|
5 |
-
from langchain_core.runnables import RunnablePassthrough
|
6 |
-
import bs4
|
7 |
-
import textwrap
|
8 |
-
from langchain.chains import create_retrieval_chain
|
9 |
-
#from langchain.chains.combine_documents import create_stuff_documents_chain
|
10 |
-
from langchain_community.vectorstores import FAISS
|
11 |
-
#from langchain_community.document_loaders import WebBaseLoader
|
12 |
-
from langchain_core.prompts import ChatPromptTemplate
|
13 |
-
from langchain_community.embeddings import LlamaCppEmbeddings
|
14 |
-
from langchain_text_splitters import RecursiveCharacterTextSplitter
|
15 |
-
|
16 |
-
from langchain_core.callbacks import BaseCallbackHandler
|
17 |
-
from langchain_community.document_loaders import TextLoader
|
18 |
-
|
19 |
-
from google.colab import drive
|
20 |
-
drive.mount('/content/drive')
|
21 |
-
|
22 |
-
local_path = "/content/drive/MyDrive/Model/aya-23-8B-Q3_K_S.gguf" # "/content/drive/MyDrive/Dorna-Llama3-8B-Instruct.Q5_0.gguf" #
|
23 |
-
model_path = "/content/drive/MyDrive/Model/labse.Q3_K_S.gguf" # "/content/drive/MyDrive/labse.Q6_K.gguf" #
|
24 |
-
text_path = "/content/drive/MyDrive/gpt4all/docs/Books/chmn.txt"
|
25 |
-
index_path = "/content/drive/MyDrive/gpt4all/index_CHEHEL_MAJLESE_NOOR"
|
26 |
-
|
27 |
-
def initialize_embeddings() -> LlamaCppEmbeddings:
|
28 |
-
return LlamaCppEmbeddings(model_path=model_path)
|
29 |
-
|
30 |
-
def load_documents() -> List:
|
31 |
-
loader = TextLoader(text_path)
|
32 |
-
return loader.load()
|
33 |
-
|
34 |
-
def split_chunks(sources: List) -> List:
|
35 |
-
chunks = []
|
36 |
-
splitter = RecursiveCharacterTextSplitter(chunk_size=512, chunk_overlap=32)
|
37 |
-
for chunk in splitter.split_documents(sources):
|
38 |
-
chunks.append(chunk)
|
39 |
-
return chunks
|
40 |
-
|
41 |
-
def generate_index(chunks: List, embeddings: LlamaCppEmbeddings) -> FAISS:
|
42 |
-
texts = [doc.page_content for doc in chunks]
|
43 |
-
metadatas = [doc.metadata for doc in chunks]
|
44 |
-
return FAISS.from_texts(texts, embeddings, metadatas=metadatas)
|
45 |
-
|
46 |
-
class MyCustomHandler(BaseCallbackHandler):
|
47 |
-
def on_llm_new_token(self, token: str, **kwargs) -> None:
|
48 |
-
print(token),
|
49 |
-
|
50 |
-
llm = GPT4All( model=local_path, n_threads=150, streaming=True,verbose=False)#,device='cuda:Tesla T4') #
|
51 |
-
# callbacks=[MyCustomHandler()],
|
52 |
-
# # 1. Load, chunk and index the contents of the blog to create a retriever.
|
53 |
-
# loader = WebBaseLoader(
|
54 |
-
# web_paths=("https://lilianweng.github.io/posts/2023-06-23-agent/",),
|
55 |
-
# bs_kwargs=dict(
|
56 |
-
# parse_only=bs4.SoupStrainer(
|
57 |
-
# class_=("post-content", "post-title", "post-header")
|
58 |
-
# )
|
59 |
-
# ),
|
60 |
-
# )
|
61 |
-
def format_docs(docs):
|
62 |
-
return "\n\n".join(doc.page_content for doc in docs)
|
63 |
-
|
64 |
-
#docs = loader.load()
|
65 |
-
|
66 |
-
#text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200)
|
67 |
-
#splits = text_splitter.split_documents(docs)
|
68 |
-
#vectorstore = Chroma.from_documents(documents=splits, embedding=OpenAIEmbeddings())
|
69 |
-
#retriever = vectorstore.as_retriever() ########## attention
|
70 |
-
|
71 |
-
embeddings = initialize_embeddings()
|
72 |
-
rebuilIndex = input('Rebuild Index (y/n)?')
|
73 |
-
if rebuilIndex=='y':
|
74 |
-
#start = time.time()
|
75 |
-
sources = load_documents()
|
76 |
-
chunks = split_chunks(sources)
|
77 |
-
vectorstore = generate_index(chunks, embeddings)
|
78 |
-
vectorstore.save_local(index_path)
|
79 |
-
#end = time.time()
|
80 |
-
#elapsed = end - start
|
81 |
-
#print('Elapsed time to build index: ' + str(elapsed))
|
82 |
-
|
83 |
-
index = FAISS.load_local(index_path, embeddings,allow_dangerous_deserialization=True)
|
84 |
-
|
85 |
-
retriver = index.as_retriever()
|
86 |
-
|
87 |
-
# 2. Incorporate the retriever into a question-answering chain.
|
88 |
-
system_prompt = (
|
89 |
-
"""You are an assistant for question-answering tasks. "
|
90 |
-
"Only use the {context} to answer: "
|
91 |
-
"لطفاً فقط به زبان فارسی صحبت کن و تمام پاسخ ها را به زبان فارسی بنویس "
|
92 |
-
"لطفا پاسخ هایت طولانی باشد "
|
93 |
-
"اگر پاسخ سوال را نیافتی بگو نمیدانم"
|
94 |
-
"\n\n"""
|
95 |
-
|
96 |
-
)
|
97 |
-
|
98 |
-
prompt = ChatPromptTemplate.from_messages(
|
99 |
-
[
|
100 |
-
("system", system_prompt),
|
101 |
-
("human", "{input}"),
|
102 |
-
]
|
103 |
-
)
|
104 |
-
|
105 |
-
##question_answer_chain = create_stuff_documents_chain(llm, prompt)
|
106 |
-
##rag_chain = create_retrieval_chain(retriver , question_answer_chain) # retriever
|
107 |
-
|
108 |
-
#result = rag_chain.invoke({"input": "What is Task Decomposition?"})
|
109 |
-
|
110 |
-
# second edit
|
111 |
-
|
112 |
-
rag_chain_from_docs = (
|
113 |
-
{
|
114 |
-
"input": lambda x: x["input"], # input query
|
115 |
-
"context": lambda x: format_docs(x["context"]), # context
|
116 |
-
}
|
117 |
-
| prompt # format query and context into prompt
|
118 |
-
| llm # generate response
|
119 |
-
| StrOutputParser() # coerce to string
|
120 |
-
)
|
121 |
-
|
122 |
-
# Pass input query to retriever
|
123 |
-
retrieve_docs = (lambda x: x["input"]) | retriver
|
124 |
-
|
125 |
-
# Below, we chain `.assign` calls. This takes a dict and successively
|
126 |
-
# adds keys-- "context" and "answer"-- where the value for each key
|
127 |
-
# is determined by a Runnable. The Runnable operates on all existing
|
128 |
-
# keys in the dict.
|
129 |
-
chain = RunnablePassthrough.assign(context=retrieve_docs).assign(
|
130 |
-
answer=rag_chain_from_docs
|
131 |
-
)
|
132 |
-
chat_history = []
|
133 |
-
while True:
|
134 |
-
query = input("پرسش تان را بپرسید. حقیر در خدمتم: ")
|
135 |
-
|
136 |
-
if query.lower() == 'exit':
|
137 |
-
break
|
138 |
-
|
139 |
-
response = chain.invoke({"input": query})
|
140 |
-
print(textwrap.fill(response['answer'],80))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|