Spaces:
Running
on
Zero
Running
on
Zero
# adopted from | |
# https://github.com/openai/improved-diffusion/blob/main/improved_diffusion/gaussian_diffusion.py | |
# and | |
# https://github.com/lucidrains/denoising-diffusion-pytorch/blob/7706bdfc6f527f58d33f84b7b522e61e6e3164b3/denoising_diffusion_pytorch/denoising_diffusion_pytorch.py | |
# and | |
# https://github.com/openai/guided-diffusion/blob/0ba878e517b276c45d1195eb29f6f5f72659a05b/guided_diffusion/nn.py | |
# | |
# thanks! | |
import torch | |
import torch.nn as nn | |
import einops | |
from inspect import isfunction | |
def zero_module(module): | |
""" | |
Zero out the parameters of a module and return it. | |
""" | |
for p in module.parameters(): | |
p.detach().zero_() | |
return module | |
def scale_module(module, scale): | |
""" | |
Scale the parameters of a module and return it. | |
""" | |
for p in module.parameters(): | |
p.detach().mul_(scale) | |
return module | |
def conv_nd(dims, *args, **kwargs): | |
""" | |
Create a 1D, 2D, or 3D convolution module. | |
""" | |
if dims == 1: | |
return nn.Conv1d(*args, **kwargs) | |
elif dims == 2: | |
return nn.Conv2d(*args, **kwargs) | |
elif dims == 3: | |
return nn.Conv3d(*args, **kwargs) | |
raise ValueError(f"unsupported dimensions: {dims}") | |
def linear(*args, **kwargs): | |
""" | |
Create a linear module. | |
""" | |
return nn.Linear(*args, **kwargs) | |
def avg_pool_nd(dims, *args, **kwargs): | |
""" | |
Create a 1D, 2D, or 3D average pooling module. | |
""" | |
if dims == 1: | |
return nn.AvgPool1d(*args, **kwargs) | |
elif dims == 2: | |
return nn.AvgPool2d(*args, **kwargs) | |
elif dims == 3: | |
return nn.AvgPool3d(*args, **kwargs) | |
raise ValueError(f"unsupported dimensions: {dims}") | |
def nonlinearity(type='silu'): | |
if type == 'silu': | |
return nn.SiLU() | |
elif type == 'leaky_relu': | |
return nn.LeakyReLU() | |
def normalization(channels, num_groups=32): | |
""" | |
Make a standard normalization layer. | |
:param channels: number of input channels. | |
:return: an nn.Module for normalization. | |
""" | |
return nn.GroupNorm(num_groups, channels) | |
def default(val, d): | |
if exists(val): | |
return val | |
return d() if isfunction(d) else d | |
def exists(val): | |
return val is not None | |
def extract_into_tensor(a, t, x_shape): | |
b, *_ = t.shape | |
out = a.gather(-1, t) | |
return out.reshape(b, *((1,) * (len(x_shape) - 1))) | |
def make_temporal_window(x, t, method): | |
assert method in ['roll', 'prv', 'first'] | |
if method == 'roll': | |
m = einops.rearrange(x, '(b t) d c -> b t d c', t=t) | |
l = torch.roll(m, shifts=1, dims=1) | |
r = torch.roll(m, shifts=-1, dims=1) | |
recon = torch.cat([l, m, r], dim=2) | |
del l, m, r | |
recon = einops.rearrange(recon, 'b t d c -> (b t) d c') | |
return recon | |
if method == 'prv': | |
x = einops.rearrange(x, '(b t) d c -> b t d c', t=t) | |
prv = torch.cat([x[:, :1], x[:, :-1]], dim=1) | |
recon = torch.cat([x, prv], dim=2) | |
del x, prv | |
recon = einops.rearrange(recon, 'b t d c -> (b t) d c') | |
return recon | |
if method == 'first': | |
x = einops.rearrange(x, '(b t) d c -> b t d c', t=t) | |
prv = x[:, [0], :, :].repeat(1, t, 1, 1) | |
recon = torch.cat([x, prv], dim=2) | |
del x, prv | |
recon = einops.rearrange(recon, 'b t d c -> (b t) d c') | |
return recon | |
def checkpoint(func, inputs, params, flag): | |
""" | |
Evaluate a function without caching intermediate activations, allowing for | |
reduced memory at the expense of extra compute in the backward pass. | |
:param func: the function to evaluate. | |
:param inputs: the argument sequence to pass to `func`. | |
:param params: a sequence of parameters `func` depends on but does not | |
explicitly take as arguments. | |
:param flag: if False, disable gradient checkpointing. | |
""" | |
if flag: | |
return torch.utils.checkpoint.checkpoint(func, *inputs, use_reentrant=False) | |
else: | |
return func(*inputs) | |