Spaces:
Running
on
Zero
Running
on
Zero
import torch | |
import numpy as np | |
from tqdm import tqdm | |
def sample_dpmpp_2m(model, x, sigmas, extra_args=None, callback=None, progress_tqdm=None): | |
"""DPM-Solver++(2M).""" | |
extra_args = {} if extra_args is None else extra_args | |
s_in = x.new_ones([x.shape[0]]) | |
sigma_fn = lambda t: t.neg().exp() | |
t_fn = lambda sigma: sigma.log().neg() | |
old_denoised = None | |
bar = tqdm if progress_tqdm is None else progress_tqdm | |
for i in bar(range(len(sigmas) - 1)): | |
denoised = model(x, sigmas[i] * s_in, **extra_args) | |
if callback is not None: | |
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised}) | |
t, t_next = t_fn(sigmas[i]), t_fn(sigmas[i + 1]) | |
h = t_next - t | |
if old_denoised is None or sigmas[i + 1] == 0: | |
x = (sigma_fn(t_next) / sigma_fn(t)) * x - (-h).expm1() * denoised | |
else: | |
h_last = t - t_fn(sigmas[i - 1]) | |
r = h_last / h | |
denoised_d = (1 + 1 / (2 * r)) * denoised - (1 / (2 * r)) * old_denoised | |
x = (sigma_fn(t_next) / sigma_fn(t)) * x - (-h).expm1() * denoised_d | |
old_denoised = denoised | |
return x | |
class KModel: | |
def __init__(self, unet, timesteps=1000, linear_start=0.00085, linear_end=0.012, linear=False): | |
if linear: | |
betas = torch.linspace(linear_start, linear_end, timesteps, dtype=torch.float64) | |
else: | |
betas = torch.linspace(linear_start ** 0.5, linear_end ** 0.5, timesteps, dtype=torch.float64) ** 2 | |
alphas = 1. - betas | |
alphas_cumprod = torch.tensor(np.cumprod(alphas, axis=0), dtype=torch.float32) | |
self.sigmas = ((1 - alphas_cumprod) / alphas_cumprod) ** 0.5 | |
self.log_sigmas = self.sigmas.log() | |
self.sigma_data = 1.0 | |
self.unet = unet | |
return | |
def sigma_min(self): | |
return self.sigmas[0] | |
def sigma_max(self): | |
return self.sigmas[-1] | |
def timestep(self, sigma): | |
log_sigma = sigma.log() | |
dists = log_sigma.to(self.log_sigmas.device) - self.log_sigmas[:, None] | |
return dists.abs().argmin(dim=0).view(sigma.shape).to(sigma.device) | |
def get_sigmas_karras(self, n, rho=7.): | |
ramp = torch.linspace(0, 1, n) | |
min_inv_rho = self.sigma_min ** (1 / rho) | |
max_inv_rho = self.sigma_max ** (1 / rho) | |
sigmas = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho | |
return torch.cat([sigmas, sigmas.new_zeros([1])]) | |
def __call__(self, x, sigma, **extra_args): | |
x_ddim_space = x / (sigma[:, None, None, None] ** 2 + self.sigma_data ** 2) ** 0.5 | |
x_ddim_space = x_ddim_space.to(dtype=self.unet.dtype) | |
t = self.timestep(sigma) | |
cfg_scale = extra_args['cfg_scale'] | |
eps_positive = self.unet(x_ddim_space, t, return_dict=False, **extra_args['positive'])[0] | |
eps_negative = self.unet(x_ddim_space, t, return_dict=False, **extra_args['negative'])[0] | |
noise_pred = eps_negative + cfg_scale * (eps_positive - eps_negative) | |
return x - noise_pred * sigma[:, None, None, None] | |
class KDiffusionSampler: | |
def __init__(self, unet, **kwargs): | |
self.unet = unet | |
self.k_model = KModel(unet=unet, **kwargs) | |
def __call__( | |
self, | |
initial_latent = None, | |
strength = 1.0, | |
num_inference_steps = 25, | |
guidance_scale = 5.0, | |
batch_size = 1, | |
generator = None, | |
prompt_embeds = None, | |
negative_prompt_embeds = None, | |
cross_attention_kwargs = None, | |
same_noise_in_batch = False, | |
progress_tqdm = None, | |
): | |
device = self.unet.device | |
# Sigmas | |
sigmas = self.k_model.get_sigmas_karras(int(num_inference_steps/strength)) | |
sigmas = sigmas[-(num_inference_steps + 1):].to(device) | |
# Initial latents | |
if same_noise_in_batch: | |
noise = torch.randn(initial_latent.shape, generator=generator, device=device, dtype=self.unet.dtype).repeat(batch_size, 1, 1, 1) | |
initial_latent = initial_latent.repeat(batch_size, 1, 1, 1).to(device=device, dtype=self.unet.dtype) | |
else: | |
initial_latent = initial_latent.repeat(batch_size, 1, 1, 1).to(device=device, dtype=self.unet.dtype) | |
noise = torch.randn(initial_latent.shape, generator=generator, device=device, dtype=self.unet.dtype) | |
latents = initial_latent + noise * sigmas[0].to(initial_latent) | |
# Batch | |
latents = latents.to(device) | |
prompt_embeds = prompt_embeds.repeat(batch_size, 1, 1).to(device) | |
negative_prompt_embeds = negative_prompt_embeds.repeat(batch_size, 1, 1).to(device) | |
# Feeds | |
sampler_kwargs = dict( | |
cfg_scale=guidance_scale, | |
positive=dict( | |
encoder_hidden_states=prompt_embeds, | |
cross_attention_kwargs=cross_attention_kwargs | |
), | |
negative=dict( | |
encoder_hidden_states=negative_prompt_embeds, | |
cross_attention_kwargs=cross_attention_kwargs, | |
) | |
) | |
# Sample | |
results = sample_dpmpp_2m(self.k_model, latents, sigmas, extra_args=sampler_kwargs, progress_tqdm=progress_tqdm) | |
return results | |