Spaces:
Running
on
Zero
Running
on
Zero
Add initial module structure and base classes for samplers and representations
73c350d
import torch | |
import numpy as np | |
from tqdm import tqdm | |
import utils3d | |
from PIL import Image | |
from ..renderers import OctreeRenderer, GaussianRenderer, MeshRenderer | |
from ..representations import Octree, Gaussian, MeshExtractResult | |
from ..modules import sparse as sp | |
from .random_utils import sphere_hammersley_sequence | |
def yaw_pitch_r_fov_to_extrinsics_intrinsics(yaws, pitchs, rs, fovs): | |
is_list = isinstance(yaws, list) | |
if not is_list: | |
yaws = [yaws] | |
pitchs = [pitchs] | |
if not isinstance(rs, list): | |
rs = [rs] * len(yaws) | |
if not isinstance(fovs, list): | |
fovs = [fovs] * len(yaws) | |
extrinsics = [] | |
intrinsics = [] | |
for yaw, pitch, r, fov in zip(yaws, pitchs, rs, fovs): | |
fov = torch.deg2rad(torch.tensor(float(fov))).cuda() | |
yaw = torch.tensor(float(yaw)).cuda() | |
pitch = torch.tensor(float(pitch)).cuda() | |
orig = torch.tensor([ | |
torch.sin(yaw) * torch.cos(pitch), | |
torch.cos(yaw) * torch.cos(pitch), | |
torch.sin(pitch), | |
]).cuda() * r | |
extr = utils3d.torch.extrinsics_look_at(orig, torch.tensor([0, 0, 0]).float().cuda(), torch.tensor([0, 0, 1]).float().cuda()) | |
intr = utils3d.torch.intrinsics_from_fov_xy(fov, fov) | |
extrinsics.append(extr) | |
intrinsics.append(intr) | |
if not is_list: | |
extrinsics = extrinsics[0] | |
intrinsics = intrinsics[0] | |
return extrinsics, intrinsics | |
def render_frames(sample, extrinsics, intrinsics, options={}, colors_overwrite=None, verbose=True, **kwargs): | |
if isinstance(sample, Octree): | |
renderer = OctreeRenderer() | |
renderer.rendering_options.resolution = options.get('resolution', 512) | |
renderer.rendering_options.near = options.get('near', 0.8) | |
renderer.rendering_options.far = options.get('far', 1.6) | |
renderer.rendering_options.bg_color = options.get('bg_color', (0, 0, 0)) | |
renderer.rendering_options.ssaa = options.get('ssaa', 4) | |
renderer.pipe.primitive = sample.primitive | |
elif isinstance(sample, Gaussian): | |
renderer = GaussianRenderer() | |
renderer.rendering_options.resolution = options.get('resolution', 512) | |
renderer.rendering_options.near = options.get('near', 0.8) | |
renderer.rendering_options.far = options.get('far', 1.6) | |
renderer.rendering_options.bg_color = options.get('bg_color', (0, 0, 0)) | |
renderer.rendering_options.ssaa = options.get('ssaa', 1) | |
renderer.pipe.kernel_size = kwargs.get('kernel_size', 0.1) | |
renderer.pipe.use_mip_gaussian = True | |
elif isinstance(sample, MeshExtractResult): | |
renderer = MeshRenderer() | |
renderer.rendering_options.resolution = options.get('resolution', 512) | |
renderer.rendering_options.near = options.get('near', 1) | |
renderer.rendering_options.far = options.get('far', 100) | |
renderer.rendering_options.ssaa = options.get('ssaa', 4) | |
else: | |
raise ValueError(f'Unsupported sample type: {type(sample)}') | |
rets = {} | |
for j, (extr, intr) in tqdm(enumerate(zip(extrinsics, intrinsics)), desc='Rendering', disable=not verbose): | |
if not isinstance(sample, MeshExtractResult): | |
res = renderer.render(sample, extr, intr, colors_overwrite=colors_overwrite) | |
if 'color' not in rets: rets['color'] = [] | |
if 'depth' not in rets: rets['depth'] = [] | |
rets['color'].append(np.clip(res['color'].detach().cpu().numpy().transpose(1, 2, 0) * 255, 0, 255).astype(np.uint8)) | |
if 'percent_depth' in res: | |
rets['depth'].append(res['percent_depth'].detach().cpu().numpy()) | |
elif 'depth' in res: | |
rets['depth'].append(res['depth'].detach().cpu().numpy()) | |
else: | |
rets['depth'].append(None) | |
else: | |
res = renderer.render(sample, extr, intr) | |
if 'normal' not in rets: rets['normal'] = [] | |
rets['normal'].append(np.clip(res['normal'].detach().cpu().numpy().transpose(1, 2, 0) * 255, 0, 255).astype(np.uint8)) | |
return rets | |
def render_video(sample, resolution=512, bg_color=(0, 0, 0), num_frames=300, r=2, fov=40, **kwargs): | |
yaws = torch.linspace(0, 2 * 3.1415, num_frames) | |
pitch = 0.25 + 0.5 * torch.sin(torch.linspace(0, 2 * 3.1415, num_frames)) | |
yaws = yaws.tolist() | |
pitch = pitch.tolist() | |
extrinsics, intrinsics = yaw_pitch_r_fov_to_extrinsics_intrinsics(yaws, pitch, r, fov) | |
return render_frames(sample, extrinsics, intrinsics, {'resolution': resolution, 'bg_color': bg_color}, **kwargs) | |
def render_multiview(sample, resolution=512, nviews=30): | |
r = 2 | |
fov = 40 | |
cams = [sphere_hammersley_sequence(i, nviews) for i in range(nviews)] | |
yaws = [cam[0] for cam in cams] | |
pitchs = [cam[1] for cam in cams] | |
extrinsics, intrinsics = yaw_pitch_r_fov_to_extrinsics_intrinsics(yaws, pitchs, r, fov) | |
res = render_frames(sample, extrinsics, intrinsics, {'resolution': resolution, 'bg_color': (0, 0, 0)}) | |
return res['color'], extrinsics, intrinsics | |
def render_snapshot(samples, resolution=512, bg_color=(0, 0, 0), offset=(-16 / 180 * np.pi, 20 / 180 * np.pi), r=10, fov=8, **kwargs): | |
yaw = [0, np.pi/2, np.pi, 3*np.pi/2] | |
yaw_offset = offset[0] | |
yaw = [y + yaw_offset for y in yaw] | |
pitch = [offset[1] for _ in range(4)] | |
extrinsics, intrinsics = yaw_pitch_r_fov_to_extrinsics_intrinsics(yaw, pitch, r, fov) | |
return render_frames(samples, extrinsics, intrinsics, {'resolution': resolution, 'bg_color': bg_color}, **kwargs) | |