MohamedRashad's picture
Add initial module structure and base classes for samplers and representations
73c350d
import numpy as np
import torch
import torch.nn.functional as F
import math
import cv2
from scipy.stats import qmc
from easydict import EasyDict as edict
from ..representations.octree import DfsOctree
def intrinsics_to_projection(
intrinsics: torch.Tensor,
near: float,
far: float,
) -> torch.Tensor:
"""
OpenCV intrinsics to OpenGL perspective matrix
Args:
intrinsics (torch.Tensor): [3, 3] OpenCV intrinsics matrix
near (float): near plane to clip
far (float): far plane to clip
Returns:
(torch.Tensor): [4, 4] OpenGL perspective matrix
"""
fx, fy = intrinsics[0, 0], intrinsics[1, 1]
cx, cy = intrinsics[0, 2], intrinsics[1, 2]
ret = torch.zeros((4, 4), dtype=intrinsics.dtype, device=intrinsics.device)
ret[0, 0] = 2 * fx
ret[1, 1] = 2 * fy
ret[0, 2] = 2 * cx - 1
ret[1, 2] = - 2 * cy + 1
ret[2, 2] = far / (far - near)
ret[2, 3] = near * far / (near - far)
ret[3, 2] = 1.
return ret
def render(viewpoint_camera, octree : DfsOctree, pipe, bg_color : torch.Tensor, scaling_modifier = 1.0, used_rank = None, colors_overwrite = None, aux=None, halton_sampler=None):
"""
Render the scene.
Background tensor (bg_color) must be on GPU!
"""
# lazy import
if 'OctreeTrivecRasterizer' not in globals():
from diffoctreerast import OctreeVoxelRasterizer, OctreeGaussianRasterizer, OctreeTrivecRasterizer, OctreeDecoupolyRasterizer
# Set up rasterization configuration
tanfovx = math.tan(viewpoint_camera.FoVx * 0.5)
tanfovy = math.tan(viewpoint_camera.FoVy * 0.5)
raster_settings = edict(
image_height=int(viewpoint_camera.image_height),
image_width=int(viewpoint_camera.image_width),
tanfovx=tanfovx,
tanfovy=tanfovy,
bg=bg_color,
scale_modifier=scaling_modifier,
viewmatrix=viewpoint_camera.world_view_transform,
projmatrix=viewpoint_camera.full_proj_transform,
sh_degree=octree.active_sh_degree,
campos=viewpoint_camera.camera_center,
with_distloss=pipe.with_distloss,
jitter=pipe.jitter,
debug=pipe.debug,
)
positions = octree.get_xyz
if octree.primitive == "voxel":
densities = octree.get_density
elif octree.primitive == "gaussian":
opacities = octree.get_opacity
elif octree.primitive == "trivec":
trivecs = octree.get_trivec
densities = octree.get_density
raster_settings.density_shift = octree.density_shift
elif octree.primitive == "decoupoly":
decoupolys_V, decoupolys_g = octree.get_decoupoly
densities = octree.get_density
raster_settings.density_shift = octree.density_shift
else:
raise ValueError(f"Unknown primitive {octree.primitive}")
depths = octree.get_depth
# If precomputed colors are provided, use them. Otherwise, if it is desired to precompute colors
# from SHs in Python, do it. If not, then SH -> RGB conversion will be done by rasterizer.
colors_precomp = None
shs = octree.get_features
if octree.primitive in ["voxel", "gaussian"] and colors_overwrite is not None:
colors_precomp = colors_overwrite
shs = None
ret = edict()
if octree.primitive == "voxel":
renderer = OctreeVoxelRasterizer(raster_settings=raster_settings)
rgb, depth, alpha, distloss = renderer(
positions = positions,
densities = densities,
shs = shs,
colors_precomp = colors_precomp,
depths = depths,
aabb = octree.aabb,
aux = aux,
)
ret['rgb'] = rgb
ret['depth'] = depth
ret['alpha'] = alpha
ret['distloss'] = distloss
elif octree.primitive == "gaussian":
renderer = OctreeGaussianRasterizer(raster_settings=raster_settings)
rgb, depth, alpha = renderer(
positions = positions,
opacities = opacities,
shs = shs,
colors_precomp = colors_precomp,
depths = depths,
aabb = octree.aabb,
aux = aux,
)
ret['rgb'] = rgb
ret['depth'] = depth
ret['alpha'] = alpha
elif octree.primitive == "trivec":
raster_settings.used_rank = used_rank if used_rank is not None else trivecs.shape[1]
renderer = OctreeTrivecRasterizer(raster_settings=raster_settings)
rgb, depth, alpha, percent_depth = renderer(
positions = positions,
trivecs = trivecs,
densities = densities,
shs = shs,
colors_precomp = colors_precomp,
colors_overwrite = colors_overwrite,
depths = depths,
aabb = octree.aabb,
aux = aux,
halton_sampler = halton_sampler,
)
ret['percent_depth'] = percent_depth
ret['rgb'] = rgb
ret['depth'] = depth
ret['alpha'] = alpha
elif octree.primitive == "decoupoly":
raster_settings.used_rank = used_rank if used_rank is not None else decoupolys_V.shape[1]
renderer = OctreeDecoupolyRasterizer(raster_settings=raster_settings)
rgb, depth, alpha = renderer(
positions = positions,
decoupolys_V = decoupolys_V,
decoupolys_g = decoupolys_g,
densities = densities,
shs = shs,
colors_precomp = colors_precomp,
depths = depths,
aabb = octree.aabb,
aux = aux,
)
ret['rgb'] = rgb
ret['depth'] = depth
ret['alpha'] = alpha
return ret
class OctreeRenderer:
"""
Renderer for the Voxel representation.
Args:
rendering_options (dict): Rendering options.
"""
def __init__(self, rendering_options={}) -> None:
try:
import diffoctreerast
except ImportError:
print("\033[93m[WARNING] diffoctreerast is not installed. The renderer will be disabled.\033[0m")
self.unsupported = True
else:
self.unsupported = False
self.pipe = edict({
"with_distloss": False,
"with_aux": False,
"scale_modifier": 1.0,
"used_rank": None,
"jitter": False,
"debug": False,
})
self.rendering_options = edict({
"resolution": None,
"near": None,
"far": None,
"ssaa": 1,
"bg_color": 'random',
})
self.halton_sampler = qmc.Halton(2, scramble=False)
self.rendering_options.update(rendering_options)
self.bg_color = None
def render(
self,
octree: DfsOctree,
extrinsics: torch.Tensor,
intrinsics: torch.Tensor,
colors_overwrite: torch.Tensor = None,
) -> edict:
"""
Render the octree.
Args:
octree (Octree): octree
extrinsics (torch.Tensor): (4, 4) camera extrinsics
intrinsics (torch.Tensor): (3, 3) camera intrinsics
colors_overwrite (torch.Tensor): (N, 3) override color
Returns:
edict containing:
color (torch.Tensor): (3, H, W) rendered color
depth (torch.Tensor): (H, W) rendered depth
alpha (torch.Tensor): (H, W) rendered alpha
distloss (Optional[torch.Tensor]): (H, W) rendered distance loss
percent_depth (Optional[torch.Tensor]): (H, W) rendered percent depth
aux (Optional[edict]): auxiliary tensors
"""
resolution = self.rendering_options["resolution"]
near = self.rendering_options["near"]
far = self.rendering_options["far"]
ssaa = self.rendering_options["ssaa"]
if self.unsupported:
image = np.zeros((512, 512, 3), dtype=np.uint8)
text_bbox = cv2.getTextSize("Unsupported", cv2.FONT_HERSHEY_SIMPLEX, 2, 3)[0]
origin = (512 - text_bbox[0]) // 2, (512 - text_bbox[1]) // 2
image = cv2.putText(image, "Unsupported", origin, cv2.FONT_HERSHEY_SIMPLEX, 2, (255, 255, 255), 3, cv2.LINE_AA)
return {
'color': torch.tensor(image, dtype=torch.float32).permute(2, 0, 1) / 255,
}
if self.rendering_options["bg_color"] == 'random':
self.bg_color = torch.zeros(3, dtype=torch.float32, device="cuda")
if np.random.rand() < 0.5:
self.bg_color += 1
else:
self.bg_color = torch.tensor(self.rendering_options["bg_color"], dtype=torch.float32, device="cuda")
if self.pipe["with_aux"]:
aux = {
'grad_color2': torch.zeros((octree.num_leaf_nodes, 3), dtype=torch.float32, requires_grad=True, device="cuda") + 0,
'contributions': torch.zeros((octree.num_leaf_nodes, 1), dtype=torch.float32, requires_grad=True, device="cuda") + 0,
}
for k in aux.keys():
aux[k].requires_grad_()
aux[k].retain_grad()
else:
aux = None
view = extrinsics
perspective = intrinsics_to_projection(intrinsics, near, far)
camera = torch.inverse(view)[:3, 3]
focalx = intrinsics[0, 0]
focaly = intrinsics[1, 1]
fovx = 2 * torch.atan(0.5 / focalx)
fovy = 2 * torch.atan(0.5 / focaly)
camera_dict = edict({
"image_height": resolution * ssaa,
"image_width": resolution * ssaa,
"FoVx": fovx,
"FoVy": fovy,
"znear": near,
"zfar": far,
"world_view_transform": view.T.contiguous(),
"projection_matrix": perspective.T.contiguous(),
"full_proj_transform": (perspective @ view).T.contiguous(),
"camera_center": camera
})
# Render
render_ret = render(camera_dict, octree, self.pipe, self.bg_color, aux=aux, colors_overwrite=colors_overwrite, scaling_modifier=self.pipe.scale_modifier, used_rank=self.pipe.used_rank, halton_sampler=self.halton_sampler)
if ssaa > 1:
render_ret.rgb = F.interpolate(render_ret.rgb[None], size=(resolution, resolution), mode='bilinear', align_corners=False, antialias=True).squeeze()
render_ret.depth = F.interpolate(render_ret.depth[None, None], size=(resolution, resolution), mode='bilinear', align_corners=False, antialias=True).squeeze()
render_ret.alpha = F.interpolate(render_ret.alpha[None, None], size=(resolution, resolution), mode='bilinear', align_corners=False, antialias=True).squeeze()
if hasattr(render_ret, 'percent_depth'):
render_ret.percent_depth = F.interpolate(render_ret.percent_depth[None, None], size=(resolution, resolution), mode='bilinear', align_corners=False, antialias=True).squeeze()
ret = edict({
'color': render_ret.rgb,
'depth': render_ret.depth,
'alpha': render_ret.alpha,
})
if self.pipe["with_distloss"] and 'distloss' in render_ret:
ret['distloss'] = render_ret.distloss
if self.pipe["with_aux"]:
ret['aux'] = aux
if hasattr(render_ret, 'percent_depth'):
ret['percent_depth'] = render_ret.percent_depth
return ret