Spaces:
Running
on
Zero
Running
on
Zero
Mohamed Rashad
commited on
Commit
·
92871c6
1
Parent(s):
0a285ea
chore: Update app.py with GPU support for text extraction and image processing functionality
Browse files- app.py +134 -67
- book_page.jpeg → book_page1.jpeg +0 -0
- book_page2.jpeg +0 -0
- book_page3.jpeg +0 -0
- book_page4.jpeg +0 -0
- book_page5.jpeg +0 -0
app.py
CHANGED
@@ -1,98 +1,165 @@
|
|
1 |
-
from transformers import
|
|
|
|
|
|
|
|
|
2 |
import gradio as gr
|
3 |
import torch
|
4 |
-
from PIL import Image
|
5 |
from pathlib import Path
|
6 |
from pdf2image import convert_from_path
|
7 |
import spaces
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
|
9 |
-
# Load the model and processor
|
10 |
-
processor = NougatProcessor.from_pretrained("MohamedRashad/arabic-small-nougat")
|
11 |
-
model = VisionEncoderDecoderModel.from_pretrained("MohamedRashad/arabic-small-nougat")
|
12 |
-
device = "cuda" if torch.cuda.is_available() else "cpu"
|
13 |
-
model.to(device)
|
14 |
-
|
15 |
-
print(f"Using {device} device")
|
16 |
-
context_length = 2048
|
17 |
|
18 |
@spaces.GPU
|
19 |
-
def extract_text_from_image(image):
|
20 |
-
""
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
# prepare PDF image for the model
|
31 |
-
pixel_values = processor(image, return_tensors="pt").pixel_values
|
32 |
-
|
33 |
-
# generate transcription
|
34 |
-
outputs = model.generate(
|
35 |
-
pixel_values.to(device),
|
36 |
-
min_length=1,
|
37 |
-
max_new_tokens=context_length,
|
38 |
-
bad_words_ids=[[processor.tokenizer.unk_token_id]],
|
39 |
)
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
58 |
images = convert_from_path(pdf_path)
|
59 |
-
texts = []
|
60 |
-
for image in progress.tqdm(images):
|
61 |
-
extracted_text = extract_text_from_image(image)
|
62 |
-
texts.append(extracted_text)
|
63 |
|
64 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
65 |
|
66 |
-
|
67 |
-
|
|
|
|
|
|
|
|
|
|
|
68 |
|
69 |
-
|
70 |
-
|
71 |
|
72 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
73 |
"""
|
74 |
|
75 |
-
example_images =
|
76 |
|
77 |
-
with gr.Blocks(title="Arabic
|
78 |
-
gr.HTML(
|
|
|
|
|
79 |
gr.Markdown(model_description)
|
80 |
|
81 |
with gr.Tab("Extract Text from Image"):
|
82 |
with gr.Row():
|
83 |
with gr.Column():
|
84 |
input_image = gr.Image(label="Input Image", type="pil")
|
|
|
|
|
|
|
85 |
image_submit_button = gr.Button(value="Submit", variant="primary")
|
86 |
-
output = gr.Markdown(label="Output Markdown", rtl=True)
|
87 |
-
image_submit_button.click(
|
88 |
-
|
89 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
90 |
with gr.Tab("Extract Text from PDF"):
|
91 |
with gr.Row():
|
92 |
with gr.Column():
|
93 |
pdf = gr.File(label="Input PDF", type="filepath")
|
|
|
|
|
|
|
94 |
pdf_submit_button = gr.Button(value="Submit", variant="primary")
|
95 |
-
output = gr.Markdown(label="Output Markdown", rtl=True)
|
96 |
-
pdf_submit_button.click(
|
|
|
|
|
97 |
|
98 |
demo.queue().launch(share=False)
|
|
|
1 |
+
from transformers import (
|
2 |
+
NougatProcessor,
|
3 |
+
VisionEncoderDecoderModel,
|
4 |
+
TextIteratorStreamer,
|
5 |
+
)
|
6 |
import gradio as gr
|
7 |
import torch
|
|
|
8 |
from pathlib import Path
|
9 |
from pdf2image import convert_from_path
|
10 |
import spaces
|
11 |
+
from threading import Thread
|
12 |
+
|
13 |
+
models_supported = {
|
14 |
+
"arabic-small-nougat": [
|
15 |
+
NougatProcessor.from_pretrained("MohamedRashad/arabic-small-nougat"),
|
16 |
+
VisionEncoderDecoderModel.from_pretrained("MohamedRashad/arabic-small-nougat"),
|
17 |
+
],
|
18 |
+
"arabic-base-nougat": [
|
19 |
+
NougatProcessor.from_pretrained("MohamedRashad/arabic-base-nougat"),
|
20 |
+
VisionEncoderDecoderModel.from_pretrained(
|
21 |
+
"MohamedRashad/arabic-base-nougat",
|
22 |
+
torch_dtype=torch.bfloat16,
|
23 |
+
attn_implementation={"decoder": "flash_attention_2", "encoder": "eager"},
|
24 |
+
),
|
25 |
+
],
|
26 |
+
"arabic-large-nougat": [
|
27 |
+
NougatProcessor.from_pretrained("MohamedRashad/arabic-large-nougat"),
|
28 |
+
VisionEncoderDecoderModel.from_pretrained(
|
29 |
+
"MohamedRashad/arabic-large-nougat",
|
30 |
+
torch_dtype=torch.bfloat16,
|
31 |
+
attn_implementation={"decoder": "flash_attention_2", "encoder": "eager"},
|
32 |
+
),
|
33 |
+
],
|
34 |
+
}
|
35 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
36 |
|
37 |
@spaces.GPU
|
38 |
+
def extract_text_from_image(image, model_name):
|
39 |
+
print(f"Extracting text from image using model: {model_name}")
|
40 |
+
processor, model = models_supported[model_name]
|
41 |
+
context_length = model.decoder.config.max_position_embeddings
|
42 |
+
torch_dtype = model.dtype
|
43 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
44 |
+
model.to(device)
|
45 |
+
|
46 |
+
pixel_values = (
|
47 |
+
processor(image, return_tensors="pt").pixel_values.to(torch_dtype).to(device)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
48 |
)
|
49 |
+
streamer = TextIteratorStreamer(processor.tokenizer, skip_special_tokens=True)
|
50 |
+
|
51 |
+
# Start generation in a separate thread
|
52 |
+
generation_kwargs = {
|
53 |
+
"pixel_values": pixel_values,
|
54 |
+
"min_length": 1,
|
55 |
+
"max_new_tokens": context_length,
|
56 |
+
"streamer": streamer,
|
57 |
+
}
|
58 |
+
|
59 |
+
thread = Thread(target=model.generate, kwargs=generation_kwargs)
|
60 |
+
thread.start()
|
61 |
+
|
62 |
+
# Yield tokens as they become available
|
63 |
+
output = ""
|
64 |
+
for token in streamer:
|
65 |
+
output += token
|
66 |
+
yield output
|
67 |
+
|
68 |
+
thread.join()
|
69 |
+
|
70 |
+
|
71 |
+
@spaces.GPU
|
72 |
+
def extract_text_from_pdf(pdf_path, model_name):
|
73 |
+
processor, model = models_supported[model_name]
|
74 |
+
context_length = model.decoder.config.max_position_embeddings
|
75 |
+
torch_dtype = model.dtype
|
76 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
77 |
+
model.to(device)
|
78 |
+
|
79 |
+
streamer = TextIteratorStreamer(processor.tokenizer, skip_special_tokens=True)
|
80 |
+
print(f"Extracting text from PDF: {pdf_path}")
|
81 |
images = convert_from_path(pdf_path)
|
|
|
|
|
|
|
|
|
82 |
|
83 |
+
pdf_output = ""
|
84 |
+
for image in images:
|
85 |
+
pixel_values = (
|
86 |
+
processor(image, return_tensors="pt")
|
87 |
+
.pixel_values.to(torch_dtype)
|
88 |
+
.to(device)
|
89 |
+
)
|
90 |
|
91 |
+
# Start generation in a separate thread
|
92 |
+
generation_kwargs = {
|
93 |
+
"pixel_values": pixel_values,
|
94 |
+
"min_length": 1,
|
95 |
+
"max_new_tokens": context_length,
|
96 |
+
"streamer": streamer,
|
97 |
+
}
|
98 |
|
99 |
+
thread = Thread(target=model.generate, kwargs=generation_kwargs)
|
100 |
+
thread.start()
|
101 |
|
102 |
+
# Yield tokens as they become available
|
103 |
+
for token in streamer:
|
104 |
+
pdf_output += token
|
105 |
+
yield pdf_output
|
106 |
+
|
107 |
+
thread.join()
|
108 |
+
pdf_output += "\n\n"
|
109 |
+
yield pdf_output
|
110 |
+
|
111 |
+
|
112 |
+
model_description = """This is the official demo for the Arabic Nougat models. It is an end-to-end Markdown Extraction model that extracts text from images or PDFs and write them in Markdown.
|
113 |
+
|
114 |
+
There are three models available:
|
115 |
+
- [arabic-small-nougat](https://huggingface.co/MohamedRashad/arabic-small-nougat): A small model that is faster but less accurate (a finetune from [facebook/nougat-small](https://huggingface.co/facebook/nougat-small)).
|
116 |
+
- [arabic-base-nougat](https://huggingface.co/MohamedRashad/arabic-base-nougat): A base model that is more accurate but slower (a finetune from [facebook/nougat-base](https://huggingface.co/facebook/nougat-base)).
|
117 |
+
- [arabic-large-nougat](https://huggingface.co/MohamedRashad/arabic-large-nougat): The largest of the three (Made from scratch using [riotu-lab/Aranizer-PBE-86k](https://huggingface.co/riotu-lab/Aranizer-PBE-86k) tokenizer and a larger transformer decoder model).
|
118 |
+
|
119 |
+
**Disclaimer**: These models hallucinate text and are not perfect. They are trained on a mix of synthetic and real data and may not work well on all types of images.
|
120 |
"""
|
121 |
|
122 |
+
example_images = list(Path(__file__).parent.glob("*.jpeg"))
|
123 |
|
124 |
+
with gr.Blocks(title="Arabic Nougat") as demo:
|
125 |
+
gr.HTML(
|
126 |
+
"<h1 style='text-align: center'>Arabic End-to-End Structured OCR for textbooks</h1>"
|
127 |
+
)
|
128 |
gr.Markdown(model_description)
|
129 |
|
130 |
with gr.Tab("Extract Text from Image"):
|
131 |
with gr.Row():
|
132 |
with gr.Column():
|
133 |
input_image = gr.Image(label="Input Image", type="pil")
|
134 |
+
model_dropdown = gr.Dropdown(
|
135 |
+
label="Model", choices=list(models_supported.keys()), value=None
|
136 |
+
)
|
137 |
image_submit_button = gr.Button(value="Submit", variant="primary")
|
138 |
+
output = gr.Markdown(label="Output Markdown", rtl=True)
|
139 |
+
image_submit_button.click(
|
140 |
+
extract_text_from_image,
|
141 |
+
inputs=[input_image, model_dropdown],
|
142 |
+
outputs=output,
|
143 |
+
)
|
144 |
+
gr.Examples(
|
145 |
+
example_images,
|
146 |
+
[input_image],
|
147 |
+
output,
|
148 |
+
extract_text_from_image,
|
149 |
+
cache_examples=False,
|
150 |
+
)
|
151 |
+
|
152 |
with gr.Tab("Extract Text from PDF"):
|
153 |
with gr.Row():
|
154 |
with gr.Column():
|
155 |
pdf = gr.File(label="Input PDF", type="filepath")
|
156 |
+
model_dropdown = gr.Dropdown(
|
157 |
+
label="Model", choices=list(models_supported.keys()), value=None
|
158 |
+
)
|
159 |
pdf_submit_button = gr.Button(value="Submit", variant="primary")
|
160 |
+
output = gr.Markdown(label="Output Markdown", rtl=True)
|
161 |
+
pdf_submit_button.click(
|
162 |
+
extract_text_from_pdf, inputs=[pdf, model_dropdown], outputs=output
|
163 |
+
)
|
164 |
|
165 |
demo.queue().launch(share=False)
|
book_page.jpeg → book_page1.jpeg
RENAMED
File without changes
|
book_page2.jpeg
ADDED
book_page3.jpeg
ADDED
book_page4.jpeg
ADDED
book_page5.jpeg
ADDED