GenAIEfrei / app.py
Moha782's picture
Update app.py
8cba427 verified
raw
history blame
3.77 kB
import gradio as gr
from huggingface_hub import InferenceClient
from pathlib import Path
from transformers import RagTokenForGeneration, RagTokenizer
import faiss
from typing import List
from pdfplumber import open as open_pdf
"""
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
"""
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
# Load the PDF file
pdf_path = Path("apexcustoms.pdf")
with open_pdf(pdf_path) as pdf:
text = "\n".join(page.extract_text() for page in pdf.pages)
# Split the PDF text into chunks
chunk_size = 1000 # Adjust this value based on your needs
text_chunks: List[str] = [text[i:i+chunk_size] for i in range(0, len(text), chunk_size)]
# Load the RAG model and tokenizer for retrieval
rag_tokenizer = RagTokenizer.from_pretrained("facebook/rag-token-nq")
rag_model = RagTokenForGeneration.from_pretrained("facebook/rag-token-nq")
# Create an in-memory index using the text chunks
embeddings = rag_model.question_encoder(rag_tokenizer(text_chunks, padding=True, return_tensors="pt")["input_ids"])
index = faiss.IndexFlatL2(embeddings.size(-1))
index.add(embeddings.detach().numpy())
# Custom retriever class
class CustomRetriever:
def __init__(self, documents, embeddings, index):
self.documents = documents
self.embeddings = embeddings
self.index = index
def get_relevant_docs(self, query_embeddings, top_k=4):
scores, doc_indices = self.index.search(query_embeddings.detach().numpy(), top_k)
return [(self.documents[doc_idx], score) for doc_idx, score in zip(doc_indices[0], scores[0])]
# Create a custom retriever instance
retriever = CustomRetriever(text_chunks, embeddings, index)
def respond(
message,
history: list[tuple[str, str]],
system_message,
max_tokens,
):
messages = [{"role": "system", "content": system_message}]
for val in history:
if val[0]:
messages.append({"role": "user", "content": val[0]})
if val[1]:
messages.append({"role": "assistant", "content": val[1]})
messages.append({"role": "user", "content": message})
response = ""
# Retrieve relevant chunks using the custom retriever
rag_input_ids = rag_tokenizer(message, return_tensors="pt").input_ids
query_embeddings = rag_model.question_encoder(rag_input_ids)
relevant_docs = retriever.get_relevant_docs(query_embeddings)
retrieved_text = "\n".join([doc for doc, _ in relevant_docs])
# Generate the response using the zephyr model
for message in client.chat_completion(
messages,
max_tokens=max_tokens,
stream=True,
files={"context": retrieved_text}, # Pass retrieved text as context
):
token = message.choices[0].delta.content
response += token
yield response
"""
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
"""
demo = gr.ChatInterface(
respond,
additional_inputs=[
gr.Textbox(value="You are a helpful car configuration assistant, specifically you are the assistant for Apex Customs (https://www.apexcustoms.com/). Given the user's input, provide suggestions for car models, colors, and customization options. Be conversational in your responses. You should remember the user car model and tailor your answers accordingly. You limit yourself to answering the given question and maybe propose a suggestion but not write the next question of the user. \n\nUser: ", label="System message"),
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
],
)
if __name__ == "__main__":
demo.launch()