open-sora / app.py
frankleeeee's picture
updated to v1.1
5613724
#!/usr/bin/env python
"""
This script runs a Gradio App for the Open-Sora model.
Usage:
python demo.py <config-path>
"""
import argparse
import importlib
import os
import subprocess
import sys
import re
import json
import math
import spaces
import torch
import gradio as gr
MODEL_TYPES = ["v1.1"]
CONFIG_MAP = {
"v1.1-stage2": "configs/opensora-v1-1/inference/sample-ref.py",
"v1.1-stage3": "configs/opensora-v1-1/inference/sample-ref.py",
}
HF_STDIT_MAP = {
"v1.1-stage2": "hpcai-tech/OpenSora-STDiT-v2-stage2",
"v1.1-stage3": "hpcai-tech/OpenSora-STDiT-v2-stage3",
}
RESOLUTION_MAP = {
"144p": (144, 256),
"240p": (240, 426),
"360p": (360, 480),
"480p": (480, 858),
"720p": (720, 1280),
"1080p": (1080, 1920)
}
# ============================
# Utils
# ============================
def collect_references_batch(reference_paths, vae, image_size):
from opensora.datasets.utils import read_from_path
refs_x = []
for reference_path in reference_paths:
if reference_path is None:
refs_x.append([])
continue
ref_path = reference_path.split(";")
ref = []
for r_path in ref_path:
r = read_from_path(r_path, image_size, transform_name="resize_crop")
r_x = vae.encode(r.unsqueeze(0).to(vae.device, vae.dtype))
r_x = r_x.squeeze(0)
ref.append(r_x)
refs_x.append(ref)
# refs_x: [batch, ref_num, C, T, H, W]
return refs_x
def process_mask_strategy(mask_strategy):
mask_batch = []
mask_strategy = mask_strategy.split(";")
for mask in mask_strategy:
mask_group = mask.split(",")
assert len(mask_group) >= 1 and len(mask_group) <= 6, f"Invalid mask strategy: {mask}"
if len(mask_group) == 1:
mask_group.extend(["0", "0", "0", "1", "0"])
elif len(mask_group) == 2:
mask_group.extend(["0", "0", "1", "0"])
elif len(mask_group) == 3:
mask_group.extend(["0", "1", "0"])
elif len(mask_group) == 4:
mask_group.extend(["1", "0"])
elif len(mask_group) == 5:
mask_group.append("0")
mask_batch.append(mask_group)
return mask_batch
def apply_mask_strategy(z, refs_x, mask_strategys, loop_i):
masks = []
for i, mask_strategy in enumerate(mask_strategys):
mask = torch.ones(z.shape[2], dtype=torch.float, device=z.device)
if mask_strategy is None:
masks.append(mask)
continue
mask_strategy = process_mask_strategy(mask_strategy)
for mst in mask_strategy:
loop_id, m_id, m_ref_start, m_target_start, m_length, edit_ratio = mst
loop_id = int(loop_id)
if loop_id != loop_i:
continue
m_id = int(m_id)
m_ref_start = int(m_ref_start)
m_length = int(m_length)
m_target_start = int(m_target_start)
edit_ratio = float(edit_ratio)
ref = refs_x[i][m_id] # [C, T, H, W]
if m_ref_start < 0:
m_ref_start = ref.shape[1] + m_ref_start
if m_target_start < 0:
# z: [B, C, T, H, W]
m_target_start = z.shape[2] + m_target_start
z[i, :, m_target_start : m_target_start + m_length] = ref[:, m_ref_start : m_ref_start + m_length]
mask[m_target_start : m_target_start + m_length] = edit_ratio
masks.append(mask)
masks = torch.stack(masks)
return masks
def process_prompts(prompts, num_loop):
from opensora.models.text_encoder.t5 import text_preprocessing
ret_prompts = []
for prompt in prompts:
if prompt.startswith("|0|"):
prompt_list = prompt.split("|")[1:]
text_list = []
for i in range(0, len(prompt_list), 2):
start_loop = int(prompt_list[i])
text = prompt_list[i + 1]
text = text_preprocessing(text)
end_loop = int(prompt_list[i + 2]) if i + 2 < len(prompt_list) else num_loop
text_list.extend([text] * (end_loop - start_loop))
assert len(text_list) == num_loop, f"Prompt loop mismatch: {len(text_list)} != {num_loop}"
ret_prompts.append(text_list)
else:
prompt = text_preprocessing(prompt)
ret_prompts.append([prompt] * num_loop)
return ret_prompts
def extract_json_from_prompts(prompts):
additional_infos = []
ret_prompts = []
for prompt in prompts:
parts = re.split(r"(?=[{\[])", prompt)
assert len(parts) <= 2, f"Invalid prompt: {prompt}"
ret_prompts.append(parts[0])
if len(parts) == 1:
additional_infos.append({})
else:
additional_infos.append(json.loads(parts[1]))
return ret_prompts, additional_infos
# ============================
# Runtime Environment
# ============================
def install_dependencies(enable_optimization=False):
"""
Install the required dependencies for the demo if they are not already installed.
"""
def _is_package_available(name) -> bool:
try:
importlib.import_module(name)
return True
except (ImportError, ModuleNotFoundError):
return False
# flash attention is needed no matter optimization is enabled or not
# because Hugging Face transformers detects flash_attn is a dependency in STDiT
# thus, we need to install it no matter what
if not _is_package_available("flash_attn"):
subprocess.run(
f"{sys.executable} -m pip install flash-attn --no-build-isolation",
env={"FLASH_ATTENTION_SKIP_CUDA_BUILD": "TRUE"},
shell=True,
)
if enable_optimization:
# install apex for fused layernorm
if not _is_package_available("apex"):
subprocess.run(
f'{sys.executable} -m pip install -v --disable-pip-version-check --no-cache-dir --no-build-isolation --config-settings "--build-option=--cpp_ext" --config-settings "--build-option=--cuda_ext" git+https://github.com/NVIDIA/apex.git',
shell=True,
)
# install ninja
if not _is_package_available("ninja"):
subprocess.run(f"{sys.executable} -m pip install ninja", shell=True)
# install xformers
if not _is_package_available("xformers"):
subprocess.run(
f"{sys.executable} -m pip install -v -U git+https://github.com/facebookresearch/xformers.git@main#egg=xformers",
shell=True,
)
# ============================
# Model-related
# ============================
def read_config(config_path):
"""
Read the configuration file.
"""
from mmengine.config import Config
return Config.fromfile(config_path)
def build_models(model_type, config, enable_optimization=False):
"""
Build the models for the given model type and configuration.
"""
# build vae
from opensora.registry import MODELS, build_module
vae = build_module(config.vae, MODELS).cuda()
# build text encoder
text_encoder = build_module(config.text_encoder, MODELS) # T5 must be fp32
text_encoder.t5.model = text_encoder.t5.model.cuda()
# build stdit
# we load model from HuggingFace directly so that we don't need to
# handle model download logic in HuggingFace Space
from transformers import AutoModel
stdit = AutoModel.from_pretrained(
HF_STDIT_MAP[model_type],
enable_flash_attn=enable_optimization,
trust_remote_code=True,
).cuda()
# build scheduler
from opensora.registry import SCHEDULERS
scheduler = build_module(config.scheduler, SCHEDULERS)
# hack for classifier-free guidance
text_encoder.y_embedder = stdit.y_embedder
# move modelst to device
vae = vae.to(torch.bfloat16).eval()
text_encoder.t5.model = text_encoder.t5.model.eval() # t5 must be in fp32
stdit = stdit.to(torch.bfloat16).eval()
# clear cuda
torch.cuda.empty_cache()
return vae, text_encoder, stdit, scheduler
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument(
"--model-type",
default="v1.1-stage3",
choices=MODEL_TYPES,
help=f"The type of model to run for the Gradio App, can only be {MODEL_TYPES}",
)
parser.add_argument("--output", default="./outputs", type=str, help="The path to the output folder")
parser.add_argument("--port", default=None, type=int, help="The port to run the Gradio App on.")
parser.add_argument("--host", default=None, type=str, help="The host to run the Gradio App on.")
parser.add_argument("--share", action="store_true", help="Whether to share this gradio demo.")
parser.add_argument(
"--enable-optimization",
action="store_true",
help="Whether to enable optimization such as flash attention and fused layernorm",
)
return parser.parse_args()
# ============================
# Main Gradio Script
# ============================
# as `run_inference` needs to be wrapped by `spaces.GPU` and the input can only be the prompt text
# so we can't pass the models to `run_inference` as arguments.
# instead, we need to define them globally so that we can access these models inside `run_inference`
# read config
args = parse_args()
config = read_config(CONFIG_MAP[args.model_type])
# make outputs dir
os.makedirs(args.output, exist_ok=True)
# disable torch jit as it can cause failure in gradio SDK
# gradio sdk uses torch with cuda 11.3
torch.jit._state.disable()
# set up
install_dependencies(enable_optimization=args.enable_optimization)
# import after installation
from opensora.datasets import IMG_FPS, save_sample
from opensora.utils.misc import to_torch_dtype
# some global variables
dtype = to_torch_dtype(config.dtype)
device = torch.device("cuda")
# build model
vae, text_encoder, stdit, scheduler = build_models(args.model_type, config, enable_optimization=args.enable_optimization)
@spaces.GPU(duration=200)
def run_inference(mode, prompt_text, resolution, length, reference_image):
with torch.inference_mode():
# ======================
# 1. Preparation
# ======================
# parse the inputs
resolution = RESOLUTION_MAP[resolution]
# compute number of loops
num_seconds = int(length.rstrip('s'))
total_number_of_frames = num_seconds * config.fps / config.frame_interval
num_loop = math.ceil(total_number_of_frames / config.num_frames)
# prepare model args
model_args = dict()
height = torch.tensor([resolution[0]], device=device, dtype=dtype)
width = torch.tensor([resolution[1]], device=device, dtype=dtype)
num_frames = torch.tensor([config.num_frames], device=device, dtype=dtype)
ar = torch.tensor([resolution[0] / resolution[1]], device=device, dtype=dtype)
if config.num_frames == 1:
config.fps = IMG_FPS
fps = torch.tensor([config.fps], device=device, dtype=dtype)
model_args["height"] = height
model_args["width"] = width
model_args["num_frames"] = num_frames
model_args["ar"] = ar
model_args["fps"] = fps
# compute latent size
input_size = (config.num_frames, *resolution)
latent_size = vae.get_latent_size(input_size)
# process prompt
prompt_raw = [prompt_text]
prompt_raw, _ = extract_json_from_prompts(prompt_raw)
prompt_loops = process_prompts(prompt_raw, num_loop)
video_clips = []
# prepare mask strategy
if mode == "Text2Video":
mask_strategy = [None]
elif mode == "Image2Video":
mask_strategy = ['0']
else:
raise ValueError(f"Invalid mode: {mode}")
# =========================
# 2. Load reference images
# =========================
if mode == "Text2Video":
refs_x = collect_references_batch([None], vae, resolution)
elif mode == "Image2Video":
# save image to disk
from PIL import Image
im = Image.fromarray(reference_image)
im.save("test.jpg")
refs_x = collect_references_batch(["test.jpg"], vae, resolution)
else:
raise ValueError(f"Invalid mode: {mode}")
# 4.3. long video generation
for loop_i in range(num_loop):
# 4.4 sample in hidden space
batch_prompts = [prompt[loop_i] for prompt in prompt_loops]
z = torch.randn(len(batch_prompts), vae.out_channels, *latent_size, device=device, dtype=dtype)
# 4.5. apply mask strategy
masks = None
# if cfg.reference_path is not None:
if loop_i > 0:
ref_x = vae.encode(video_clips[-1])
for j, refs in enumerate(refs_x):
if refs is None:
refs_x[j] = [ref_x[j]]
else:
refs.append(ref_x[j])
if mask_strategy[j] is None:
mask_strategy[j] = ""
else:
mask_strategy[j] += ";"
mask_strategy[
j
] += f"{loop_i},{len(refs)-1},-{config.condition_frame_length},0,{config.condition_frame_length}"
masks = apply_mask_strategy(z, refs_x, mask_strategy, loop_i)
# 4.6. diffusion sampling
samples = scheduler.sample(
stdit,
text_encoder,
z=z,
prompts=batch_prompts,
device=device,
additional_args=model_args,
mask=masks, # scheduler must support mask
)
samples = vae.decode(samples.to(dtype))
video_clips.append(samples)
# 4.7. save video
if loop_i == num_loop - 1:
video_clips_list = [
video_clips[0][0]] + [video_clips[i][0][:, config.condition_frame_length :]
for i in range(1, num_loop)
]
video = torch.cat(video_clips_list, dim=1)
save_path = f"{args.output}/sample"
saved_path = save_sample(video, fps=config.fps // config.frame_interval, save_path=save_path, force_video=True)
return saved_path
def main():
# create demo
with gr.Blocks() as demo:
with gr.Row():
with gr.Column():
gr.HTML(
"""
<div style='text-align: center;'>
<p align="center">
<img src="https://github.com/hpcaitech/Open-Sora/raw/main/assets/readme/icon.png" width="250"/>
</p>
<div style="display: flex; gap: 10px; justify-content: center;">
<a href="https://github.com/hpcaitech/Open-Sora/stargazers"><img src="https://img.shields.io/github/stars/hpcaitech/Open-Sora?style=social"></a>
<a href="https://hpcaitech.github.io/Open-Sora/"><img src="https://img.shields.io/badge/Gallery-View-orange?logo=&amp"></a>
<a href="https://discord.gg/kZakZzrSUT"><img src="https://img.shields.io/badge/Discord-join-blueviolet?logo=discord&amp"></a>
<a href="https://join.slack.com/t/colossalaiworkspace/shared_invite/zt-247ipg9fk-KRRYmUl~u2ll2637WRURVA"><img src="https://img.shields.io/badge/Slack-ColossalAI-blueviolet?logo=slack&amp"></a>
<a href="https://twitter.com/yangyou1991/status/1769411544083996787?s=61&t=jT0Dsx2d-MS5vS9rNM5e5g"><img src="https://img.shields.io/badge/Twitter-Discuss-blue?logo=twitter&amp"></a>
<a href="https://raw.githubusercontent.com/hpcaitech/public_assets/main/colossalai/img/WeChat.png"><img src="https://img.shields.io/badge/微信-小助手加群-green?logo=wechat&amp"></a>
<a href="https://hpc-ai.com/blog/open-sora-v1.0"><img src="https://img.shields.io/badge/Open_Sora-Blog-blue"></a>
</div>
<h1 style='margin-top: 5px;'>Open-Sora: Democratizing Efficient Video Production for All</h1>
</div>
"""
)
with gr.Row():
with gr.Column():
mode = gr.Radio(
choices=["Text2Video", "Image2Video"],
value="Text2Video",
label="Usage",
info="Choose your usage scenario",
)
prompt_text = gr.Textbox(
label="Prompt",
placeholder="Describe your video here",
lines=4,
)
resolution = gr.Radio(
choices=["144p", "240p", "360p", "480p", "720p", "1080p"],
value="144p",
label="Resolution",
)
length = gr.Radio(
choices=["2s", "4s", "8s"],
value="2s",
label="Video Length",
info="8s may fail as Hugging Face ZeroGPU has the limitation of max 200 seconds inference time."
)
reference_image = gr.Image(
label="Reference Image (only used for Image2Video)",
)
with gr.Column():
output_video = gr.Video(
label="Output Video",
height="100%"
)
with gr.Row():
submit_button = gr.Button("Generate video")
submit_button.click(
fn=run_inference,
inputs=[mode, prompt_text, resolution, length, reference_image],
outputs=output_video
)
# launch
demo.launch(server_port=args.port, server_name=args.host, share=args.share)
if __name__ == "__main__":
main()