Spaces:
Build error
Build error
Upload 44 files
Browse files- README.md +6 -5
- app.py +299 -0
- cluster/__init__.py +29 -0
- cluster/train_cluster.py +89 -0
- configs/config.json +93 -0
- data_utils.py +142 -0
- flask_api.py +56 -0
- hubert/__init__.py +0 -0
- hubert/checkpoint_best_legacy_500.pt +3 -0
- hubert/hubert_model.py +222 -0
- hubert/hubert_model_onnx.py +217 -0
- hubert/put_hubert_ckpt_here +0 -0
- inference/__init__.py +0 -0
- inference/chunks_temp.json +1 -0
- inference/infer_tool.py +233 -0
- inference/infer_tool_grad.py +160 -0
- inference/slicer.py +142 -0
- inference_main.py +99 -0
- logs/44k/G_210000.pth +3 -0
- logs/44k/kmeans_10000.pt +3 -0
- logs/44k/put_pretrained_model_here +0 -0
- models.py +420 -0
- modules/__init__.py +0 -0
- modules/attentions.py +349 -0
- modules/commons.py +188 -0
- modules/ddsp.py +190 -0
- modules/losses.py +61 -0
- modules/mel_processing.py +112 -0
- modules/modules.py +342 -0
- preprocess_flist_config.py +67 -0
- preprocess_hubert_f0.py +62 -0
- requirements.txt +21 -0
- resample.py +48 -0
- spec_gen.py +22 -0
- train.py +297 -0
- utils.py +508 -0
- vdecoder/__init__.py +0 -0
- vdecoder/hifigan/__pycache__/env.cpython-38.pyc +0 -0
- vdecoder/hifigan/__pycache__/models.cpython-38.pyc +0 -0
- vdecoder/hifigan/__pycache__/utils.cpython-38.pyc +0 -0
- vdecoder/hifigan/env.py +15 -0
- vdecoder/hifigan/models.py +503 -0
- vdecoder/hifigan/nvSTFT.py +111 -0
- vdecoder/hifigan/utils.py +68 -0
README.md
CHANGED
@@ -1,12 +1,13 @@
|
|
1 |
---
|
2 |
-
title:
|
3 |
-
emoji:
|
4 |
-
colorFrom:
|
5 |
-
colorTo:
|
6 |
sdk: gradio
|
7 |
-
sdk_version: 3.
|
8 |
app_file: app.py
|
9 |
pinned: false
|
|
|
10 |
---
|
11 |
|
12 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
1 |
---
|
2 |
+
title: AI岁己(歌声变声器)第二代
|
3 |
+
emoji: 🕊
|
4 |
+
colorFrom: red
|
5 |
+
colorTo: pink
|
6 |
sdk: gradio
|
7 |
+
sdk_version: 3.16.2
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
+
license: mit
|
11 |
---
|
12 |
|
13 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
app.py
ADDED
@@ -0,0 +1,299 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import io
|
2 |
+
import os
|
3 |
+
|
4 |
+
# os.system("wget -P hubert/ https://huggingface.co/innnky/contentvec/resolve/main/checkpoint_best_legacy_500.pt")
|
5 |
+
import gradio as gr
|
6 |
+
import librosa
|
7 |
+
import numpy as np
|
8 |
+
import soundfile
|
9 |
+
from inference.infer_tool import Svc
|
10 |
+
import logging
|
11 |
+
|
12 |
+
logging.getLogger('numba').setLevel(logging.WARNING)
|
13 |
+
logging.getLogger('markdown_it').setLevel(logging.WARNING)
|
14 |
+
logging.getLogger('urllib3').setLevel(logging.WARNING)
|
15 |
+
logging.getLogger('matplotlib').setLevel(logging.WARNING)
|
16 |
+
|
17 |
+
model = Svc("logs/44k/G_210000.pth", "configs/config.json", cluster_model_path="logs/44k/kmeans_10000.pt")
|
18 |
+
|
19 |
+
# def vc_fn(sid, input_audio, vc_transform, auto_f0,cluster_ratio, noise_scale):
|
20 |
+
def vc_fn(input_audio, vc_transform, auto_f0,cluster_ratio, noise_scale):
|
21 |
+
if input_audio is None:
|
22 |
+
# return "You need to upload an audio", None
|
23 |
+
return None
|
24 |
+
sampling_rate, audio = input_audio
|
25 |
+
# print(audio.shape,sampling_rate)
|
26 |
+
duration = audio.shape[0] / sampling_rate
|
27 |
+
# if duration > 45:
|
28 |
+
# return "请上传小于45s的音频,需要转换长音频请本地进行转换", None
|
29 |
+
audio = (audio / np.iinfo(audio.dtype).max).astype(np.float32)
|
30 |
+
if len(audio.shape) > 1:
|
31 |
+
audio = librosa.to_mono(audio.transpose(1, 0))
|
32 |
+
if sampling_rate != 16000:
|
33 |
+
audio = librosa.resample(audio, orig_sr=sampling_rate, target_sr=16000)
|
34 |
+
print(audio.shape)
|
35 |
+
out_wav_path = "temp.wav"
|
36 |
+
soundfile.write(out_wav_path, audio, 16000, format="wav")
|
37 |
+
print( cluster_ratio, auto_f0, noise_scale)
|
38 |
+
# out_audio, out_sr = model.infer(sid, vc_transform, out_wav_path,
|
39 |
+
# cluster_infer_ratio=cluster_ratio,
|
40 |
+
# auto_predict_f0=auto_f0,
|
41 |
+
# noice_scale=noise_scale
|
42 |
+
# )
|
43 |
+
out_audio, out_sr = model.infer("suijiSUI", vc_transform, out_wav_path,
|
44 |
+
cluster_infer_ratio=cluster_ratio,
|
45 |
+
auto_predict_f0=auto_f0,
|
46 |
+
noice_scale=noise_scale
|
47 |
+
)
|
48 |
+
# return "Success", (44100, out_audio.numpy())
|
49 |
+
return (44100, out_audio.numpy())
|
50 |
+
|
51 |
+
|
52 |
+
app = gr.Blocks()
|
53 |
+
with app:
|
54 |
+
with gr.Tabs():
|
55 |
+
with gr.TabItem("SUI-svc-4.0"):
|
56 |
+
gr.Markdown(value="""
|
57 |
+
# 这是AI岁己歌声变声器第二代的在线demo
|
58 |
+
|
59 |
+
### 项目:[sovits 4.0](https://github.com/innnky/so-vits-svc/tree/4.0) | 目前模型训练状态:100000steps底模 + 150000steps
|
60 |
+
|
61 |
+
#### 查看模型介绍、获取模型移步[Miuzarte/SUImodels](https://huggingface.co/Miuzarte/SUImodels)
|
62 |
+
|
63 |
+
||
|
64 |
+
|-|
|
65 |
+
||
|
66 |
+
|
67 |
+
## 一些注意事项❗❕❗❕:
|
68 |
+
|
69 |
+
#### 输入的音频一定要是纯净的干音,不要把歌曲直接扔进来
|
70 |
+
|
71 |
+
#### 和声和混响也不能有,UVR分离出人声之后需要注意一下
|
72 |
+
|
73 |
+
#### 对陈述语气没多大作用,实在没干音库的话,你可以自己唱然后升十几个调慢慢试效果
|
74 |
+
|
75 |
+
#### 推理出来可能吸气音会有较大的电流声,需要后期小修一下,RX10有一键控制呼吸的模块
|
76 |
+
""")
|
77 |
+
# spks = list(model.spk2id.keys())
|
78 |
+
# sid = gr.Dropdown(label="音色", choices=["suijiSUI"], value="suijiSUI")
|
79 |
+
vc_input3 = gr.Audio(label="输入音频(长度请控制在45s左右,过长可能会爆内存)")
|
80 |
+
vc_transform = gr.Number(label="变调(整数,可以正负,半音数量,升高八度就是12)", value=0)
|
81 |
+
cluster_ratio = gr.Number(label="聚类模型混合比例,0-1之间,默认为0不启用聚类,能提升音色相似度,但会导致咬字下降(如果使用建议0.5左右)", value=0)
|
82 |
+
auto_f0 = gr.Checkbox(label="自动f0预测,配合聚类模型f0预测效果更好,会导致变调功能失效(仅限转换语音,歌声不要勾选此项会究极跑调)", value=False)
|
83 |
+
noise_scale = gr.Number(label="noise_scale 建议不要动,会影响音质,玄学参数", value=0.4)
|
84 |
+
vc_submit = gr.Button("转换", variant="primary")
|
85 |
+
# vc_output1 = gr.Textbox(label="Output Message")
|
86 |
+
vc_output2 = gr.Audio(label="输出音频(最右侧三个点可以下载)")
|
87 |
+
# vc_submit.click(vc_fn, [sid, vc_input3, vc_transform,auto_f0,cluster_ratio, noise_scale], [vc_output1, vc_output2])
|
88 |
+
vc_submit.click(vc_fn, [vc_input3, vc_transform,auto_f0,cluster_ratio, noise_scale], [vc_output2])
|
89 |
+
with gr.TabItem("在本地推理的教程(MoeSS、sovits4.0)"):
|
90 |
+
gr.Markdown(value="""
|
91 |
+
# 在本地使用 [MoeSS](https://github.com/NaruseMioShirakana/MoeSS) 推理:
|
92 |
+
|
93 |
+
注意:MoeSS暂未支持使用聚类模型,也没有自动变调,非常建议直接拉取本仓库然后装好环境用sovits4.0的推理脚本进行推理,教程在MoeSS部分之后
|
94 |
+
|
95 |
+
#### 备注:
|
96 |
+
|
97 |
+
种子影响推理后的随机性效果,噪声规模可以设置成默认的0.4或者直接拉到0,效果有点玄学,可以都试试
|
98 |
+
|
99 |
+
推理出来如果出现了一长段较响的电流杂音则需要手动对输入音频分段,或尝试在点击开始转换后出现的“设置SVC参数”对话框中调整(往高了拉,+10 +20)切片阈值再次推理
|
100 |
+
|
101 |
+
#### 因为该程序每次更新都会有较大的变化,下面的下载链接都将指向[[MoeSS 4.2.3]](https://github.com/NaruseMioShirakana/MoeSS/releases/tag/4.2.3)
|
102 |
+
|
103 |
+
### 0. 下载[[MoeSS本体]](https://github.com/NaruseMioShirakana/MoeSS/releases/download/4.2.3/MoeSS-CPU.7z)、[[hubert]](https://huggingface.co/NaruseMioShirakana/MoeSS-SUBModel/resolve/main/hubert4.0.7z),并解压成以下的文件结构
|
104 |
+
|
105 |
+
Windows 7用户需要使用另一个编译版本的本体[[MoeSS-Win7.7z]](https://github.com/NaruseMioShirakana/MoeSS/releases/download/4.2.3/MoeSS-Win7.7z)
|
106 |
+
|
107 |
+
```
|
108 |
+
MoeSS
|
109 |
+
├── cleaners
|
110 |
+
├── emotion
|
111 |
+
├── hifigan
|
112 |
+
├── hubert
|
113 |
+
│ └── hubert.onnx
|
114 |
+
├── Mods
|
115 |
+
├── OutPuts
|
116 |
+
├── temp
|
117 |
+
├── avcodec-58.dll
|
118 |
+
├── avformat-58.dll
|
119 |
+
├── avutil-56.dll
|
120 |
+
├── MoeSS.exe
|
121 |
+
├── onnxruntime.dll
|
122 |
+
├── onnxruntime_providers_shared.dll
|
123 |
+
├── ParamsRegex.json
|
124 |
+
├── ShirakanaUI.dmres
|
125 |
+
├── swresample-3.dll
|
126 |
+
└── swscale-5.dll
|
127 |
+
```
|
128 |
+
|
129 |
+
### 1. 下载[[转换好的onnx模型]](https://huggingface.co/Miuzarte/SUImodels/blob/main/sovits3_48k/v1/Singing/suijiSUI_v1_1M111000_SoVits.onnx),放在 MoeSS\\\Mods\\suijiSUI_v3_100k150000 里面
|
130 |
+
|
131 |
+
### 2. 在 MoeSS\\Mods 新建一个 岁己SUI_v3_100k150k.json (文件名不影响程序读取)并写入以下文本,保存时请确保编码为UTF-8,保存时请确保编码为UTF-8,保存时请确保编码为UTF-8
|
132 |
+
|
133 |
+
```json
|
134 |
+
{
|
135 |
+
"Folder" : "suijiSUI_v3_100k150000",
|
136 |
+
"Name" : "岁己SUI_v3_100k150k",
|
137 |
+
"Type" : "SoVits",
|
138 |
+
"Rate" : 44100,
|
139 |
+
"Hop" : 512,
|
140 |
+
"Hubert": "hubert4.0",
|
141 |
+
"SoVits4": true,
|
142 |
+
"Characters" : ["岁己SUI"]
|
143 |
+
}
|
144 |
+
```
|
145 |
+
|
146 |
+
#### 以上步骤完成之后的文件结构应该长这样
|
147 |
+
|
148 |
+
```
|
149 |
+
MoeSS
|
150 |
+
├── cleaners
|
151 |
+
├── emotion
|
152 |
+
├── hifigan
|
153 |
+
├── hubert
|
154 |
+
│ └── hubert.onnx
|
155 |
+
├── Mods
|
156 |
+
│ ├── 岁己SUI_v3_100k150k.json
|
157 |
+
│ └── suijiSUI_v3_100k150000
|
158 |
+
│ └── suijiSUI_v3_100k150000_SoVits.onnx
|
159 |
+
├── OutPuts
|
160 |
+
├── temp
|
161 |
+
├── avcodec-58.dll
|
162 |
+
├── avformat-58.dll
|
163 |
+
├── avutil-56.dll
|
164 |
+
├── MoeSS.exe
|
165 |
+
├── onnxruntime.dll
|
166 |
+
├── onnxruntime_providers_shared.dll
|
167 |
+
├── ParamsRegex.json
|
168 |
+
├── ShirakanaUI.dmres
|
169 |
+
├── swresample-3.dll
|
170 |
+
└── swscale-5.dll
|
171 |
+
```
|
172 |
+
|
173 |
+
### (A卡不用看)如果要使用GPU推理的话,下载[[MoeSS-CUDA.7z]](https://github.com/NaruseMioShirakana/MoeSS/releases/download/4.2.3/MoeSS-CUDA.7z)并按照上方第0步解压,注意需要CUDA版本 ≥ 11.6 < 12 、 CUdnn < 83.0 ,目前30系显卡最新驱动是cuda12,需要降级,建议直接选CPU版本
|
174 |
+
|
175 |
+
### 3. 运行 MoeSS.exe / Moess - CUDA.exe
|
176 |
+
|
177 |
+
1. 在左上角选择模型 “SoVits:岁己SUI_v1_1M111k” 并等待加载,完成后右边会显示 “当前模型: 岁己SUI_v1_1M111k”
|
178 |
+
|
179 |
+
2. 将音频文件拖入程序窗口 或 直接点击开始转换后选择文件 或 在左下角输入框中写入音频文件路径再点击开始转换,支持批量,如:
|
180 |
+
|
181 |
+
从 3.0.0 到 4.0.1 MoeSS 终于支持了文件拖放
|
182 |
+
|
183 |
+
```
|
184 |
+
A:\\SUI\\so-vits-svc\\raw\\wavs\\2043.wav
|
185 |
+
A:\\SUI\\so-vits-svc\\raw\\wavs\\2044.flac
|
186 |
+
"B:\\引号\\加不加\\都行.mp3"
|
187 |
+
"D:\\应该吧\\路径有空格\\最好还是加.aac"
|
188 |
+
"Z:\\作者说\\只能用\\这五种格式.ogg"
|
189 |
+
```
|
190 |
+
|
191 |
+
3. 点击开始转换后可在弹出的参数框中调整对输入音频的升降调,确定后等待最下方进度条走完然后点右上角保存音频文件,批量推理会直接输出至 MoeSS\\OutPuts\\ 无需再保存
|
192 |
+
|
193 |
+
# 在本地部署并使用 inference_main.py 处理
|
194 |
+
|
195 |
+
#### 我都写成这样了再小白应该都能搞定(不怕麻烦的话)
|
196 |
+
|
197 |
+
### 0. 创建一个存放文件的目录,例如 D:\\SUI\\
|
198 |
+
|
199 |
+
### 1. 安装所需的软件
|
200 |
+
|
201 |
+
1. [miniconda-Python3.8](https://docs.conda.io/en/latest/miniconda.html#windows-installers)(未测试其他Python版本)[点这里可以直接下载](https://repo.anaconda.com/miniconda/Miniconda3-py38_22.11.1-1-Windows-x86_64.exe),Just Me 与 All Users 都行,其余可无脑下一步
|
202 |
+
|
203 |
+
2. [git](https://git-scm.com/download/win)(建议使用便携版)[点这里可以直接下载(便携版v2.39.2)](https://github.com/git-for-windows/git/releases/download/v2.39.2.windows.1/PortableGit-2.39.2-64-bit.7z.exe),路径填 D:\\SUI\\git\\
|
204 |
+
|
205 |
+
### 2. 在开始菜单中运行 Anaconda Powershell Prompt 并配置环境(除了工作目录,复制粘贴回车即可)
|
206 |
+
|
207 |
+
```
|
208 |
+
# 切换工作目录
|
209 |
+
cd D:\\SUI\\
|
210 |
+
# 拉取仓库
|
211 |
+
.\\git\\bin\\git lfs clone https://huggingface.co/spaces/Miuzarte/SUI-svc-4.0
|
212 |
+
# 切换工作目录至仓库内
|
213 |
+
cd D:\\SUI\\SUI-svc-4.0\\
|
214 |
+
# 创建并激活环境
|
215 |
+
# 如果conda报SSL相关错误请关闭科学上网
|
216 |
+
conda create -n sovits python=3.8 -y
|
217 |
+
conda activate sovits
|
218 |
+
|
219 |
+
# 更换国内上交源
|
220 |
+
conda config --set show_channel_urls yes
|
221 |
+
conda config --remove-key channels
|
222 |
+
conda config --add channels https://mirror.sjtu.edu.cn/anaconda/pkgs/free
|
223 |
+
conda config --add channels https://mirror.sjtu.edu.cn/anaconda/pkgs/main
|
224 |
+
conda config --add channels https://mirror.sjtu.edu.cn/anaconda/pkgs/mro
|
225 |
+
conda config --add channels https://mirror.sjtu.edu.cn/anaconda/pkgs/msys2
|
226 |
+
conda config --set custom_channels.bioconda https://mirror.sjtu.edu.cn/anaconda/cloud/
|
227 |
+
conda config --set custom_channels.conda-forge https://mirror.sjtu.edu.cn/anaconda/cloud/
|
228 |
+
conda config --set custom_channels.menpo https://mirror.sjtu.edu.cn/anaconda/cloud/
|
229 |
+
conda config --set custom_channels.soumith https://mirror.sjtu.edu.cn/anaconda/cloud/
|
230 |
+
conda config --set custom_channels.viscid-hub https://mirror.sjtu.edu.cn/anaconda/cloud/
|
231 |
+
conda config --set custom_channels.atztogo https://mirror.sjtu.edu.cn/anaconda/cloud/
|
232 |
+
conda config --set custom_channels.pytorch https://mirror.sjtu.edu.cn/anaconda/cloud/
|
233 |
+
conda config --set custom_channels.pytorch-test https://mirror.sjtu.edu.cn/anaconda/cloud/
|
234 |
+
pip config set global.index-url https://mirror.sjtu.edu.cn/pypi/web/simple
|
235 |
+
# 安装依赖
|
236 |
+
# 如果pip报SSL相关错误请关闭科学上网
|
237 |
+
pip install -r requirements.txt
|
238 |
+
```
|
239 |
+
|
240 |
+
至此环境配置完成,关闭该终端窗口(方便我写下一步)
|
241 |
+
|
242 |
+
### 3. 歌声音色转换(之后还要推理直接从这里开始)
|
243 |
+
|
244 |
+
1. 运行 Anaconda Powershell Prompt
|
245 |
+
|
246 |
+
```
|
247 |
+
# 切换工作目录并激活环境
|
248 |
+
cd D:\\SUI\\SUI-svc-4.0\\
|
249 |
+
conda activate sovits
|
250 |
+
```
|
251 |
+
|
252 |
+
2. 推理
|
253 |
+
|
254 |
+
```
|
255 |
+
# 参数列表在下面
|
256 |
+
pyhon inference_main.py -n "<wav音频源文件路径>" "<wav音频源文件路径_2>" -t <文件1变调值> <文件2变调值> -wf <输出音频格式> -a {True|False} -cr [0-1]
|
257 |
+
# 音频将输出至输入音频的旁边
|
258 |
+
# 例:
|
259 |
+
# 处理单个文件,不变调
|
260 |
+
python inference_main.py -n "file.wav"
|
261 |
+
# 处理多个文件,file1.wav变调0key、file2.wav升调1key、file3.wav降调2key
|
262 |
+
python inference_main.py -n "file1.wav" "file2.wav" "file3.wav" -t 0 1 -2
|
263 |
+
# 语音转换使用自动变调并使用聚类模型,输出为wav格式
|
264 |
+
python inference_main.py -n "vocal.wav" -a True -cr 0.5 -wf wav
|
265 |
+
```
|
266 |
+
|
267 |
+
输入源需要转换为wav格式
|
268 |
+
|
269 |
+
参数:
|
270 |
+
|
271 |
+
-n, --clean_names:wav文件路径,可以是相对路径
|
272 |
+
|
273 |
+
-t, --trans:变调,多个变调值会与各个文件一一对应
|
274 |
+
|
275 |
+
-wf, --wav_format:输出音频格式,默认flac
|
276 |
+
|
277 |
+
-a, --auto_predict_f0:语音转换自动预测音高,转换歌声时不要打开这个会严重跑调。
|
278 |
+
|
279 |
+
-cr, --cluster_infer_ratio:聚类方案占比,范围 0-1,如要使用建议设为0.5,具体可以访问[sovits4/README.md/聚类音色泄漏控制](https://github.com/innnky/so-vits-svc/tree/4.0#%E8%81%9A%E7%B1%BB%E9%9F%B3%E8%89%B2%E6%B3%84%E6%BC%8F%E6%8E%A7%E5%88%B6)
|
280 |
+
|
281 |
+
针对本仓库设好了默认值的:
|
282 |
+
|
283 |
+
-m, --model_path:模型路径
|
284 |
+
|
285 |
+
-c, --config_path:配置文件路径
|
286 |
+
|
287 |
+
-cm, --cluster_model_path:聚类模型路径
|
288 |
+
|
289 |
+
-s, --spk_list:合成目标说话人名称
|
290 |
+
|
291 |
+
一般情况下不用动的:
|
292 |
+
|
293 |
+
-sd, --slice_db:分段阈值,默认-40
|
294 |
+
|
295 |
+
-ns, --noice_scale:噪声规模
|
296 |
+
|
297 |
+
-d, --device:推理设备,默认自动选择
|
298 |
+
""")
|
299 |
+
app.launch()
|
cluster/__init__.py
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import torch
|
3 |
+
from sklearn.cluster import KMeans
|
4 |
+
|
5 |
+
def get_cluster_model(ckpt_path):
|
6 |
+
checkpoint = torch.load(ckpt_path)
|
7 |
+
kmeans_dict = {}
|
8 |
+
for spk, ckpt in checkpoint.items():
|
9 |
+
km = KMeans(ckpt["n_features_in_"])
|
10 |
+
km.__dict__["n_features_in_"] = ckpt["n_features_in_"]
|
11 |
+
km.__dict__["_n_threads"] = ckpt["_n_threads"]
|
12 |
+
km.__dict__["cluster_centers_"] = ckpt["cluster_centers_"]
|
13 |
+
kmeans_dict[spk] = km
|
14 |
+
return kmeans_dict
|
15 |
+
|
16 |
+
def get_cluster_result(model, x, speaker):
|
17 |
+
"""
|
18 |
+
x: np.array [t, 256]
|
19 |
+
return cluster class result
|
20 |
+
"""
|
21 |
+
return model[speaker].predict(x)
|
22 |
+
|
23 |
+
def get_cluster_center_result(model, x,speaker):
|
24 |
+
"""x: np.array [t, 256]"""
|
25 |
+
predict = model[speaker].predict(x)
|
26 |
+
return model[speaker].cluster_centers_[predict]
|
27 |
+
|
28 |
+
def get_center(model, x,speaker):
|
29 |
+
return model[speaker].cluster_centers_[x]
|
cluster/train_cluster.py
ADDED
@@ -0,0 +1,89 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
from glob import glob
|
3 |
+
from pathlib import Path
|
4 |
+
import torch
|
5 |
+
import logging
|
6 |
+
import argparse
|
7 |
+
import torch
|
8 |
+
import numpy as np
|
9 |
+
from sklearn.cluster import KMeans, MiniBatchKMeans
|
10 |
+
import tqdm
|
11 |
+
logging.basicConfig(level=logging.INFO)
|
12 |
+
logger = logging.getLogger(__name__)
|
13 |
+
import time
|
14 |
+
import random
|
15 |
+
|
16 |
+
def train_cluster(in_dir, n_clusters, use_minibatch=True, verbose=False):
|
17 |
+
|
18 |
+
logger.info(f"Loading features from {in_dir}")
|
19 |
+
features = []
|
20 |
+
nums = 0
|
21 |
+
for path in tqdm.tqdm(in_dir.glob("*.soft.pt")):
|
22 |
+
features.append(torch.load(path).squeeze(0).numpy().T)
|
23 |
+
# print(features[-1].shape)
|
24 |
+
features = np.concatenate(features, axis=0)
|
25 |
+
print(nums, features.nbytes/ 1024**2, "MB , shape:",features.shape, features.dtype)
|
26 |
+
features = features.astype(np.float32)
|
27 |
+
logger.info(f"Clustering features of shape: {features.shape}")
|
28 |
+
t = time.time()
|
29 |
+
if use_minibatch:
|
30 |
+
kmeans = MiniBatchKMeans(n_clusters=n_clusters,verbose=verbose, batch_size=4096, max_iter=80).fit(features)
|
31 |
+
else:
|
32 |
+
kmeans = KMeans(n_clusters=n_clusters,verbose=verbose).fit(features)
|
33 |
+
print(time.time()-t, "s")
|
34 |
+
|
35 |
+
x = {
|
36 |
+
"n_features_in_": kmeans.n_features_in_,
|
37 |
+
"_n_threads": kmeans._n_threads,
|
38 |
+
"cluster_centers_": kmeans.cluster_centers_,
|
39 |
+
}
|
40 |
+
print("end")
|
41 |
+
|
42 |
+
return x
|
43 |
+
|
44 |
+
|
45 |
+
if __name__ == "__main__":
|
46 |
+
|
47 |
+
parser = argparse.ArgumentParser()
|
48 |
+
parser.add_argument('--dataset', type=Path, default="dataset/44k",
|
49 |
+
help='path of training data directory')
|
50 |
+
parser.add_argument('--output', type=Path, default="logs/44k",
|
51 |
+
help='path of model output directory')
|
52 |
+
|
53 |
+
args = parser.parse_args()
|
54 |
+
|
55 |
+
checkpoint_dir = args.output
|
56 |
+
dataset = args.dataset
|
57 |
+
n_clusters = 10000
|
58 |
+
|
59 |
+
ckpt = {}
|
60 |
+
for spk in os.listdir(dataset):
|
61 |
+
if os.path.isdir(dataset/spk):
|
62 |
+
print(f"train kmeans for {spk}...")
|
63 |
+
in_dir = dataset/spk
|
64 |
+
x = train_cluster(in_dir, n_clusters, verbose=False)
|
65 |
+
ckpt[spk] = x
|
66 |
+
|
67 |
+
checkpoint_path = checkpoint_dir / f"kmeans_{n_clusters}.pt"
|
68 |
+
checkpoint_path.parent.mkdir(exist_ok=True, parents=True)
|
69 |
+
torch.save(
|
70 |
+
ckpt,
|
71 |
+
checkpoint_path,
|
72 |
+
)
|
73 |
+
|
74 |
+
|
75 |
+
# import cluster
|
76 |
+
# for spk in tqdm.tqdm(os.listdir("dataset")):
|
77 |
+
# if os.path.isdir(f"dataset/{spk}"):
|
78 |
+
# print(f"start kmeans inference for {spk}...")
|
79 |
+
# for feature_path in tqdm.tqdm(glob(f"dataset/{spk}/*.discrete.npy", recursive=True)):
|
80 |
+
# mel_path = feature_path.replace(".discrete.npy",".mel.npy")
|
81 |
+
# mel_spectrogram = np.load(mel_path)
|
82 |
+
# feature_len = mel_spectrogram.shape[-1]
|
83 |
+
# c = np.load(feature_path)
|
84 |
+
# c = utils.tools.repeat_expand_2d(torch.FloatTensor(c), feature_len).numpy()
|
85 |
+
# feature = c.T
|
86 |
+
# feature_class = cluster.get_cluster_result(feature, spk)
|
87 |
+
# np.save(feature_path.replace(".discrete.npy", ".discrete_class.npy"), feature_class)
|
88 |
+
|
89 |
+
|
configs/config.json
ADDED
@@ -0,0 +1,93 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"train": {
|
3 |
+
"log_interval": 100,
|
4 |
+
"eval_interval": 10000,
|
5 |
+
"seed": 1234,
|
6 |
+
"epochs": 10000,
|
7 |
+
"learning_rate": 0.0001,
|
8 |
+
"betas": [
|
9 |
+
0.8,
|
10 |
+
0.99
|
11 |
+
],
|
12 |
+
"eps": 1e-09,
|
13 |
+
"batch_size": 12,
|
14 |
+
"fp16_run": false,
|
15 |
+
"lr_decay": 0.999875,
|
16 |
+
"segment_size": 10240,
|
17 |
+
"init_lr_ratio": 1,
|
18 |
+
"warmup_epochs": 0,
|
19 |
+
"c_mel": 45,
|
20 |
+
"c_kl": 1.0,
|
21 |
+
"use_sr": true,
|
22 |
+
"max_speclen": 512,
|
23 |
+
"port": "8001",
|
24 |
+
"keep_ckpts": 5
|
25 |
+
},
|
26 |
+
"data": {
|
27 |
+
"training_files": "filelists/train.txt",
|
28 |
+
"validation_files": "filelists/val.txt",
|
29 |
+
"max_wav_value": 32768.0,
|
30 |
+
"sampling_rate": 44100,
|
31 |
+
"filter_length": 2048,
|
32 |
+
"hop_length": 512,
|
33 |
+
"win_length": 2048,
|
34 |
+
"n_mel_channels": 80,
|
35 |
+
"mel_fmin": 0.0,
|
36 |
+
"mel_fmax": 22050
|
37 |
+
},
|
38 |
+
"model": {
|
39 |
+
"inter_channels": 192,
|
40 |
+
"hidden_channels": 192,
|
41 |
+
"filter_channels": 768,
|
42 |
+
"n_heads": 2,
|
43 |
+
"n_layers": 6,
|
44 |
+
"kernel_size": 3,
|
45 |
+
"p_dropout": 0.1,
|
46 |
+
"resblock": "1",
|
47 |
+
"resblock_kernel_sizes": [
|
48 |
+
3,
|
49 |
+
7,
|
50 |
+
11
|
51 |
+
],
|
52 |
+
"resblock_dilation_sizes": [
|
53 |
+
[
|
54 |
+
1,
|
55 |
+
3,
|
56 |
+
5
|
57 |
+
],
|
58 |
+
[
|
59 |
+
1,
|
60 |
+
3,
|
61 |
+
5
|
62 |
+
],
|
63 |
+
[
|
64 |
+
1,
|
65 |
+
3,
|
66 |
+
5
|
67 |
+
]
|
68 |
+
],
|
69 |
+
"upsample_rates": [
|
70 |
+
8,
|
71 |
+
8,
|
72 |
+
2,
|
73 |
+
2,
|
74 |
+
2
|
75 |
+
],
|
76 |
+
"upsample_initial_channel": 512,
|
77 |
+
"upsample_kernel_sizes": [
|
78 |
+
16,
|
79 |
+
16,
|
80 |
+
4,
|
81 |
+
4,
|
82 |
+
4
|
83 |
+
],
|
84 |
+
"n_layers_q": 3,
|
85 |
+
"use_spectral_norm": false,
|
86 |
+
"gin_channels": 256,
|
87 |
+
"ssl_dim": 256,
|
88 |
+
"n_speakers": 200
|
89 |
+
},
|
90 |
+
"spk": {
|
91 |
+
"suijiSUI": 0
|
92 |
+
}
|
93 |
+
}
|
data_utils.py
ADDED
@@ -0,0 +1,142 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import time
|
2 |
+
import os
|
3 |
+
import random
|
4 |
+
import numpy as np
|
5 |
+
import torch
|
6 |
+
import torch.utils.data
|
7 |
+
|
8 |
+
import modules.commons as commons
|
9 |
+
import utils
|
10 |
+
from modules.mel_processing import spectrogram_torch, spec_to_mel_torch
|
11 |
+
from utils import load_wav_to_torch, load_filepaths_and_text
|
12 |
+
|
13 |
+
# import h5py
|
14 |
+
|
15 |
+
|
16 |
+
"""Multi speaker version"""
|
17 |
+
|
18 |
+
|
19 |
+
class TextAudioSpeakerLoader(torch.utils.data.Dataset):
|
20 |
+
"""
|
21 |
+
1) loads audio, speaker_id, text pairs
|
22 |
+
2) normalizes text and converts them to sequences of integers
|
23 |
+
3) computes spectrograms from audio files.
|
24 |
+
"""
|
25 |
+
|
26 |
+
def __init__(self, audiopaths, hparams):
|
27 |
+
self.audiopaths = load_filepaths_and_text(audiopaths)
|
28 |
+
self.max_wav_value = hparams.data.max_wav_value
|
29 |
+
self.sampling_rate = hparams.data.sampling_rate
|
30 |
+
self.filter_length = hparams.data.filter_length
|
31 |
+
self.hop_length = hparams.data.hop_length
|
32 |
+
self.win_length = hparams.data.win_length
|
33 |
+
self.sampling_rate = hparams.data.sampling_rate
|
34 |
+
self.use_sr = hparams.train.use_sr
|
35 |
+
self.spec_len = hparams.train.max_speclen
|
36 |
+
self.spk_map = hparams.spk
|
37 |
+
|
38 |
+
random.seed(1234)
|
39 |
+
random.shuffle(self.audiopaths)
|
40 |
+
|
41 |
+
def get_audio(self, filename):
|
42 |
+
filename = filename.replace("\\", "/")
|
43 |
+
audio, sampling_rate = load_wav_to_torch(filename)
|
44 |
+
if sampling_rate != self.sampling_rate:
|
45 |
+
raise ValueError("{} SR doesn't match target {} SR".format(
|
46 |
+
sampling_rate, self.sampling_rate))
|
47 |
+
audio_norm = audio / self.max_wav_value
|
48 |
+
audio_norm = audio_norm.unsqueeze(0)
|
49 |
+
spec_filename = filename.replace(".wav", ".spec.pt")
|
50 |
+
if os.path.exists(spec_filename):
|
51 |
+
spec = torch.load(spec_filename)
|
52 |
+
else:
|
53 |
+
spec = spectrogram_torch(audio_norm, self.filter_length,
|
54 |
+
self.sampling_rate, self.hop_length, self.win_length,
|
55 |
+
center=False)
|
56 |
+
spec = torch.squeeze(spec, 0)
|
57 |
+
torch.save(spec, spec_filename)
|
58 |
+
|
59 |
+
spk = filename.split("/")[-2]
|
60 |
+
spk = torch.LongTensor([self.spk_map[spk]])
|
61 |
+
|
62 |
+
f0 = np.load(filename + ".f0.npy")
|
63 |
+
f0, uv = utils.interpolate_f0(f0)
|
64 |
+
f0 = torch.FloatTensor(f0)
|
65 |
+
uv = torch.FloatTensor(uv)
|
66 |
+
|
67 |
+
c = torch.load(filename+ ".soft.pt")
|
68 |
+
c = utils.repeat_expand_2d(c.squeeze(0), f0.shape[0])
|
69 |
+
|
70 |
+
|
71 |
+
lmin = min(c.size(-1), spec.size(-1))
|
72 |
+
assert abs(c.size(-1) - spec.size(-1)) < 3, (c.size(-1), spec.size(-1), f0.shape, filename)
|
73 |
+
assert abs(audio_norm.shape[1]-lmin * self.hop_length) < 3 * self.hop_length
|
74 |
+
spec, c, f0, uv = spec[:, :lmin], c[:, :lmin], f0[:lmin], uv[:lmin]
|
75 |
+
audio_norm = audio_norm[:, :lmin * self.hop_length]
|
76 |
+
if spec.shape[1] < 60:
|
77 |
+
print("skip too short audio:", filename)
|
78 |
+
return None
|
79 |
+
if spec.shape[1] > 800:
|
80 |
+
start = random.randint(0, spec.shape[1]-800)
|
81 |
+
end = start + 790
|
82 |
+
spec, c, f0, uv = spec[:, start:end], c[:, start:end], f0[start:end], uv[start:end]
|
83 |
+
audio_norm = audio_norm[:, start * self.hop_length : end * self.hop_length]
|
84 |
+
|
85 |
+
return c, f0, spec, audio_norm, spk, uv
|
86 |
+
|
87 |
+
def __getitem__(self, index):
|
88 |
+
return self.get_audio(self.audiopaths[index][0])
|
89 |
+
|
90 |
+
def __len__(self):
|
91 |
+
return len(self.audiopaths)
|
92 |
+
|
93 |
+
|
94 |
+
class TextAudioCollate:
|
95 |
+
|
96 |
+
def __call__(self, batch):
|
97 |
+
batch = [b for b in batch if b is not None]
|
98 |
+
|
99 |
+
input_lengths, ids_sorted_decreasing = torch.sort(
|
100 |
+
torch.LongTensor([x[0].shape[1] for x in batch]),
|
101 |
+
dim=0, descending=True)
|
102 |
+
|
103 |
+
max_c_len = max([x[0].size(1) for x in batch])
|
104 |
+
max_wav_len = max([x[3].size(1) for x in batch])
|
105 |
+
|
106 |
+
lengths = torch.LongTensor(len(batch))
|
107 |
+
|
108 |
+
c_padded = torch.FloatTensor(len(batch), batch[0][0].shape[0], max_c_len)
|
109 |
+
f0_padded = torch.FloatTensor(len(batch), max_c_len)
|
110 |
+
spec_padded = torch.FloatTensor(len(batch), batch[0][2].shape[0], max_c_len)
|
111 |
+
wav_padded = torch.FloatTensor(len(batch), 1, max_wav_len)
|
112 |
+
spkids = torch.LongTensor(len(batch), 1)
|
113 |
+
uv_padded = torch.FloatTensor(len(batch), max_c_len)
|
114 |
+
|
115 |
+
c_padded.zero_()
|
116 |
+
spec_padded.zero_()
|
117 |
+
f0_padded.zero_()
|
118 |
+
wav_padded.zero_()
|
119 |
+
uv_padded.zero_()
|
120 |
+
|
121 |
+
for i in range(len(ids_sorted_decreasing)):
|
122 |
+
row = batch[ids_sorted_decreasing[i]]
|
123 |
+
|
124 |
+
c = row[0]
|
125 |
+
c_padded[i, :, :c.size(1)] = c
|
126 |
+
lengths[i] = c.size(1)
|
127 |
+
|
128 |
+
f0 = row[1]
|
129 |
+
f0_padded[i, :f0.size(0)] = f0
|
130 |
+
|
131 |
+
spec = row[2]
|
132 |
+
spec_padded[i, :, :spec.size(1)] = spec
|
133 |
+
|
134 |
+
wav = row[3]
|
135 |
+
wav_padded[i, :, :wav.size(1)] = wav
|
136 |
+
|
137 |
+
spkids[i, 0] = row[4]
|
138 |
+
|
139 |
+
uv = row[5]
|
140 |
+
uv_padded[i, :uv.size(0)] = uv
|
141 |
+
|
142 |
+
return c_padded, f0_padded, spec_padded, wav_padded, spkids, lengths, uv_padded
|
flask_api.py
ADDED
@@ -0,0 +1,56 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import io
|
2 |
+
import logging
|
3 |
+
|
4 |
+
import soundfile
|
5 |
+
import torch
|
6 |
+
import torchaudio
|
7 |
+
from flask import Flask, request, send_file
|
8 |
+
from flask_cors import CORS
|
9 |
+
|
10 |
+
from inference.infer_tool import Svc, RealTimeVC
|
11 |
+
|
12 |
+
app = Flask(__name__)
|
13 |
+
|
14 |
+
CORS(app)
|
15 |
+
|
16 |
+
logging.getLogger('numba').setLevel(logging.WARNING)
|
17 |
+
|
18 |
+
|
19 |
+
@app.route("/voiceChangeModel", methods=["POST"])
|
20 |
+
def voice_change_model():
|
21 |
+
request_form = request.form
|
22 |
+
wave_file = request.files.get("sample", None)
|
23 |
+
# 变调信息
|
24 |
+
f_pitch_change = float(request_form.get("fPitchChange", 0))
|
25 |
+
# DAW所需的采样率
|
26 |
+
daw_sample = int(float(request_form.get("sampleRate", 0)))
|
27 |
+
speaker_id = int(float(request_form.get("sSpeakId", 0)))
|
28 |
+
# http获得wav文件并转换
|
29 |
+
input_wav_path = io.BytesIO(wave_file.read())
|
30 |
+
|
31 |
+
# 模型推理
|
32 |
+
if raw_infer:
|
33 |
+
out_audio, out_sr = svc_model.infer(speaker_id, f_pitch_change, input_wav_path)
|
34 |
+
tar_audio = torchaudio.functional.resample(out_audio, svc_model.target_sample, daw_sample)
|
35 |
+
else:
|
36 |
+
out_audio = svc.process(svc_model, speaker_id, f_pitch_change, input_wav_path)
|
37 |
+
tar_audio = torchaudio.functional.resample(torch.from_numpy(out_audio), svc_model.target_sample, daw_sample)
|
38 |
+
# 返回音频
|
39 |
+
out_wav_path = io.BytesIO()
|
40 |
+
soundfile.write(out_wav_path, tar_audio.cpu().numpy(), daw_sample, format="wav")
|
41 |
+
out_wav_path.seek(0)
|
42 |
+
return send_file(out_wav_path, download_name="temp.wav", as_attachment=True)
|
43 |
+
|
44 |
+
|
45 |
+
if __name__ == '__main__':
|
46 |
+
# 启用则为直接切片合成,False为交叉淡化方式
|
47 |
+
# vst插件调整0.3-0.5s切片时间可以降低延迟,直接切片方法会有连接处爆音、交叉淡化会有轻微重叠声音
|
48 |
+
# 自行选择能接受的方法,或将vst最大切片时间调整为1s,此处设为Ture,延迟大音质稳定一些
|
49 |
+
raw_infer = True
|
50 |
+
# 每个模型和config是唯一对应的
|
51 |
+
model_name = "logs/32k/G_174000-Copy1.pth"
|
52 |
+
config_name = "configs/config.json"
|
53 |
+
svc_model = Svc(model_name, config_name)
|
54 |
+
svc = RealTimeVC()
|
55 |
+
# 此处与vst插件对应,不建议更改
|
56 |
+
app.run(port=6842, host="0.0.0.0", debug=False, threaded=False)
|
hubert/__init__.py
ADDED
File without changes
|
hubert/checkpoint_best_legacy_500.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:60d936ec5a566776fc392e69ad8b630d14eb588111233fe313436e200a7b187b
|
3 |
+
size 1330114945
|
hubert/hubert_model.py
ADDED
@@ -0,0 +1,222 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import copy
|
2 |
+
import random
|
3 |
+
from typing import Optional, Tuple
|
4 |
+
|
5 |
+
import torch
|
6 |
+
import torch.nn as nn
|
7 |
+
import torch.nn.functional as t_func
|
8 |
+
from torch.nn.modules.utils import consume_prefix_in_state_dict_if_present
|
9 |
+
|
10 |
+
|
11 |
+
class Hubert(nn.Module):
|
12 |
+
def __init__(self, num_label_embeddings: int = 100, mask: bool = True):
|
13 |
+
super().__init__()
|
14 |
+
self._mask = mask
|
15 |
+
self.feature_extractor = FeatureExtractor()
|
16 |
+
self.feature_projection = FeatureProjection()
|
17 |
+
self.positional_embedding = PositionalConvEmbedding()
|
18 |
+
self.norm = nn.LayerNorm(768)
|
19 |
+
self.dropout = nn.Dropout(0.1)
|
20 |
+
self.encoder = TransformerEncoder(
|
21 |
+
nn.TransformerEncoderLayer(
|
22 |
+
768, 12, 3072, activation="gelu", batch_first=True
|
23 |
+
),
|
24 |
+
12,
|
25 |
+
)
|
26 |
+
self.proj = nn.Linear(768, 256)
|
27 |
+
|
28 |
+
self.masked_spec_embed = nn.Parameter(torch.FloatTensor(768).uniform_())
|
29 |
+
self.label_embedding = nn.Embedding(num_label_embeddings, 256)
|
30 |
+
|
31 |
+
def mask(self, x: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
|
32 |
+
mask = None
|
33 |
+
if self.training and self._mask:
|
34 |
+
mask = _compute_mask((x.size(0), x.size(1)), 0.8, 10, x.device, 2)
|
35 |
+
x[mask] = self.masked_spec_embed.to(x.dtype)
|
36 |
+
return x, mask
|
37 |
+
|
38 |
+
def encode(
|
39 |
+
self, x: torch.Tensor, layer: Optional[int] = None
|
40 |
+
) -> Tuple[torch.Tensor, torch.Tensor]:
|
41 |
+
x = self.feature_extractor(x)
|
42 |
+
x = self.feature_projection(x.transpose(1, 2))
|
43 |
+
x, mask = self.mask(x)
|
44 |
+
x = x + self.positional_embedding(x)
|
45 |
+
x = self.dropout(self.norm(x))
|
46 |
+
x = self.encoder(x, output_layer=layer)
|
47 |
+
return x, mask
|
48 |
+
|
49 |
+
def logits(self, x: torch.Tensor) -> torch.Tensor:
|
50 |
+
logits = torch.cosine_similarity(
|
51 |
+
x.unsqueeze(2),
|
52 |
+
self.label_embedding.weight.unsqueeze(0).unsqueeze(0),
|
53 |
+
dim=-1,
|
54 |
+
)
|
55 |
+
return logits / 0.1
|
56 |
+
|
57 |
+
def forward(self, x: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
|
58 |
+
x, mask = self.encode(x)
|
59 |
+
x = self.proj(x)
|
60 |
+
logits = self.logits(x)
|
61 |
+
return logits, mask
|
62 |
+
|
63 |
+
|
64 |
+
class HubertSoft(Hubert):
|
65 |
+
def __init__(self):
|
66 |
+
super().__init__()
|
67 |
+
|
68 |
+
@torch.inference_mode()
|
69 |
+
def units(self, wav: torch.Tensor) -> torch.Tensor:
|
70 |
+
wav = t_func.pad(wav, ((400 - 320) // 2, (400 - 320) // 2))
|
71 |
+
x, _ = self.encode(wav)
|
72 |
+
return self.proj(x)
|
73 |
+
|
74 |
+
|
75 |
+
class FeatureExtractor(nn.Module):
|
76 |
+
def __init__(self):
|
77 |
+
super().__init__()
|
78 |
+
self.conv0 = nn.Conv1d(1, 512, 10, 5, bias=False)
|
79 |
+
self.norm0 = nn.GroupNorm(512, 512)
|
80 |
+
self.conv1 = nn.Conv1d(512, 512, 3, 2, bias=False)
|
81 |
+
self.conv2 = nn.Conv1d(512, 512, 3, 2, bias=False)
|
82 |
+
self.conv3 = nn.Conv1d(512, 512, 3, 2, bias=False)
|
83 |
+
self.conv4 = nn.Conv1d(512, 512, 3, 2, bias=False)
|
84 |
+
self.conv5 = nn.Conv1d(512, 512, 2, 2, bias=False)
|
85 |
+
self.conv6 = nn.Conv1d(512, 512, 2, 2, bias=False)
|
86 |
+
|
87 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
88 |
+
x = t_func.gelu(self.norm0(self.conv0(x)))
|
89 |
+
x = t_func.gelu(self.conv1(x))
|
90 |
+
x = t_func.gelu(self.conv2(x))
|
91 |
+
x = t_func.gelu(self.conv3(x))
|
92 |
+
x = t_func.gelu(self.conv4(x))
|
93 |
+
x = t_func.gelu(self.conv5(x))
|
94 |
+
x = t_func.gelu(self.conv6(x))
|
95 |
+
return x
|
96 |
+
|
97 |
+
|
98 |
+
class FeatureProjection(nn.Module):
|
99 |
+
def __init__(self):
|
100 |
+
super().__init__()
|
101 |
+
self.norm = nn.LayerNorm(512)
|
102 |
+
self.projection = nn.Linear(512, 768)
|
103 |
+
self.dropout = nn.Dropout(0.1)
|
104 |
+
|
105 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
106 |
+
x = self.norm(x)
|
107 |
+
x = self.projection(x)
|
108 |
+
x = self.dropout(x)
|
109 |
+
return x
|
110 |
+
|
111 |
+
|
112 |
+
class PositionalConvEmbedding(nn.Module):
|
113 |
+
def __init__(self):
|
114 |
+
super().__init__()
|
115 |
+
self.conv = nn.Conv1d(
|
116 |
+
768,
|
117 |
+
768,
|
118 |
+
kernel_size=128,
|
119 |
+
padding=128 // 2,
|
120 |
+
groups=16,
|
121 |
+
)
|
122 |
+
self.conv = nn.utils.weight_norm(self.conv, name="weight", dim=2)
|
123 |
+
|
124 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
125 |
+
x = self.conv(x.transpose(1, 2))
|
126 |
+
x = t_func.gelu(x[:, :, :-1])
|
127 |
+
return x.transpose(1, 2)
|
128 |
+
|
129 |
+
|
130 |
+
class TransformerEncoder(nn.Module):
|
131 |
+
def __init__(
|
132 |
+
self, encoder_layer: nn.TransformerEncoderLayer, num_layers: int
|
133 |
+
) -> None:
|
134 |
+
super(TransformerEncoder, self).__init__()
|
135 |
+
self.layers = nn.ModuleList(
|
136 |
+
[copy.deepcopy(encoder_layer) for _ in range(num_layers)]
|
137 |
+
)
|
138 |
+
self.num_layers = num_layers
|
139 |
+
|
140 |
+
def forward(
|
141 |
+
self,
|
142 |
+
src: torch.Tensor,
|
143 |
+
mask: torch.Tensor = None,
|
144 |
+
src_key_padding_mask: torch.Tensor = None,
|
145 |
+
output_layer: Optional[int] = None,
|
146 |
+
) -> torch.Tensor:
|
147 |
+
output = src
|
148 |
+
for layer in self.layers[:output_layer]:
|
149 |
+
output = layer(
|
150 |
+
output, src_mask=mask, src_key_padding_mask=src_key_padding_mask
|
151 |
+
)
|
152 |
+
return output
|
153 |
+
|
154 |
+
|
155 |
+
def _compute_mask(
|
156 |
+
shape: Tuple[int, int],
|
157 |
+
mask_prob: float,
|
158 |
+
mask_length: int,
|
159 |
+
device: torch.device,
|
160 |
+
min_masks: int = 0,
|
161 |
+
) -> torch.Tensor:
|
162 |
+
batch_size, sequence_length = shape
|
163 |
+
|
164 |
+
if mask_length < 1:
|
165 |
+
raise ValueError("`mask_length` has to be bigger than 0.")
|
166 |
+
|
167 |
+
if mask_length > sequence_length:
|
168 |
+
raise ValueError(
|
169 |
+
f"`mask_length` has to be smaller than `sequence_length`, but got `mask_length`: {mask_length} and `sequence_length`: {sequence_length}`"
|
170 |
+
)
|
171 |
+
|
172 |
+
# compute number of masked spans in batch
|
173 |
+
num_masked_spans = int(mask_prob * sequence_length / mask_length + random.random())
|
174 |
+
num_masked_spans = max(num_masked_spans, min_masks)
|
175 |
+
|
176 |
+
# make sure num masked indices <= sequence_length
|
177 |
+
if num_masked_spans * mask_length > sequence_length:
|
178 |
+
num_masked_spans = sequence_length // mask_length
|
179 |
+
|
180 |
+
# SpecAugment mask to fill
|
181 |
+
mask = torch.zeros((batch_size, sequence_length), device=device, dtype=torch.bool)
|
182 |
+
|
183 |
+
# uniform distribution to sample from, make sure that offset samples are < sequence_length
|
184 |
+
uniform_dist = torch.ones(
|
185 |
+
(batch_size, sequence_length - (mask_length - 1)), device=device
|
186 |
+
)
|
187 |
+
|
188 |
+
# get random indices to mask
|
189 |
+
mask_indices = torch.multinomial(uniform_dist, num_masked_spans)
|
190 |
+
|
191 |
+
# expand masked indices to masked spans
|
192 |
+
mask_indices = (
|
193 |
+
mask_indices.unsqueeze(dim=-1)
|
194 |
+
.expand((batch_size, num_masked_spans, mask_length))
|
195 |
+
.reshape(batch_size, num_masked_spans * mask_length)
|
196 |
+
)
|
197 |
+
offsets = (
|
198 |
+
torch.arange(mask_length, device=device)[None, None, :]
|
199 |
+
.expand((batch_size, num_masked_spans, mask_length))
|
200 |
+
.reshape(batch_size, num_masked_spans * mask_length)
|
201 |
+
)
|
202 |
+
mask_idxs = mask_indices + offsets
|
203 |
+
|
204 |
+
# scatter indices to mask
|
205 |
+
mask = mask.scatter(1, mask_idxs, True)
|
206 |
+
|
207 |
+
return mask
|
208 |
+
|
209 |
+
|
210 |
+
def hubert_soft(
|
211 |
+
path: str,
|
212 |
+
) -> HubertSoft:
|
213 |
+
r"""HuBERT-Soft from `"A Comparison of Discrete and Soft Speech Units for Improved Voice Conversion"`.
|
214 |
+
Args:
|
215 |
+
path (str): path of a pretrained model
|
216 |
+
"""
|
217 |
+
hubert = HubertSoft()
|
218 |
+
checkpoint = torch.load(path)
|
219 |
+
consume_prefix_in_state_dict_if_present(checkpoint, "module.")
|
220 |
+
hubert.load_state_dict(checkpoint)
|
221 |
+
hubert.eval()
|
222 |
+
return hubert
|
hubert/hubert_model_onnx.py
ADDED
@@ -0,0 +1,217 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import copy
|
2 |
+
import random
|
3 |
+
from typing import Optional, Tuple
|
4 |
+
|
5 |
+
import torch
|
6 |
+
import torch.nn as nn
|
7 |
+
import torch.nn.functional as t_func
|
8 |
+
from torch.nn.modules.utils import consume_prefix_in_state_dict_if_present
|
9 |
+
|
10 |
+
|
11 |
+
class Hubert(nn.Module):
|
12 |
+
def __init__(self, num_label_embeddings: int = 100, mask: bool = True):
|
13 |
+
super().__init__()
|
14 |
+
self._mask = mask
|
15 |
+
self.feature_extractor = FeatureExtractor()
|
16 |
+
self.feature_projection = FeatureProjection()
|
17 |
+
self.positional_embedding = PositionalConvEmbedding()
|
18 |
+
self.norm = nn.LayerNorm(768)
|
19 |
+
self.dropout = nn.Dropout(0.1)
|
20 |
+
self.encoder = TransformerEncoder(
|
21 |
+
nn.TransformerEncoderLayer(
|
22 |
+
768, 12, 3072, activation="gelu", batch_first=True
|
23 |
+
),
|
24 |
+
12,
|
25 |
+
)
|
26 |
+
self.proj = nn.Linear(768, 256)
|
27 |
+
|
28 |
+
self.masked_spec_embed = nn.Parameter(torch.FloatTensor(768).uniform_())
|
29 |
+
self.label_embedding = nn.Embedding(num_label_embeddings, 256)
|
30 |
+
|
31 |
+
def mask(self, x: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
|
32 |
+
mask = None
|
33 |
+
if self.training and self._mask:
|
34 |
+
mask = _compute_mask((x.size(0), x.size(1)), 0.8, 10, x.device, 2)
|
35 |
+
x[mask] = self.masked_spec_embed.to(x.dtype)
|
36 |
+
return x, mask
|
37 |
+
|
38 |
+
def encode(
|
39 |
+
self, x: torch.Tensor, layer: Optional[int] = None
|
40 |
+
) -> Tuple[torch.Tensor, torch.Tensor]:
|
41 |
+
x = self.feature_extractor(x)
|
42 |
+
x = self.feature_projection(x.transpose(1, 2))
|
43 |
+
x, mask = self.mask(x)
|
44 |
+
x = x + self.positional_embedding(x)
|
45 |
+
x = self.dropout(self.norm(x))
|
46 |
+
x = self.encoder(x, output_layer=layer)
|
47 |
+
return x, mask
|
48 |
+
|
49 |
+
def logits(self, x: torch.Tensor) -> torch.Tensor:
|
50 |
+
logits = torch.cosine_similarity(
|
51 |
+
x.unsqueeze(2),
|
52 |
+
self.label_embedding.weight.unsqueeze(0).unsqueeze(0),
|
53 |
+
dim=-1,
|
54 |
+
)
|
55 |
+
return logits / 0.1
|
56 |
+
|
57 |
+
|
58 |
+
class HubertSoft(Hubert):
|
59 |
+
def __init__(self):
|
60 |
+
super().__init__()
|
61 |
+
|
62 |
+
def units(self, wav: torch.Tensor) -> torch.Tensor:
|
63 |
+
wav = t_func.pad(wav, ((400 - 320) // 2, (400 - 320) // 2))
|
64 |
+
x, _ = self.encode(wav)
|
65 |
+
return self.proj(x)
|
66 |
+
|
67 |
+
def forward(self, x):
|
68 |
+
return self.units(x)
|
69 |
+
|
70 |
+
class FeatureExtractor(nn.Module):
|
71 |
+
def __init__(self):
|
72 |
+
super().__init__()
|
73 |
+
self.conv0 = nn.Conv1d(1, 512, 10, 5, bias=False)
|
74 |
+
self.norm0 = nn.GroupNorm(512, 512)
|
75 |
+
self.conv1 = nn.Conv1d(512, 512, 3, 2, bias=False)
|
76 |
+
self.conv2 = nn.Conv1d(512, 512, 3, 2, bias=False)
|
77 |
+
self.conv3 = nn.Conv1d(512, 512, 3, 2, bias=False)
|
78 |
+
self.conv4 = nn.Conv1d(512, 512, 3, 2, bias=False)
|
79 |
+
self.conv5 = nn.Conv1d(512, 512, 2, 2, bias=False)
|
80 |
+
self.conv6 = nn.Conv1d(512, 512, 2, 2, bias=False)
|
81 |
+
|
82 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
83 |
+
x = t_func.gelu(self.norm0(self.conv0(x)))
|
84 |
+
x = t_func.gelu(self.conv1(x))
|
85 |
+
x = t_func.gelu(self.conv2(x))
|
86 |
+
x = t_func.gelu(self.conv3(x))
|
87 |
+
x = t_func.gelu(self.conv4(x))
|
88 |
+
x = t_func.gelu(self.conv5(x))
|
89 |
+
x = t_func.gelu(self.conv6(x))
|
90 |
+
return x
|
91 |
+
|
92 |
+
|
93 |
+
class FeatureProjection(nn.Module):
|
94 |
+
def __init__(self):
|
95 |
+
super().__init__()
|
96 |
+
self.norm = nn.LayerNorm(512)
|
97 |
+
self.projection = nn.Linear(512, 768)
|
98 |
+
self.dropout = nn.Dropout(0.1)
|
99 |
+
|
100 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
101 |
+
x = self.norm(x)
|
102 |
+
x = self.projection(x)
|
103 |
+
x = self.dropout(x)
|
104 |
+
return x
|
105 |
+
|
106 |
+
|
107 |
+
class PositionalConvEmbedding(nn.Module):
|
108 |
+
def __init__(self):
|
109 |
+
super().__init__()
|
110 |
+
self.conv = nn.Conv1d(
|
111 |
+
768,
|
112 |
+
768,
|
113 |
+
kernel_size=128,
|
114 |
+
padding=128 // 2,
|
115 |
+
groups=16,
|
116 |
+
)
|
117 |
+
self.conv = nn.utils.weight_norm(self.conv, name="weight", dim=2)
|
118 |
+
|
119 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
120 |
+
x = self.conv(x.transpose(1, 2))
|
121 |
+
x = t_func.gelu(x[:, :, :-1])
|
122 |
+
return x.transpose(1, 2)
|
123 |
+
|
124 |
+
|
125 |
+
class TransformerEncoder(nn.Module):
|
126 |
+
def __init__(
|
127 |
+
self, encoder_layer: nn.TransformerEncoderLayer, num_layers: int
|
128 |
+
) -> None:
|
129 |
+
super(TransformerEncoder, self).__init__()
|
130 |
+
self.layers = nn.ModuleList(
|
131 |
+
[copy.deepcopy(encoder_layer) for _ in range(num_layers)]
|
132 |
+
)
|
133 |
+
self.num_layers = num_layers
|
134 |
+
|
135 |
+
def forward(
|
136 |
+
self,
|
137 |
+
src: torch.Tensor,
|
138 |
+
mask: torch.Tensor = None,
|
139 |
+
src_key_padding_mask: torch.Tensor = None,
|
140 |
+
output_layer: Optional[int] = None,
|
141 |
+
) -> torch.Tensor:
|
142 |
+
output = src
|
143 |
+
for layer in self.layers[:output_layer]:
|
144 |
+
output = layer(
|
145 |
+
output, src_mask=mask, src_key_padding_mask=src_key_padding_mask
|
146 |
+
)
|
147 |
+
return output
|
148 |
+
|
149 |
+
|
150 |
+
def _compute_mask(
|
151 |
+
shape: Tuple[int, int],
|
152 |
+
mask_prob: float,
|
153 |
+
mask_length: int,
|
154 |
+
device: torch.device,
|
155 |
+
min_masks: int = 0,
|
156 |
+
) -> torch.Tensor:
|
157 |
+
batch_size, sequence_length = shape
|
158 |
+
|
159 |
+
if mask_length < 1:
|
160 |
+
raise ValueError("`mask_length` has to be bigger than 0.")
|
161 |
+
|
162 |
+
if mask_length > sequence_length:
|
163 |
+
raise ValueError(
|
164 |
+
f"`mask_length` has to be smaller than `sequence_length`, but got `mask_length`: {mask_length} and `sequence_length`: {sequence_length}`"
|
165 |
+
)
|
166 |
+
|
167 |
+
# compute number of masked spans in batch
|
168 |
+
num_masked_spans = int(mask_prob * sequence_length / mask_length + random.random())
|
169 |
+
num_masked_spans = max(num_masked_spans, min_masks)
|
170 |
+
|
171 |
+
# make sure num masked indices <= sequence_length
|
172 |
+
if num_masked_spans * mask_length > sequence_length:
|
173 |
+
num_masked_spans = sequence_length // mask_length
|
174 |
+
|
175 |
+
# SpecAugment mask to fill
|
176 |
+
mask = torch.zeros((batch_size, sequence_length), device=device, dtype=torch.bool)
|
177 |
+
|
178 |
+
# uniform distribution to sample from, make sure that offset samples are < sequence_length
|
179 |
+
uniform_dist = torch.ones(
|
180 |
+
(batch_size, sequence_length - (mask_length - 1)), device=device
|
181 |
+
)
|
182 |
+
|
183 |
+
# get random indices to mask
|
184 |
+
mask_indices = torch.multinomial(uniform_dist, num_masked_spans)
|
185 |
+
|
186 |
+
# expand masked indices to masked spans
|
187 |
+
mask_indices = (
|
188 |
+
mask_indices.unsqueeze(dim=-1)
|
189 |
+
.expand((batch_size, num_masked_spans, mask_length))
|
190 |
+
.reshape(batch_size, num_masked_spans * mask_length)
|
191 |
+
)
|
192 |
+
offsets = (
|
193 |
+
torch.arange(mask_length, device=device)[None, None, :]
|
194 |
+
.expand((batch_size, num_masked_spans, mask_length))
|
195 |
+
.reshape(batch_size, num_masked_spans * mask_length)
|
196 |
+
)
|
197 |
+
mask_idxs = mask_indices + offsets
|
198 |
+
|
199 |
+
# scatter indices to mask
|
200 |
+
mask = mask.scatter(1, mask_idxs, True)
|
201 |
+
|
202 |
+
return mask
|
203 |
+
|
204 |
+
|
205 |
+
def hubert_soft(
|
206 |
+
path: str,
|
207 |
+
) -> HubertSoft:
|
208 |
+
r"""HuBERT-Soft from `"A Comparison of Discrete and Soft Speech Units for Improved Voice Conversion"`.
|
209 |
+
Args:
|
210 |
+
path (str): path of a pretrained model
|
211 |
+
"""
|
212 |
+
hubert = HubertSoft()
|
213 |
+
checkpoint = torch.load(path)
|
214 |
+
consume_prefix_in_state_dict_if_present(checkpoint, "module.")
|
215 |
+
hubert.load_state_dict(checkpoint)
|
216 |
+
hubert.eval()
|
217 |
+
return hubert
|
hubert/put_hubert_ckpt_here
ADDED
File without changes
|
inference/__init__.py
ADDED
File without changes
|
inference/chunks_temp.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"info": "temp_dict"}
|
inference/infer_tool.py
ADDED
@@ -0,0 +1,233 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import hashlib
|
2 |
+
import io
|
3 |
+
import json
|
4 |
+
import logging
|
5 |
+
import os
|
6 |
+
import time
|
7 |
+
from pathlib import Path
|
8 |
+
from inference import slicer
|
9 |
+
|
10 |
+
import librosa
|
11 |
+
import numpy as np
|
12 |
+
# import onnxruntime
|
13 |
+
import parselmouth
|
14 |
+
import soundfile
|
15 |
+
import torch
|
16 |
+
import torchaudio
|
17 |
+
|
18 |
+
import cluster
|
19 |
+
from hubert import hubert_model
|
20 |
+
import utils
|
21 |
+
from models import SynthesizerTrn
|
22 |
+
|
23 |
+
logging.getLogger('matplotlib').setLevel(logging.WARNING)
|
24 |
+
|
25 |
+
|
26 |
+
def read_temp(file_name):
|
27 |
+
if not os.path.exists(file_name):
|
28 |
+
with open(file_name, "w") as f:
|
29 |
+
f.write(json.dumps({"info": "temp_dict"}))
|
30 |
+
return {}
|
31 |
+
else:
|
32 |
+
try:
|
33 |
+
with open(file_name, "r") as f:
|
34 |
+
data = f.read()
|
35 |
+
data_dict = json.loads(data)
|
36 |
+
if os.path.getsize(file_name) > 50 * 1024 * 1024:
|
37 |
+
f_name = file_name.replace("\\", "/").split("/")[-1]
|
38 |
+
print(f"clean {f_name}")
|
39 |
+
for wav_hash in list(data_dict.keys()):
|
40 |
+
if int(time.time()) - int(data_dict[wav_hash]["time"]) > 14 * 24 * 3600:
|
41 |
+
del data_dict[wav_hash]
|
42 |
+
except Exception as e:
|
43 |
+
print(e)
|
44 |
+
print(f"{file_name} error,auto rebuild file")
|
45 |
+
data_dict = {"info": "temp_dict"}
|
46 |
+
return data_dict
|
47 |
+
|
48 |
+
|
49 |
+
def write_temp(file_name, data):
|
50 |
+
with open(file_name, "w") as f:
|
51 |
+
f.write(json.dumps(data))
|
52 |
+
|
53 |
+
|
54 |
+
def timeit(func):
|
55 |
+
def run(*args, **kwargs):
|
56 |
+
t = time.time()
|
57 |
+
res = func(*args, **kwargs)
|
58 |
+
print('executing \'%s\' costed %.3fs' % (func.__name__, time.time() - t))
|
59 |
+
return res
|
60 |
+
|
61 |
+
return run
|
62 |
+
|
63 |
+
|
64 |
+
def format_wav(audio_path):
|
65 |
+
if Path(audio_path).suffix == '.wav':
|
66 |
+
return
|
67 |
+
raw_audio, raw_sample_rate = librosa.load(audio_path, mono=True, sr=None)
|
68 |
+
soundfile.write(Path(audio_path).with_suffix(".wav"), raw_audio, raw_sample_rate)
|
69 |
+
|
70 |
+
|
71 |
+
def get_end_file(dir_path, end):
|
72 |
+
file_lists = []
|
73 |
+
for root, dirs, files in os.walk(dir_path):
|
74 |
+
files = [f for f in files if f[0] != '.']
|
75 |
+
dirs[:] = [d for d in dirs if d[0] != '.']
|
76 |
+
for f_file in files:
|
77 |
+
if f_file.endswith(end):
|
78 |
+
file_lists.append(os.path.join(root, f_file).replace("\\", "/"))
|
79 |
+
return file_lists
|
80 |
+
|
81 |
+
|
82 |
+
def get_md5(content):
|
83 |
+
return hashlib.new("md5", content).hexdigest()
|
84 |
+
|
85 |
+
def fill_a_to_b(a, b):
|
86 |
+
if len(a) < len(b):
|
87 |
+
for _ in range(0, len(b) - len(a)):
|
88 |
+
a.append(a[0])
|
89 |
+
|
90 |
+
def mkdir(paths: list):
|
91 |
+
for path in paths:
|
92 |
+
if not os.path.exists(path):
|
93 |
+
os.mkdir(path)
|
94 |
+
|
95 |
+
|
96 |
+
class Svc(object):
|
97 |
+
def __init__(self, net_g_path, config_path,
|
98 |
+
device=None,
|
99 |
+
cluster_model_path="logs/44k/kmeans_10000.pt"):
|
100 |
+
self.net_g_path = net_g_path
|
101 |
+
if device is None:
|
102 |
+
self.dev = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
103 |
+
else:
|
104 |
+
self.dev = torch.device(device)
|
105 |
+
self.net_g_ms = None
|
106 |
+
self.hps_ms = utils.get_hparams_from_file(config_path)
|
107 |
+
self.target_sample = self.hps_ms.data.sampling_rate
|
108 |
+
self.hop_size = self.hps_ms.data.hop_length
|
109 |
+
self.spk2id = self.hps_ms.spk
|
110 |
+
# 加载hubert
|
111 |
+
self.hubert_model = utils.get_hubert_model().to(self.dev)
|
112 |
+
self.load_model()
|
113 |
+
if os.path.exists(cluster_model_path):
|
114 |
+
self.cluster_model = cluster.get_cluster_model(cluster_model_path)
|
115 |
+
|
116 |
+
def load_model(self):
|
117 |
+
# 获取模型配置
|
118 |
+
self.net_g_ms = SynthesizerTrn(
|
119 |
+
self.hps_ms.data.filter_length // 2 + 1,
|
120 |
+
self.hps_ms.train.segment_size // self.hps_ms.data.hop_length,
|
121 |
+
**self.hps_ms.model)
|
122 |
+
_ = utils.load_checkpoint(self.net_g_path, self.net_g_ms, None)
|
123 |
+
if "half" in self.net_g_path and torch.cuda.is_available():
|
124 |
+
_ = self.net_g_ms.half().eval().to(self.dev)
|
125 |
+
else:
|
126 |
+
_ = self.net_g_ms.eval().to(self.dev)
|
127 |
+
|
128 |
+
|
129 |
+
|
130 |
+
def get_unit_f0(self, in_path, tran, cluster_infer_ratio, speaker):
|
131 |
+
|
132 |
+
wav, sr = librosa.load(in_path, sr=self.target_sample)
|
133 |
+
|
134 |
+
f0 = utils.compute_f0_parselmouth(wav, sampling_rate=self.target_sample, hop_length=self.hop_size)
|
135 |
+
f0, uv = utils.interpolate_f0(f0)
|
136 |
+
f0 = torch.FloatTensor(f0)
|
137 |
+
uv = torch.FloatTensor(uv)
|
138 |
+
f0 = f0 * 2 ** (tran / 12)
|
139 |
+
f0 = f0.unsqueeze(0).to(self.dev)
|
140 |
+
uv = uv.unsqueeze(0).to(self.dev)
|
141 |
+
|
142 |
+
wav16k = librosa.resample(wav, orig_sr=self.target_sample, target_sr=16000)
|
143 |
+
wav16k = torch.from_numpy(wav16k).to(self.dev)
|
144 |
+
c = utils.get_hubert_content(self.hubert_model, wav_16k_tensor=wav16k)
|
145 |
+
c = utils.repeat_expand_2d(c.squeeze(0), f0.shape[1])
|
146 |
+
|
147 |
+
if cluster_infer_ratio !=0:
|
148 |
+
cluster_c = cluster.get_cluster_center_result(self.cluster_model, c.numpy().T, speaker).T
|
149 |
+
cluster_c = torch.FloatTensor(cluster_c)
|
150 |
+
c = cluster_infer_ratio * cluster_c + (1 - cluster_infer_ratio) * c
|
151 |
+
|
152 |
+
c = c.unsqueeze(0)
|
153 |
+
return c, f0, uv
|
154 |
+
|
155 |
+
def infer(self, speaker, tran, raw_path,
|
156 |
+
cluster_infer_ratio=0,
|
157 |
+
auto_predict_f0=False,
|
158 |
+
noice_scale=0.4):
|
159 |
+
speaker_id = self.spk2id[speaker]
|
160 |
+
sid = torch.LongTensor([int(speaker_id)]).to(self.dev).unsqueeze(0)
|
161 |
+
c, f0, uv = self.get_unit_f0(raw_path, tran, cluster_infer_ratio, speaker)
|
162 |
+
if "half" in self.net_g_path and torch.cuda.is_available():
|
163 |
+
c = c.half()
|
164 |
+
with torch.no_grad():
|
165 |
+
start = time.time()
|
166 |
+
audio = self.net_g_ms.infer(c, f0=f0, g=sid, uv=uv, predict_f0=auto_predict_f0, noice_scale=noice_scale)[0,0].data.float()
|
167 |
+
use_time = time.time() - start
|
168 |
+
print("vits use time:{}".format(use_time))
|
169 |
+
return audio, audio.shape[-1]
|
170 |
+
|
171 |
+
def slice_inference(self,raw_audio_path, spk, tran, slice_db,cluster_infer_ratio, auto_predict_f0,noice_scale, pad_seconds=0.5):
|
172 |
+
wav_path = raw_audio_path
|
173 |
+
chunks = slicer.cut(wav_path, db_thresh=slice_db)
|
174 |
+
audio_data, audio_sr = slicer.chunks2audio(wav_path, chunks)
|
175 |
+
|
176 |
+
audio = []
|
177 |
+
for (slice_tag, data) in audio_data:
|
178 |
+
print(f'#=====segment start, {round(len(data) / audio_sr, 3)}s======')
|
179 |
+
# padd
|
180 |
+
pad_len = int(audio_sr * pad_seconds)
|
181 |
+
data = np.concatenate([np.zeros([pad_len]), data, np.zeros([pad_len])])
|
182 |
+
length = int(np.ceil(len(data) / audio_sr * self.target_sample))
|
183 |
+
raw_path = io.BytesIO()
|
184 |
+
soundfile.write(raw_path, data, audio_sr, format="wav")
|
185 |
+
raw_path.seek(0)
|
186 |
+
if slice_tag:
|
187 |
+
print('jump empty segment')
|
188 |
+
_audio = np.zeros(length)
|
189 |
+
else:
|
190 |
+
out_audio, out_sr = self.infer(spk, tran, raw_path,
|
191 |
+
cluster_infer_ratio=cluster_infer_ratio,
|
192 |
+
auto_predict_f0=auto_predict_f0,
|
193 |
+
noice_scale=noice_scale
|
194 |
+
)
|
195 |
+
_audio = out_audio.cpu().numpy()
|
196 |
+
|
197 |
+
pad_len = int(self.target_sample * pad_seconds)
|
198 |
+
_audio = _audio[pad_len:-pad_len]
|
199 |
+
audio.extend(list(_audio))
|
200 |
+
return np.array(audio)
|
201 |
+
|
202 |
+
|
203 |
+
class RealTimeVC:
|
204 |
+
def __init__(self):
|
205 |
+
self.last_chunk = None
|
206 |
+
self.last_o = None
|
207 |
+
self.chunk_len = 16000 # 区块长度
|
208 |
+
self.pre_len = 3840 # 交叉淡化长度,640的倍数
|
209 |
+
|
210 |
+
"""输入输出都是1维numpy 音频波形数组"""
|
211 |
+
|
212 |
+
def process(self, svc_model, speaker_id, f_pitch_change, input_wav_path):
|
213 |
+
import maad
|
214 |
+
audio, sr = torchaudio.load(input_wav_path)
|
215 |
+
audio = audio.cpu().numpy()[0]
|
216 |
+
temp_wav = io.BytesIO()
|
217 |
+
if self.last_chunk is None:
|
218 |
+
input_wav_path.seek(0)
|
219 |
+
audio, sr = svc_model.infer(speaker_id, f_pitch_change, input_wav_path)
|
220 |
+
audio = audio.cpu().numpy()
|
221 |
+
self.last_chunk = audio[-self.pre_len:]
|
222 |
+
self.last_o = audio
|
223 |
+
return audio[-self.chunk_len:]
|
224 |
+
else:
|
225 |
+
audio = np.concatenate([self.last_chunk, audio])
|
226 |
+
soundfile.write(temp_wav, audio, sr, format="wav")
|
227 |
+
temp_wav.seek(0)
|
228 |
+
audio, sr = svc_model.infer(speaker_id, f_pitch_change, temp_wav)
|
229 |
+
audio = audio.cpu().numpy()
|
230 |
+
ret = maad.util.crossfade(self.last_o, audio, self.pre_len)
|
231 |
+
self.last_chunk = audio[-self.pre_len:]
|
232 |
+
self.last_o = audio
|
233 |
+
return ret[self.chunk_len:2 * self.chunk_len]
|
inference/infer_tool_grad.py
ADDED
@@ -0,0 +1,160 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import hashlib
|
2 |
+
import json
|
3 |
+
import logging
|
4 |
+
import os
|
5 |
+
import time
|
6 |
+
from pathlib import Path
|
7 |
+
import io
|
8 |
+
import librosa
|
9 |
+
import maad
|
10 |
+
import numpy as np
|
11 |
+
from inference import slicer
|
12 |
+
import parselmouth
|
13 |
+
import soundfile
|
14 |
+
import torch
|
15 |
+
import torchaudio
|
16 |
+
|
17 |
+
from hubert import hubert_model
|
18 |
+
import utils
|
19 |
+
from models import SynthesizerTrn
|
20 |
+
logging.getLogger('numba').setLevel(logging.WARNING)
|
21 |
+
logging.getLogger('matplotlib').setLevel(logging.WARNING)
|
22 |
+
|
23 |
+
def resize2d_f0(x, target_len):
|
24 |
+
source = np.array(x)
|
25 |
+
source[source < 0.001] = np.nan
|
26 |
+
target = np.interp(np.arange(0, len(source) * target_len, len(source)) / target_len, np.arange(0, len(source)),
|
27 |
+
source)
|
28 |
+
res = np.nan_to_num(target)
|
29 |
+
return res
|
30 |
+
|
31 |
+
def get_f0(x, p_len,f0_up_key=0):
|
32 |
+
|
33 |
+
time_step = 160 / 16000 * 1000
|
34 |
+
f0_min = 50
|
35 |
+
f0_max = 1100
|
36 |
+
f0_mel_min = 1127 * np.log(1 + f0_min / 700)
|
37 |
+
f0_mel_max = 1127 * np.log(1 + f0_max / 700)
|
38 |
+
|
39 |
+
f0 = parselmouth.Sound(x, 16000).to_pitch_ac(
|
40 |
+
time_step=time_step / 1000, voicing_threshold=0.6,
|
41 |
+
pitch_floor=f0_min, pitch_ceiling=f0_max).selected_array['frequency']
|
42 |
+
|
43 |
+
pad_size=(p_len - len(f0) + 1) // 2
|
44 |
+
if(pad_size>0 or p_len - len(f0) - pad_size>0):
|
45 |
+
f0 = np.pad(f0,[[pad_size,p_len - len(f0) - pad_size]], mode='constant')
|
46 |
+
|
47 |
+
f0 *= pow(2, f0_up_key / 12)
|
48 |
+
f0_mel = 1127 * np.log(1 + f0 / 700)
|
49 |
+
f0_mel[f0_mel > 0] = (f0_mel[f0_mel > 0] - f0_mel_min) * 254 / (f0_mel_max - f0_mel_min) + 1
|
50 |
+
f0_mel[f0_mel <= 1] = 1
|
51 |
+
f0_mel[f0_mel > 255] = 255
|
52 |
+
f0_coarse = np.rint(f0_mel).astype(np.int)
|
53 |
+
return f0_coarse, f0
|
54 |
+
|
55 |
+
def clean_pitch(input_pitch):
|
56 |
+
num_nan = np.sum(input_pitch == 1)
|
57 |
+
if num_nan / len(input_pitch) > 0.9:
|
58 |
+
input_pitch[input_pitch != 1] = 1
|
59 |
+
return input_pitch
|
60 |
+
|
61 |
+
|
62 |
+
def plt_pitch(input_pitch):
|
63 |
+
input_pitch = input_pitch.astype(float)
|
64 |
+
input_pitch[input_pitch == 1] = np.nan
|
65 |
+
return input_pitch
|
66 |
+
|
67 |
+
|
68 |
+
def f0_to_pitch(ff):
|
69 |
+
f0_pitch = 69 + 12 * np.log2(ff / 440)
|
70 |
+
return f0_pitch
|
71 |
+
|
72 |
+
|
73 |
+
def fill_a_to_b(a, b):
|
74 |
+
if len(a) < len(b):
|
75 |
+
for _ in range(0, len(b) - len(a)):
|
76 |
+
a.append(a[0])
|
77 |
+
|
78 |
+
|
79 |
+
def mkdir(paths: list):
|
80 |
+
for path in paths:
|
81 |
+
if not os.path.exists(path):
|
82 |
+
os.mkdir(path)
|
83 |
+
|
84 |
+
|
85 |
+
class VitsSvc(object):
|
86 |
+
def __init__(self):
|
87 |
+
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
88 |
+
self.SVCVITS = None
|
89 |
+
self.hps = None
|
90 |
+
self.speakers = None
|
91 |
+
self.hubert_soft = utils.get_hubert_model()
|
92 |
+
|
93 |
+
def set_device(self, device):
|
94 |
+
self.device = torch.device(device)
|
95 |
+
self.hubert_soft.to(self.device)
|
96 |
+
if self.SVCVITS != None:
|
97 |
+
self.SVCVITS.to(self.device)
|
98 |
+
|
99 |
+
def loadCheckpoint(self, path):
|
100 |
+
self.hps = utils.get_hparams_from_file(f"checkpoints/{path}/config.json")
|
101 |
+
self.SVCVITS = SynthesizerTrn(
|
102 |
+
self.hps.data.filter_length // 2 + 1,
|
103 |
+
self.hps.train.segment_size // self.hps.data.hop_length,
|
104 |
+
**self.hps.model)
|
105 |
+
_ = utils.load_checkpoint(f"checkpoints/{path}/model.pth", self.SVCVITS, None)
|
106 |
+
_ = self.SVCVITS.eval().to(self.device)
|
107 |
+
self.speakers = self.hps.spk
|
108 |
+
|
109 |
+
def get_units(self, source, sr):
|
110 |
+
source = source.unsqueeze(0).to(self.device)
|
111 |
+
with torch.inference_mode():
|
112 |
+
units = self.hubert_soft.units(source)
|
113 |
+
return units
|
114 |
+
|
115 |
+
|
116 |
+
def get_unit_pitch(self, in_path, tran):
|
117 |
+
source, sr = torchaudio.load(in_path)
|
118 |
+
source = torchaudio.functional.resample(source, sr, 16000)
|
119 |
+
if len(source.shape) == 2 and source.shape[1] >= 2:
|
120 |
+
source = torch.mean(source, dim=0).unsqueeze(0)
|
121 |
+
soft = self.get_units(source, sr).squeeze(0).cpu().numpy()
|
122 |
+
f0_coarse, f0 = get_f0(source.cpu().numpy()[0], soft.shape[0]*2, tran)
|
123 |
+
return soft, f0
|
124 |
+
|
125 |
+
def infer(self, speaker_id, tran, raw_path):
|
126 |
+
speaker_id = self.speakers[speaker_id]
|
127 |
+
sid = torch.LongTensor([int(speaker_id)]).to(self.device).unsqueeze(0)
|
128 |
+
soft, pitch = self.get_unit_pitch(raw_path, tran)
|
129 |
+
f0 = torch.FloatTensor(clean_pitch(pitch)).unsqueeze(0).to(self.device)
|
130 |
+
stn_tst = torch.FloatTensor(soft)
|
131 |
+
with torch.no_grad():
|
132 |
+
x_tst = stn_tst.unsqueeze(0).to(self.device)
|
133 |
+
x_tst = torch.repeat_interleave(x_tst, repeats=2, dim=1).transpose(1, 2)
|
134 |
+
audio = self.SVCVITS.infer(x_tst, f0=f0, g=sid)[0,0].data.float()
|
135 |
+
return audio, audio.shape[-1]
|
136 |
+
|
137 |
+
def inference(self,srcaudio,chara,tran,slice_db):
|
138 |
+
sampling_rate, audio = srcaudio
|
139 |
+
audio = (audio / np.iinfo(audio.dtype).max).astype(np.float32)
|
140 |
+
if len(audio.shape) > 1:
|
141 |
+
audio = librosa.to_mono(audio.transpose(1, 0))
|
142 |
+
if sampling_rate != 16000:
|
143 |
+
audio = librosa.resample(audio, orig_sr=sampling_rate, target_sr=16000)
|
144 |
+
soundfile.write("tmpwav.wav", audio, 16000, format="wav")
|
145 |
+
chunks = slicer.cut("tmpwav.wav", db_thresh=slice_db)
|
146 |
+
audio_data, audio_sr = slicer.chunks2audio("tmpwav.wav", chunks)
|
147 |
+
audio = []
|
148 |
+
for (slice_tag, data) in audio_data:
|
149 |
+
length = int(np.ceil(len(data) / audio_sr * self.hps.data.sampling_rate))
|
150 |
+
raw_path = io.BytesIO()
|
151 |
+
soundfile.write(raw_path, data, audio_sr, format="wav")
|
152 |
+
raw_path.seek(0)
|
153 |
+
if slice_tag:
|
154 |
+
_audio = np.zeros(length)
|
155 |
+
else:
|
156 |
+
out_audio, out_sr = self.infer(chara, tran, raw_path)
|
157 |
+
_audio = out_audio.cpu().numpy()
|
158 |
+
audio.extend(list(_audio))
|
159 |
+
audio = (np.array(audio) * 32768.0).astype('int16')
|
160 |
+
return (self.hps.data.sampling_rate,audio)
|
inference/slicer.py
ADDED
@@ -0,0 +1,142 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import librosa
|
2 |
+
import torch
|
3 |
+
import torchaudio
|
4 |
+
|
5 |
+
|
6 |
+
class Slicer:
|
7 |
+
def __init__(self,
|
8 |
+
sr: int,
|
9 |
+
threshold: float = -40.,
|
10 |
+
min_length: int = 5000,
|
11 |
+
min_interval: int = 300,
|
12 |
+
hop_size: int = 20,
|
13 |
+
max_sil_kept: int = 5000):
|
14 |
+
if not min_length >= min_interval >= hop_size:
|
15 |
+
raise ValueError('The following condition must be satisfied: min_length >= min_interval >= hop_size')
|
16 |
+
if not max_sil_kept >= hop_size:
|
17 |
+
raise ValueError('The following condition must be satisfied: max_sil_kept >= hop_size')
|
18 |
+
min_interval = sr * min_interval / 1000
|
19 |
+
self.threshold = 10 ** (threshold / 20.)
|
20 |
+
self.hop_size = round(sr * hop_size / 1000)
|
21 |
+
self.win_size = min(round(min_interval), 4 * self.hop_size)
|
22 |
+
self.min_length = round(sr * min_length / 1000 / self.hop_size)
|
23 |
+
self.min_interval = round(min_interval / self.hop_size)
|
24 |
+
self.max_sil_kept = round(sr * max_sil_kept / 1000 / self.hop_size)
|
25 |
+
|
26 |
+
def _apply_slice(self, waveform, begin, end):
|
27 |
+
if len(waveform.shape) > 1:
|
28 |
+
return waveform[:, begin * self.hop_size: min(waveform.shape[1], end * self.hop_size)]
|
29 |
+
else:
|
30 |
+
return waveform[begin * self.hop_size: min(waveform.shape[0], end * self.hop_size)]
|
31 |
+
|
32 |
+
# @timeit
|
33 |
+
def slice(self, waveform):
|
34 |
+
if len(waveform.shape) > 1:
|
35 |
+
samples = librosa.to_mono(waveform)
|
36 |
+
else:
|
37 |
+
samples = waveform
|
38 |
+
if samples.shape[0] <= self.min_length:
|
39 |
+
return {"0": {"slice": False, "split_time": f"0,{len(waveform)}"}}
|
40 |
+
rms_list = librosa.feature.rms(y=samples, frame_length=self.win_size, hop_length=self.hop_size).squeeze(0)
|
41 |
+
sil_tags = []
|
42 |
+
silence_start = None
|
43 |
+
clip_start = 0
|
44 |
+
for i, rms in enumerate(rms_list):
|
45 |
+
# Keep looping while frame is silent.
|
46 |
+
if rms < self.threshold:
|
47 |
+
# Record start of silent frames.
|
48 |
+
if silence_start is None:
|
49 |
+
silence_start = i
|
50 |
+
continue
|
51 |
+
# Keep looping while frame is not silent and silence start has not been recorded.
|
52 |
+
if silence_start is None:
|
53 |
+
continue
|
54 |
+
# Clear recorded silence start if interval is not enough or clip is too short
|
55 |
+
is_leading_silence = silence_start == 0 and i > self.max_sil_kept
|
56 |
+
need_slice_middle = i - silence_start >= self.min_interval and i - clip_start >= self.min_length
|
57 |
+
if not is_leading_silence and not need_slice_middle:
|
58 |
+
silence_start = None
|
59 |
+
continue
|
60 |
+
# Need slicing. Record the range of silent frames to be removed.
|
61 |
+
if i - silence_start <= self.max_sil_kept:
|
62 |
+
pos = rms_list[silence_start: i + 1].argmin() + silence_start
|
63 |
+
if silence_start == 0:
|
64 |
+
sil_tags.append((0, pos))
|
65 |
+
else:
|
66 |
+
sil_tags.append((pos, pos))
|
67 |
+
clip_start = pos
|
68 |
+
elif i - silence_start <= self.max_sil_kept * 2:
|
69 |
+
pos = rms_list[i - self.max_sil_kept: silence_start + self.max_sil_kept + 1].argmin()
|
70 |
+
pos += i - self.max_sil_kept
|
71 |
+
pos_l = rms_list[silence_start: silence_start + self.max_sil_kept + 1].argmin() + silence_start
|
72 |
+
pos_r = rms_list[i - self.max_sil_kept: i + 1].argmin() + i - self.max_sil_kept
|
73 |
+
if silence_start == 0:
|
74 |
+
sil_tags.append((0, pos_r))
|
75 |
+
clip_start = pos_r
|
76 |
+
else:
|
77 |
+
sil_tags.append((min(pos_l, pos), max(pos_r, pos)))
|
78 |
+
clip_start = max(pos_r, pos)
|
79 |
+
else:
|
80 |
+
pos_l = rms_list[silence_start: silence_start + self.max_sil_kept + 1].argmin() + silence_start
|
81 |
+
pos_r = rms_list[i - self.max_sil_kept: i + 1].argmin() + i - self.max_sil_kept
|
82 |
+
if silence_start == 0:
|
83 |
+
sil_tags.append((0, pos_r))
|
84 |
+
else:
|
85 |
+
sil_tags.append((pos_l, pos_r))
|
86 |
+
clip_start = pos_r
|
87 |
+
silence_start = None
|
88 |
+
# Deal with trailing silence.
|
89 |
+
total_frames = rms_list.shape[0]
|
90 |
+
if silence_start is not None and total_frames - silence_start >= self.min_interval:
|
91 |
+
silence_end = min(total_frames, silence_start + self.max_sil_kept)
|
92 |
+
pos = rms_list[silence_start: silence_end + 1].argmin() + silence_start
|
93 |
+
sil_tags.append((pos, total_frames + 1))
|
94 |
+
# Apply and return slices.
|
95 |
+
if len(sil_tags) == 0:
|
96 |
+
return {"0": {"slice": False, "split_time": f"0,{len(waveform)}"}}
|
97 |
+
else:
|
98 |
+
chunks = []
|
99 |
+
# 第一段静音并非从头开始,补上有声片段
|
100 |
+
if sil_tags[0][0]:
|
101 |
+
chunks.append(
|
102 |
+
{"slice": False, "split_time": f"0,{min(waveform.shape[0], sil_tags[0][0] * self.hop_size)}"})
|
103 |
+
for i in range(0, len(sil_tags)):
|
104 |
+
# 标识有声片段(跳过第一段)
|
105 |
+
if i:
|
106 |
+
chunks.append({"slice": False,
|
107 |
+
"split_time": f"{sil_tags[i - 1][1] * self.hop_size},{min(waveform.shape[0], sil_tags[i][0] * self.hop_size)}"})
|
108 |
+
# 标识所有静音片段
|
109 |
+
chunks.append({"slice": True,
|
110 |
+
"split_time": f"{sil_tags[i][0] * self.hop_size},{min(waveform.shape[0], sil_tags[i][1] * self.hop_size)}"})
|
111 |
+
# 最后一段静音并非结尾,补上结尾片段
|
112 |
+
if sil_tags[-1][1] * self.hop_size < len(waveform):
|
113 |
+
chunks.append({"slice": False, "split_time": f"{sil_tags[-1][1] * self.hop_size},{len(waveform)}"})
|
114 |
+
chunk_dict = {}
|
115 |
+
for i in range(len(chunks)):
|
116 |
+
chunk_dict[str(i)] = chunks[i]
|
117 |
+
return chunk_dict
|
118 |
+
|
119 |
+
|
120 |
+
def cut(audio_path, db_thresh=-30, min_len=5000):
|
121 |
+
audio, sr = librosa.load(audio_path, sr=None)
|
122 |
+
slicer = Slicer(
|
123 |
+
sr=sr,
|
124 |
+
threshold=db_thresh,
|
125 |
+
min_length=min_len
|
126 |
+
)
|
127 |
+
chunks = slicer.slice(audio)
|
128 |
+
return chunks
|
129 |
+
|
130 |
+
|
131 |
+
def chunks2audio(audio_path, chunks):
|
132 |
+
chunks = dict(chunks)
|
133 |
+
audio, sr = torchaudio.load(audio_path)
|
134 |
+
if len(audio.shape) == 2 and audio.shape[1] >= 2:
|
135 |
+
audio = torch.mean(audio, dim=0).unsqueeze(0)
|
136 |
+
audio = audio.cpu().numpy()[0]
|
137 |
+
result = []
|
138 |
+
for k, v in chunks.items():
|
139 |
+
tag = v["split_time"].split(",")
|
140 |
+
if tag[0] != tag[1]:
|
141 |
+
result.append((v["slice"], audio[int(tag[0]):int(tag[1])]))
|
142 |
+
return result, sr
|
inference_main.py
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import io
|
2 |
+
import logging
|
3 |
+
import time
|
4 |
+
from pathlib import Path
|
5 |
+
|
6 |
+
import librosa
|
7 |
+
import matplotlib.pyplot as plt
|
8 |
+
import numpy as np
|
9 |
+
import soundfile
|
10 |
+
|
11 |
+
from inference import infer_tool
|
12 |
+
from inference import slicer
|
13 |
+
from inference.infer_tool import Svc
|
14 |
+
|
15 |
+
logging.getLogger('numba').setLevel(logging.WARNING)
|
16 |
+
chunks_dict = infer_tool.read_temp("inference/chunks_temp.json")
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
def main():
|
21 |
+
import argparse
|
22 |
+
|
23 |
+
parser = argparse.ArgumentParser(description='sovits4 inference')
|
24 |
+
|
25 |
+
# 一定要设置的部分
|
26 |
+
parser.add_argument('-m', '--model_path', type=str, default="logs/44k/G_210000.pth", help='模型路径')
|
27 |
+
parser.add_argument('-c', '--config_path', type=str, default="configs/config.json", help='配置文件路径')
|
28 |
+
parser.add_argument('-n', '--clean_names', type=str, nargs='+', default=[""], help='wav文件路径')
|
29 |
+
parser.add_argument('-t', '--trans', type=int, nargs='+', default=[0], help='音高调整,支持正负(半音)')
|
30 |
+
parser.add_argument('-s', '--spk_list', type=str, nargs='+', default=['suijiSUI'], help='合成目标说话人名称')
|
31 |
+
|
32 |
+
# 可选项部分
|
33 |
+
parser.add_argument('-a', '--auto_predict_f0', action='store_true', default=False, help='语音转换自动预测音高,转换歌声时不要打开这个会严重跑调')
|
34 |
+
parser.add_argument('-cm', '--cluster_model_path', type=str, default="logs/44k/kmeans_10000.pt", help='聚类模型路径,如果没有训练聚类则随便填')
|
35 |
+
parser.add_argument('-cr', '--cluster_infer_ratio', type=float, default=0, help='聚类方案占比,范围0-1,若没有训练聚类模型则填0即可,如要使用建议设为0.5')
|
36 |
+
|
37 |
+
# 不用动的部分
|
38 |
+
parser.add_argument('-sd', '--slice_db', type=int, default=-40, help='默认-40,嘈杂的音频可以-30,干声保留呼吸可以-50')
|
39 |
+
parser.add_argument('-d', '--device', type=str, default=None, help='推理设备,None则为自动选择cpu和gpu')
|
40 |
+
parser.add_argument('-ns', '--noice_scale', type=float, default=0.4, help='噪音级别,会影响咬字和音质,较为玄学')
|
41 |
+
parser.add_argument('-p', '--pad_seconds', type=float, default=0.5, help='推理音频pad秒数,由于未知原因开头结尾会有异响,pad一小段静音段后就不会出现')
|
42 |
+
parser.add_argument('-wf', '--wav_format', type=str, default='flac', help='音频输出格式,默认flac')
|
43 |
+
|
44 |
+
args = parser.parse_args()
|
45 |
+
|
46 |
+
svc_model = Svc(args.model_path, args.config_path, args.device, args.cluster_model_path)
|
47 |
+
infer_tool.mkdir(["raw", "results"])
|
48 |
+
clean_names = args.clean_names
|
49 |
+
trans = args.trans
|
50 |
+
spk_list = args.spk_list
|
51 |
+
slice_db = args.slice_db
|
52 |
+
wav_format = args.wav_format
|
53 |
+
auto_predict_f0 = args.auto_predict_f0
|
54 |
+
cluster_infer_ratio = args.cluster_infer_ratio
|
55 |
+
noice_scale = args.noice_scale
|
56 |
+
pad_seconds = args.pad_seconds
|
57 |
+
|
58 |
+
infer_tool.fill_a_to_b(trans, clean_names)
|
59 |
+
for clean_name, tran in zip(clean_names, trans):
|
60 |
+
raw_audio_path = f"{clean_name}"
|
61 |
+
if "." not in raw_audio_path:
|
62 |
+
raw_audio_path += ".wav"
|
63 |
+
infer_tool.format_wav(raw_audio_path)
|
64 |
+
wav_path = Path(raw_audio_path).with_suffix('.wav')
|
65 |
+
chunks = slicer.cut(wav_path, db_thresh=slice_db)
|
66 |
+
audio_data, audio_sr = slicer.chunks2audio(wav_path, chunks)
|
67 |
+
|
68 |
+
for spk in spk_list:
|
69 |
+
audio = []
|
70 |
+
for (slice_tag, data) in audio_data:
|
71 |
+
print(f'#=====segment start, {round(len(data) / audio_sr, 3)}s======')
|
72 |
+
# padd
|
73 |
+
pad_len = int(audio_sr * pad_seconds)
|
74 |
+
data = np.concatenate([np.zeros([pad_len]), data, np.zeros([pad_len])])
|
75 |
+
length = int(np.ceil(len(data) / audio_sr * svc_model.target_sample))
|
76 |
+
raw_path = io.BytesIO()
|
77 |
+
soundfile.write(raw_path, data, audio_sr, format="wav")
|
78 |
+
raw_path.seek(0)
|
79 |
+
if slice_tag:
|
80 |
+
print('jump empty segment')
|
81 |
+
_audio = np.zeros(length)
|
82 |
+
else:
|
83 |
+
out_audio, out_sr = svc_model.infer(spk, tran, raw_path,
|
84 |
+
cluster_infer_ratio=cluster_infer_ratio,
|
85 |
+
auto_predict_f0=auto_predict_f0,
|
86 |
+
noice_scale=noice_scale
|
87 |
+
)
|
88 |
+
_audio = out_audio.cpu().numpy()
|
89 |
+
|
90 |
+
pad_len = int(svc_model.target_sample * pad_seconds)
|
91 |
+
_audio = _audio[pad_len:-pad_len]
|
92 |
+
audio.extend(list(_audio))
|
93 |
+
key = "auto" if auto_predict_f0 else f"{tran}key"
|
94 |
+
cluster_name = "" if cluster_infer_ratio == 0 else f"_{cluster_infer_ratio}"
|
95 |
+
res_path = f'{clean_name}_{key}_{spk}{cluster_name}.{wav_format}'
|
96 |
+
soundfile.write(res_path, audio, svc_model.target_sample, format=wav_format)
|
97 |
+
|
98 |
+
if __name__ == '__main__':
|
99 |
+
main()
|
logs/44k/G_210000.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:281eb0d313183c1e62ce1239c072169af0bf0fbbbc20e9ee7b8a5dc660f25a92
|
3 |
+
size 542789405
|
logs/44k/kmeans_10000.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3a9773c94c79411d0e907b3cf2acd36304c64c2d4b769949dc247d31de67d942
|
3 |
+
size 15417903
|
logs/44k/put_pretrained_model_here
ADDED
File without changes
|
models.py
ADDED
@@ -0,0 +1,420 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import copy
|
2 |
+
import math
|
3 |
+
import torch
|
4 |
+
from torch import nn
|
5 |
+
from torch.nn import functional as F
|
6 |
+
|
7 |
+
import modules.attentions as attentions
|
8 |
+
import modules.commons as commons
|
9 |
+
import modules.modules as modules
|
10 |
+
|
11 |
+
from torch.nn import Conv1d, ConvTranspose1d, AvgPool1d, Conv2d
|
12 |
+
from torch.nn.utils import weight_norm, remove_weight_norm, spectral_norm
|
13 |
+
|
14 |
+
import utils
|
15 |
+
from modules.commons import init_weights, get_padding
|
16 |
+
from vdecoder.hifigan.models import Generator
|
17 |
+
from utils import f0_to_coarse
|
18 |
+
|
19 |
+
class ResidualCouplingBlock(nn.Module):
|
20 |
+
def __init__(self,
|
21 |
+
channels,
|
22 |
+
hidden_channels,
|
23 |
+
kernel_size,
|
24 |
+
dilation_rate,
|
25 |
+
n_layers,
|
26 |
+
n_flows=4,
|
27 |
+
gin_channels=0):
|
28 |
+
super().__init__()
|
29 |
+
self.channels = channels
|
30 |
+
self.hidden_channels = hidden_channels
|
31 |
+
self.kernel_size = kernel_size
|
32 |
+
self.dilation_rate = dilation_rate
|
33 |
+
self.n_layers = n_layers
|
34 |
+
self.n_flows = n_flows
|
35 |
+
self.gin_channels = gin_channels
|
36 |
+
|
37 |
+
self.flows = nn.ModuleList()
|
38 |
+
for i in range(n_flows):
|
39 |
+
self.flows.append(modules.ResidualCouplingLayer(channels, hidden_channels, kernel_size, dilation_rate, n_layers, gin_channels=gin_channels, mean_only=True))
|
40 |
+
self.flows.append(modules.Flip())
|
41 |
+
|
42 |
+
def forward(self, x, x_mask, g=None, reverse=False):
|
43 |
+
if not reverse:
|
44 |
+
for flow in self.flows:
|
45 |
+
x, _ = flow(x, x_mask, g=g, reverse=reverse)
|
46 |
+
else:
|
47 |
+
for flow in reversed(self.flows):
|
48 |
+
x = flow(x, x_mask, g=g, reverse=reverse)
|
49 |
+
return x
|
50 |
+
|
51 |
+
|
52 |
+
class Encoder(nn.Module):
|
53 |
+
def __init__(self,
|
54 |
+
in_channels,
|
55 |
+
out_channels,
|
56 |
+
hidden_channels,
|
57 |
+
kernel_size,
|
58 |
+
dilation_rate,
|
59 |
+
n_layers,
|
60 |
+
gin_channels=0):
|
61 |
+
super().__init__()
|
62 |
+
self.in_channels = in_channels
|
63 |
+
self.out_channels = out_channels
|
64 |
+
self.hidden_channels = hidden_channels
|
65 |
+
self.kernel_size = kernel_size
|
66 |
+
self.dilation_rate = dilation_rate
|
67 |
+
self.n_layers = n_layers
|
68 |
+
self.gin_channels = gin_channels
|
69 |
+
|
70 |
+
self.pre = nn.Conv1d(in_channels, hidden_channels, 1)
|
71 |
+
self.enc = modules.WN(hidden_channels, kernel_size, dilation_rate, n_layers, gin_channels=gin_channels)
|
72 |
+
self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1)
|
73 |
+
|
74 |
+
def forward(self, x, x_lengths, g=None):
|
75 |
+
# print(x.shape,x_lengths.shape)
|
76 |
+
x_mask = torch.unsqueeze(commons.sequence_mask(x_lengths, x.size(2)), 1).to(x.dtype)
|
77 |
+
x = self.pre(x) * x_mask
|
78 |
+
x = self.enc(x, x_mask, g=g)
|
79 |
+
stats = self.proj(x) * x_mask
|
80 |
+
m, logs = torch.split(stats, self.out_channels, dim=1)
|
81 |
+
z = (m + torch.randn_like(m) * torch.exp(logs)) * x_mask
|
82 |
+
return z, m, logs, x_mask
|
83 |
+
|
84 |
+
|
85 |
+
class TextEncoder(nn.Module):
|
86 |
+
def __init__(self,
|
87 |
+
out_channels,
|
88 |
+
hidden_channels,
|
89 |
+
kernel_size,
|
90 |
+
n_layers,
|
91 |
+
gin_channels=0,
|
92 |
+
filter_channels=None,
|
93 |
+
n_heads=None,
|
94 |
+
p_dropout=None):
|
95 |
+
super().__init__()
|
96 |
+
self.out_channels = out_channels
|
97 |
+
self.hidden_channels = hidden_channels
|
98 |
+
self.kernel_size = kernel_size
|
99 |
+
self.n_layers = n_layers
|
100 |
+
self.gin_channels = gin_channels
|
101 |
+
self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1)
|
102 |
+
self.f0_emb = nn.Embedding(256, hidden_channels)
|
103 |
+
|
104 |
+
self.enc_ = attentions.Encoder(
|
105 |
+
hidden_channels,
|
106 |
+
filter_channels,
|
107 |
+
n_heads,
|
108 |
+
n_layers,
|
109 |
+
kernel_size,
|
110 |
+
p_dropout)
|
111 |
+
|
112 |
+
def forward(self, x, x_mask, f0=None, noice_scale=1):
|
113 |
+
x = x + self.f0_emb(f0).transpose(1,2)
|
114 |
+
x = self.enc_(x * x_mask, x_mask)
|
115 |
+
stats = self.proj(x) * x_mask
|
116 |
+
m, logs = torch.split(stats, self.out_channels, dim=1)
|
117 |
+
z = (m + torch.randn_like(m) * torch.exp(logs) * noice_scale) * x_mask
|
118 |
+
|
119 |
+
return z, m, logs, x_mask
|
120 |
+
|
121 |
+
|
122 |
+
|
123 |
+
class DiscriminatorP(torch.nn.Module):
|
124 |
+
def __init__(self, period, kernel_size=5, stride=3, use_spectral_norm=False):
|
125 |
+
super(DiscriminatorP, self).__init__()
|
126 |
+
self.period = period
|
127 |
+
self.use_spectral_norm = use_spectral_norm
|
128 |
+
norm_f = weight_norm if use_spectral_norm == False else spectral_norm
|
129 |
+
self.convs = nn.ModuleList([
|
130 |
+
norm_f(Conv2d(1, 32, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))),
|
131 |
+
norm_f(Conv2d(32, 128, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))),
|
132 |
+
norm_f(Conv2d(128, 512, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))),
|
133 |
+
norm_f(Conv2d(512, 1024, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))),
|
134 |
+
norm_f(Conv2d(1024, 1024, (kernel_size, 1), 1, padding=(get_padding(kernel_size, 1), 0))),
|
135 |
+
])
|
136 |
+
self.conv_post = norm_f(Conv2d(1024, 1, (3, 1), 1, padding=(1, 0)))
|
137 |
+
|
138 |
+
def forward(self, x):
|
139 |
+
fmap = []
|
140 |
+
|
141 |
+
# 1d to 2d
|
142 |
+
b, c, t = x.shape
|
143 |
+
if t % self.period != 0: # pad first
|
144 |
+
n_pad = self.period - (t % self.period)
|
145 |
+
x = F.pad(x, (0, n_pad), "reflect")
|
146 |
+
t = t + n_pad
|
147 |
+
x = x.view(b, c, t // self.period, self.period)
|
148 |
+
|
149 |
+
for l in self.convs:
|
150 |
+
x = l(x)
|
151 |
+
x = F.leaky_relu(x, modules.LRELU_SLOPE)
|
152 |
+
fmap.append(x)
|
153 |
+
x = self.conv_post(x)
|
154 |
+
fmap.append(x)
|
155 |
+
x = torch.flatten(x, 1, -1)
|
156 |
+
|
157 |
+
return x, fmap
|
158 |
+
|
159 |
+
|
160 |
+
class DiscriminatorS(torch.nn.Module):
|
161 |
+
def __init__(self, use_spectral_norm=False):
|
162 |
+
super(DiscriminatorS, self).__init__()
|
163 |
+
norm_f = weight_norm if use_spectral_norm == False else spectral_norm
|
164 |
+
self.convs = nn.ModuleList([
|
165 |
+
norm_f(Conv1d(1, 16, 15, 1, padding=7)),
|
166 |
+
norm_f(Conv1d(16, 64, 41, 4, groups=4, padding=20)),
|
167 |
+
norm_f(Conv1d(64, 256, 41, 4, groups=16, padding=20)),
|
168 |
+
norm_f(Conv1d(256, 1024, 41, 4, groups=64, padding=20)),
|
169 |
+
norm_f(Conv1d(1024, 1024, 41, 4, groups=256, padding=20)),
|
170 |
+
norm_f(Conv1d(1024, 1024, 5, 1, padding=2)),
|
171 |
+
])
|
172 |
+
self.conv_post = norm_f(Conv1d(1024, 1, 3, 1, padding=1))
|
173 |
+
|
174 |
+
def forward(self, x):
|
175 |
+
fmap = []
|
176 |
+
|
177 |
+
for l in self.convs:
|
178 |
+
x = l(x)
|
179 |
+
x = F.leaky_relu(x, modules.LRELU_SLOPE)
|
180 |
+
fmap.append(x)
|
181 |
+
x = self.conv_post(x)
|
182 |
+
fmap.append(x)
|
183 |
+
x = torch.flatten(x, 1, -1)
|
184 |
+
|
185 |
+
return x, fmap
|
186 |
+
|
187 |
+
|
188 |
+
class MultiPeriodDiscriminator(torch.nn.Module):
|
189 |
+
def __init__(self, use_spectral_norm=False):
|
190 |
+
super(MultiPeriodDiscriminator, self).__init__()
|
191 |
+
periods = [2,3,5,7,11]
|
192 |
+
|
193 |
+
discs = [DiscriminatorS(use_spectral_norm=use_spectral_norm)]
|
194 |
+
discs = discs + [DiscriminatorP(i, use_spectral_norm=use_spectral_norm) for i in periods]
|
195 |
+
self.discriminators = nn.ModuleList(discs)
|
196 |
+
|
197 |
+
def forward(self, y, y_hat):
|
198 |
+
y_d_rs = []
|
199 |
+
y_d_gs = []
|
200 |
+
fmap_rs = []
|
201 |
+
fmap_gs = []
|
202 |
+
for i, d in enumerate(self.discriminators):
|
203 |
+
y_d_r, fmap_r = d(y)
|
204 |
+
y_d_g, fmap_g = d(y_hat)
|
205 |
+
y_d_rs.append(y_d_r)
|
206 |
+
y_d_gs.append(y_d_g)
|
207 |
+
fmap_rs.append(fmap_r)
|
208 |
+
fmap_gs.append(fmap_g)
|
209 |
+
|
210 |
+
return y_d_rs, y_d_gs, fmap_rs, fmap_gs
|
211 |
+
|
212 |
+
|
213 |
+
class SpeakerEncoder(torch.nn.Module):
|
214 |
+
def __init__(self, mel_n_channels=80, model_num_layers=3, model_hidden_size=256, model_embedding_size=256):
|
215 |
+
super(SpeakerEncoder, self).__init__()
|
216 |
+
self.lstm = nn.LSTM(mel_n_channels, model_hidden_size, model_num_layers, batch_first=True)
|
217 |
+
self.linear = nn.Linear(model_hidden_size, model_embedding_size)
|
218 |
+
self.relu = nn.ReLU()
|
219 |
+
|
220 |
+
def forward(self, mels):
|
221 |
+
self.lstm.flatten_parameters()
|
222 |
+
_, (hidden, _) = self.lstm(mels)
|
223 |
+
embeds_raw = self.relu(self.linear(hidden[-1]))
|
224 |
+
return embeds_raw / torch.norm(embeds_raw, dim=1, keepdim=True)
|
225 |
+
|
226 |
+
def compute_partial_slices(self, total_frames, partial_frames, partial_hop):
|
227 |
+
mel_slices = []
|
228 |
+
for i in range(0, total_frames-partial_frames, partial_hop):
|
229 |
+
mel_range = torch.arange(i, i+partial_frames)
|
230 |
+
mel_slices.append(mel_range)
|
231 |
+
|
232 |
+
return mel_slices
|
233 |
+
|
234 |
+
def embed_utterance(self, mel, partial_frames=128, partial_hop=64):
|
235 |
+
mel_len = mel.size(1)
|
236 |
+
last_mel = mel[:,-partial_frames:]
|
237 |
+
|
238 |
+
if mel_len > partial_frames:
|
239 |
+
mel_slices = self.compute_partial_slices(mel_len, partial_frames, partial_hop)
|
240 |
+
mels = list(mel[:,s] for s in mel_slices)
|
241 |
+
mels.append(last_mel)
|
242 |
+
mels = torch.stack(tuple(mels), 0).squeeze(1)
|
243 |
+
|
244 |
+
with torch.no_grad():
|
245 |
+
partial_embeds = self(mels)
|
246 |
+
embed = torch.mean(partial_embeds, axis=0).unsqueeze(0)
|
247 |
+
#embed = embed / torch.linalg.norm(embed, 2)
|
248 |
+
else:
|
249 |
+
with torch.no_grad():
|
250 |
+
embed = self(last_mel)
|
251 |
+
|
252 |
+
return embed
|
253 |
+
|
254 |
+
class F0Decoder(nn.Module):
|
255 |
+
def __init__(self,
|
256 |
+
out_channels,
|
257 |
+
hidden_channels,
|
258 |
+
filter_channels,
|
259 |
+
n_heads,
|
260 |
+
n_layers,
|
261 |
+
kernel_size,
|
262 |
+
p_dropout,
|
263 |
+
spk_channels=0):
|
264 |
+
super().__init__()
|
265 |
+
self.out_channels = out_channels
|
266 |
+
self.hidden_channels = hidden_channels
|
267 |
+
self.filter_channels = filter_channels
|
268 |
+
self.n_heads = n_heads
|
269 |
+
self.n_layers = n_layers
|
270 |
+
self.kernel_size = kernel_size
|
271 |
+
self.p_dropout = p_dropout
|
272 |
+
self.spk_channels = spk_channels
|
273 |
+
|
274 |
+
self.prenet = nn.Conv1d(hidden_channels, hidden_channels, 3, padding=1)
|
275 |
+
self.decoder = attentions.FFT(
|
276 |
+
hidden_channels,
|
277 |
+
filter_channels,
|
278 |
+
n_heads,
|
279 |
+
n_layers,
|
280 |
+
kernel_size,
|
281 |
+
p_dropout)
|
282 |
+
self.proj = nn.Conv1d(hidden_channels, out_channels, 1)
|
283 |
+
self.f0_prenet = nn.Conv1d(1, hidden_channels , 3, padding=1)
|
284 |
+
self.cond = nn.Conv1d(spk_channels, hidden_channels, 1)
|
285 |
+
|
286 |
+
def forward(self, x, norm_f0, x_mask, spk_emb=None):
|
287 |
+
x = torch.detach(x)
|
288 |
+
if (spk_emb is not None):
|
289 |
+
x = x + self.cond(spk_emb)
|
290 |
+
x += self.f0_prenet(norm_f0)
|
291 |
+
x = self.prenet(x) * x_mask
|
292 |
+
x = self.decoder(x * x_mask, x_mask)
|
293 |
+
x = self.proj(x) * x_mask
|
294 |
+
return x
|
295 |
+
|
296 |
+
|
297 |
+
class SynthesizerTrn(nn.Module):
|
298 |
+
"""
|
299 |
+
Synthesizer for Training
|
300 |
+
"""
|
301 |
+
|
302 |
+
def __init__(self,
|
303 |
+
spec_channels,
|
304 |
+
segment_size,
|
305 |
+
inter_channels,
|
306 |
+
hidden_channels,
|
307 |
+
filter_channels,
|
308 |
+
n_heads,
|
309 |
+
n_layers,
|
310 |
+
kernel_size,
|
311 |
+
p_dropout,
|
312 |
+
resblock,
|
313 |
+
resblock_kernel_sizes,
|
314 |
+
resblock_dilation_sizes,
|
315 |
+
upsample_rates,
|
316 |
+
upsample_initial_channel,
|
317 |
+
upsample_kernel_sizes,
|
318 |
+
gin_channels,
|
319 |
+
ssl_dim,
|
320 |
+
n_speakers,
|
321 |
+
sampling_rate=44100,
|
322 |
+
**kwargs):
|
323 |
+
|
324 |
+
super().__init__()
|
325 |
+
self.spec_channels = spec_channels
|
326 |
+
self.inter_channels = inter_channels
|
327 |
+
self.hidden_channels = hidden_channels
|
328 |
+
self.filter_channels = filter_channels
|
329 |
+
self.n_heads = n_heads
|
330 |
+
self.n_layers = n_layers
|
331 |
+
self.kernel_size = kernel_size
|
332 |
+
self.p_dropout = p_dropout
|
333 |
+
self.resblock = resblock
|
334 |
+
self.resblock_kernel_sizes = resblock_kernel_sizes
|
335 |
+
self.resblock_dilation_sizes = resblock_dilation_sizes
|
336 |
+
self.upsample_rates = upsample_rates
|
337 |
+
self.upsample_initial_channel = upsample_initial_channel
|
338 |
+
self.upsample_kernel_sizes = upsample_kernel_sizes
|
339 |
+
self.segment_size = segment_size
|
340 |
+
self.gin_channels = gin_channels
|
341 |
+
self.ssl_dim = ssl_dim
|
342 |
+
self.emb_g = nn.Embedding(n_speakers, gin_channels)
|
343 |
+
|
344 |
+
self.pre = nn.Conv1d(ssl_dim, hidden_channels, kernel_size=5, padding=2)
|
345 |
+
|
346 |
+
self.enc_p = TextEncoder(
|
347 |
+
inter_channels,
|
348 |
+
hidden_channels,
|
349 |
+
filter_channels=filter_channels,
|
350 |
+
n_heads=n_heads,
|
351 |
+
n_layers=n_layers,
|
352 |
+
kernel_size=kernel_size,
|
353 |
+
p_dropout=p_dropout
|
354 |
+
)
|
355 |
+
hps = {
|
356 |
+
"sampling_rate": sampling_rate,
|
357 |
+
"inter_channels": inter_channels,
|
358 |
+
"resblock": resblock,
|
359 |
+
"resblock_kernel_sizes": resblock_kernel_sizes,
|
360 |
+
"resblock_dilation_sizes": resblock_dilation_sizes,
|
361 |
+
"upsample_rates": upsample_rates,
|
362 |
+
"upsample_initial_channel": upsample_initial_channel,
|
363 |
+
"upsample_kernel_sizes": upsample_kernel_sizes,
|
364 |
+
"gin_channels": gin_channels,
|
365 |
+
}
|
366 |
+
self.dec = Generator(h=hps)
|
367 |
+
self.enc_q = Encoder(spec_channels, inter_channels, hidden_channels, 5, 1, 16, gin_channels=gin_channels)
|
368 |
+
self.flow = ResidualCouplingBlock(inter_channels, hidden_channels, 5, 1, 4, gin_channels=gin_channels)
|
369 |
+
self.f0_decoder = F0Decoder(
|
370 |
+
1,
|
371 |
+
hidden_channels,
|
372 |
+
filter_channels,
|
373 |
+
n_heads,
|
374 |
+
n_layers,
|
375 |
+
kernel_size,
|
376 |
+
p_dropout,
|
377 |
+
spk_channels=gin_channels
|
378 |
+
)
|
379 |
+
self.emb_uv = nn.Embedding(2, hidden_channels)
|
380 |
+
|
381 |
+
def forward(self, c, f0, uv, spec, g=None, c_lengths=None, spec_lengths=None):
|
382 |
+
g = self.emb_g(g).transpose(1,2)
|
383 |
+
# ssl prenet
|
384 |
+
x_mask = torch.unsqueeze(commons.sequence_mask(c_lengths, c.size(2)), 1).to(c.dtype)
|
385 |
+
x = self.pre(c) * x_mask + self.emb_uv(uv.long()).transpose(1,2)
|
386 |
+
|
387 |
+
# f0 predict
|
388 |
+
lf0 = 2595. * torch.log10(1. + f0.unsqueeze(1) / 700.) / 500
|
389 |
+
norm_lf0 = utils.normalize_f0(lf0, x_mask, uv)
|
390 |
+
pred_lf0 = self.f0_decoder(x, norm_lf0, x_mask, spk_emb=g)
|
391 |
+
|
392 |
+
# encoder
|
393 |
+
z_ptemp, m_p, logs_p, _ = self.enc_p(x, x_mask, f0=f0_to_coarse(f0))
|
394 |
+
z, m_q, logs_q, spec_mask = self.enc_q(spec, spec_lengths, g=g)
|
395 |
+
|
396 |
+
# flow
|
397 |
+
z_p = self.flow(z, spec_mask, g=g)
|
398 |
+
z_slice, pitch_slice, ids_slice = commons.rand_slice_segments_with_pitch(z, f0, spec_lengths, self.segment_size)
|
399 |
+
|
400 |
+
# nsf decoder
|
401 |
+
o = self.dec(z_slice, g=g, f0=pitch_slice)
|
402 |
+
|
403 |
+
return o, ids_slice, spec_mask, (z, z_p, m_p, logs_p, m_q, logs_q), pred_lf0, norm_lf0, lf0
|
404 |
+
|
405 |
+
def infer(self, c, f0, uv, g=None, noice_scale=0.35, predict_f0=False):
|
406 |
+
c_lengths = (torch.ones(c.size(0)) * c.size(-1)).to(c.device)
|
407 |
+
g = self.emb_g(g).transpose(1,2)
|
408 |
+
x_mask = torch.unsqueeze(commons.sequence_mask(c_lengths, c.size(2)), 1).to(c.dtype)
|
409 |
+
x = self.pre(c) * x_mask + self.emb_uv(uv.long()).transpose(1,2)
|
410 |
+
|
411 |
+
if predict_f0:
|
412 |
+
lf0 = 2595. * torch.log10(1. + f0.unsqueeze(1) / 700.) / 500
|
413 |
+
norm_lf0 = utils.normalize_f0(lf0, x_mask, uv, random_scale=False)
|
414 |
+
pred_lf0 = self.f0_decoder(x, norm_lf0, x_mask, spk_emb=g)
|
415 |
+
f0 = (700 * (torch.pow(10, pred_lf0 * 500 / 2595) - 1)).squeeze(1)
|
416 |
+
|
417 |
+
z_p, m_p, logs_p, c_mask = self.enc_p(x, x_mask, f0=f0_to_coarse(f0), noice_scale=noice_scale)
|
418 |
+
z = self.flow(z_p, c_mask, g=g, reverse=True)
|
419 |
+
o = self.dec(z * c_mask, g=g, f0=f0)
|
420 |
+
return o
|
modules/__init__.py
ADDED
File without changes
|
modules/attentions.py
ADDED
@@ -0,0 +1,349 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import copy
|
2 |
+
import math
|
3 |
+
import numpy as np
|
4 |
+
import torch
|
5 |
+
from torch import nn
|
6 |
+
from torch.nn import functional as F
|
7 |
+
|
8 |
+
import modules.commons as commons
|
9 |
+
import modules.modules as modules
|
10 |
+
from modules.modules import LayerNorm
|
11 |
+
|
12 |
+
|
13 |
+
class FFT(nn.Module):
|
14 |
+
def __init__(self, hidden_channels, filter_channels, n_heads, n_layers=1, kernel_size=1, p_dropout=0.,
|
15 |
+
proximal_bias=False, proximal_init=True, **kwargs):
|
16 |
+
super().__init__()
|
17 |
+
self.hidden_channels = hidden_channels
|
18 |
+
self.filter_channels = filter_channels
|
19 |
+
self.n_heads = n_heads
|
20 |
+
self.n_layers = n_layers
|
21 |
+
self.kernel_size = kernel_size
|
22 |
+
self.p_dropout = p_dropout
|
23 |
+
self.proximal_bias = proximal_bias
|
24 |
+
self.proximal_init = proximal_init
|
25 |
+
|
26 |
+
self.drop = nn.Dropout(p_dropout)
|
27 |
+
self.self_attn_layers = nn.ModuleList()
|
28 |
+
self.norm_layers_0 = nn.ModuleList()
|
29 |
+
self.ffn_layers = nn.ModuleList()
|
30 |
+
self.norm_layers_1 = nn.ModuleList()
|
31 |
+
for i in range(self.n_layers):
|
32 |
+
self.self_attn_layers.append(
|
33 |
+
MultiHeadAttention(hidden_channels, hidden_channels, n_heads, p_dropout=p_dropout, proximal_bias=proximal_bias,
|
34 |
+
proximal_init=proximal_init))
|
35 |
+
self.norm_layers_0.append(LayerNorm(hidden_channels))
|
36 |
+
self.ffn_layers.append(
|
37 |
+
FFN(hidden_channels, hidden_channels, filter_channels, kernel_size, p_dropout=p_dropout, causal=True))
|
38 |
+
self.norm_layers_1.append(LayerNorm(hidden_channels))
|
39 |
+
|
40 |
+
def forward(self, x, x_mask):
|
41 |
+
"""
|
42 |
+
x: decoder input
|
43 |
+
h: encoder output
|
44 |
+
"""
|
45 |
+
self_attn_mask = commons.subsequent_mask(x_mask.size(2)).to(device=x.device, dtype=x.dtype)
|
46 |
+
x = x * x_mask
|
47 |
+
for i in range(self.n_layers):
|
48 |
+
y = self.self_attn_layers[i](x, x, self_attn_mask)
|
49 |
+
y = self.drop(y)
|
50 |
+
x = self.norm_layers_0[i](x + y)
|
51 |
+
|
52 |
+
y = self.ffn_layers[i](x, x_mask)
|
53 |
+
y = self.drop(y)
|
54 |
+
x = self.norm_layers_1[i](x + y)
|
55 |
+
x = x * x_mask
|
56 |
+
return x
|
57 |
+
|
58 |
+
|
59 |
+
class Encoder(nn.Module):
|
60 |
+
def __init__(self, hidden_channels, filter_channels, n_heads, n_layers, kernel_size=1, p_dropout=0., window_size=4, **kwargs):
|
61 |
+
super().__init__()
|
62 |
+
self.hidden_channels = hidden_channels
|
63 |
+
self.filter_channels = filter_channels
|
64 |
+
self.n_heads = n_heads
|
65 |
+
self.n_layers = n_layers
|
66 |
+
self.kernel_size = kernel_size
|
67 |
+
self.p_dropout = p_dropout
|
68 |
+
self.window_size = window_size
|
69 |
+
|
70 |
+
self.drop = nn.Dropout(p_dropout)
|
71 |
+
self.attn_layers = nn.ModuleList()
|
72 |
+
self.norm_layers_1 = nn.ModuleList()
|
73 |
+
self.ffn_layers = nn.ModuleList()
|
74 |
+
self.norm_layers_2 = nn.ModuleList()
|
75 |
+
for i in range(self.n_layers):
|
76 |
+
self.attn_layers.append(MultiHeadAttention(hidden_channels, hidden_channels, n_heads, p_dropout=p_dropout, window_size=window_size))
|
77 |
+
self.norm_layers_1.append(LayerNorm(hidden_channels))
|
78 |
+
self.ffn_layers.append(FFN(hidden_channels, hidden_channels, filter_channels, kernel_size, p_dropout=p_dropout))
|
79 |
+
self.norm_layers_2.append(LayerNorm(hidden_channels))
|
80 |
+
|
81 |
+
def forward(self, x, x_mask):
|
82 |
+
attn_mask = x_mask.unsqueeze(2) * x_mask.unsqueeze(-1)
|
83 |
+
x = x * x_mask
|
84 |
+
for i in range(self.n_layers):
|
85 |
+
y = self.attn_layers[i](x, x, attn_mask)
|
86 |
+
y = self.drop(y)
|
87 |
+
x = self.norm_layers_1[i](x + y)
|
88 |
+
|
89 |
+
y = self.ffn_layers[i](x, x_mask)
|
90 |
+
y = self.drop(y)
|
91 |
+
x = self.norm_layers_2[i](x + y)
|
92 |
+
x = x * x_mask
|
93 |
+
return x
|
94 |
+
|
95 |
+
|
96 |
+
class Decoder(nn.Module):
|
97 |
+
def __init__(self, hidden_channels, filter_channels, n_heads, n_layers, kernel_size=1, p_dropout=0., proximal_bias=False, proximal_init=True, **kwargs):
|
98 |
+
super().__init__()
|
99 |
+
self.hidden_channels = hidden_channels
|
100 |
+
self.filter_channels = filter_channels
|
101 |
+
self.n_heads = n_heads
|
102 |
+
self.n_layers = n_layers
|
103 |
+
self.kernel_size = kernel_size
|
104 |
+
self.p_dropout = p_dropout
|
105 |
+
self.proximal_bias = proximal_bias
|
106 |
+
self.proximal_init = proximal_init
|
107 |
+
|
108 |
+
self.drop = nn.Dropout(p_dropout)
|
109 |
+
self.self_attn_layers = nn.ModuleList()
|
110 |
+
self.norm_layers_0 = nn.ModuleList()
|
111 |
+
self.encdec_attn_layers = nn.ModuleList()
|
112 |
+
self.norm_layers_1 = nn.ModuleList()
|
113 |
+
self.ffn_layers = nn.ModuleList()
|
114 |
+
self.norm_layers_2 = nn.ModuleList()
|
115 |
+
for i in range(self.n_layers):
|
116 |
+
self.self_attn_layers.append(MultiHeadAttention(hidden_channels, hidden_channels, n_heads, p_dropout=p_dropout, proximal_bias=proximal_bias, proximal_init=proximal_init))
|
117 |
+
self.norm_layers_0.append(LayerNorm(hidden_channels))
|
118 |
+
self.encdec_attn_layers.append(MultiHeadAttention(hidden_channels, hidden_channels, n_heads, p_dropout=p_dropout))
|
119 |
+
self.norm_layers_1.append(LayerNorm(hidden_channels))
|
120 |
+
self.ffn_layers.append(FFN(hidden_channels, hidden_channels, filter_channels, kernel_size, p_dropout=p_dropout, causal=True))
|
121 |
+
self.norm_layers_2.append(LayerNorm(hidden_channels))
|
122 |
+
|
123 |
+
def forward(self, x, x_mask, h, h_mask):
|
124 |
+
"""
|
125 |
+
x: decoder input
|
126 |
+
h: encoder output
|
127 |
+
"""
|
128 |
+
self_attn_mask = commons.subsequent_mask(x_mask.size(2)).to(device=x.device, dtype=x.dtype)
|
129 |
+
encdec_attn_mask = h_mask.unsqueeze(2) * x_mask.unsqueeze(-1)
|
130 |
+
x = x * x_mask
|
131 |
+
for i in range(self.n_layers):
|
132 |
+
y = self.self_attn_layers[i](x, x, self_attn_mask)
|
133 |
+
y = self.drop(y)
|
134 |
+
x = self.norm_layers_0[i](x + y)
|
135 |
+
|
136 |
+
y = self.encdec_attn_layers[i](x, h, encdec_attn_mask)
|
137 |
+
y = self.drop(y)
|
138 |
+
x = self.norm_layers_1[i](x + y)
|
139 |
+
|
140 |
+
y = self.ffn_layers[i](x, x_mask)
|
141 |
+
y = self.drop(y)
|
142 |
+
x = self.norm_layers_2[i](x + y)
|
143 |
+
x = x * x_mask
|
144 |
+
return x
|
145 |
+
|
146 |
+
|
147 |
+
class MultiHeadAttention(nn.Module):
|
148 |
+
def __init__(self, channels, out_channels, n_heads, p_dropout=0., window_size=None, heads_share=True, block_length=None, proximal_bias=False, proximal_init=False):
|
149 |
+
super().__init__()
|
150 |
+
assert channels % n_heads == 0
|
151 |
+
|
152 |
+
self.channels = channels
|
153 |
+
self.out_channels = out_channels
|
154 |
+
self.n_heads = n_heads
|
155 |
+
self.p_dropout = p_dropout
|
156 |
+
self.window_size = window_size
|
157 |
+
self.heads_share = heads_share
|
158 |
+
self.block_length = block_length
|
159 |
+
self.proximal_bias = proximal_bias
|
160 |
+
self.proximal_init = proximal_init
|
161 |
+
self.attn = None
|
162 |
+
|
163 |
+
self.k_channels = channels // n_heads
|
164 |
+
self.conv_q = nn.Conv1d(channels, channels, 1)
|
165 |
+
self.conv_k = nn.Conv1d(channels, channels, 1)
|
166 |
+
self.conv_v = nn.Conv1d(channels, channels, 1)
|
167 |
+
self.conv_o = nn.Conv1d(channels, out_channels, 1)
|
168 |
+
self.drop = nn.Dropout(p_dropout)
|
169 |
+
|
170 |
+
if window_size is not None:
|
171 |
+
n_heads_rel = 1 if heads_share else n_heads
|
172 |
+
rel_stddev = self.k_channels**-0.5
|
173 |
+
self.emb_rel_k = nn.Parameter(torch.randn(n_heads_rel, window_size * 2 + 1, self.k_channels) * rel_stddev)
|
174 |
+
self.emb_rel_v = nn.Parameter(torch.randn(n_heads_rel, window_size * 2 + 1, self.k_channels) * rel_stddev)
|
175 |
+
|
176 |
+
nn.init.xavier_uniform_(self.conv_q.weight)
|
177 |
+
nn.init.xavier_uniform_(self.conv_k.weight)
|
178 |
+
nn.init.xavier_uniform_(self.conv_v.weight)
|
179 |
+
if proximal_init:
|
180 |
+
with torch.no_grad():
|
181 |
+
self.conv_k.weight.copy_(self.conv_q.weight)
|
182 |
+
self.conv_k.bias.copy_(self.conv_q.bias)
|
183 |
+
|
184 |
+
def forward(self, x, c, attn_mask=None):
|
185 |
+
q = self.conv_q(x)
|
186 |
+
k = self.conv_k(c)
|
187 |
+
v = self.conv_v(c)
|
188 |
+
|
189 |
+
x, self.attn = self.attention(q, k, v, mask=attn_mask)
|
190 |
+
|
191 |
+
x = self.conv_o(x)
|
192 |
+
return x
|
193 |
+
|
194 |
+
def attention(self, query, key, value, mask=None):
|
195 |
+
# reshape [b, d, t] -> [b, n_h, t, d_k]
|
196 |
+
b, d, t_s, t_t = (*key.size(), query.size(2))
|
197 |
+
query = query.view(b, self.n_heads, self.k_channels, t_t).transpose(2, 3)
|
198 |
+
key = key.view(b, self.n_heads, self.k_channels, t_s).transpose(2, 3)
|
199 |
+
value = value.view(b, self.n_heads, self.k_channels, t_s).transpose(2, 3)
|
200 |
+
|
201 |
+
scores = torch.matmul(query / math.sqrt(self.k_channels), key.transpose(-2, -1))
|
202 |
+
if self.window_size is not None:
|
203 |
+
assert t_s == t_t, "Relative attention is only available for self-attention."
|
204 |
+
key_relative_embeddings = self._get_relative_embeddings(self.emb_rel_k, t_s)
|
205 |
+
rel_logits = self._matmul_with_relative_keys(query /math.sqrt(self.k_channels), key_relative_embeddings)
|
206 |
+
scores_local = self._relative_position_to_absolute_position(rel_logits)
|
207 |
+
scores = scores + scores_local
|
208 |
+
if self.proximal_bias:
|
209 |
+
assert t_s == t_t, "Proximal bias is only available for self-attention."
|
210 |
+
scores = scores + self._attention_bias_proximal(t_s).to(device=scores.device, dtype=scores.dtype)
|
211 |
+
if mask is not None:
|
212 |
+
scores = scores.masked_fill(mask == 0, -1e4)
|
213 |
+
if self.block_length is not None:
|
214 |
+
assert t_s == t_t, "Local attention is only available for self-attention."
|
215 |
+
block_mask = torch.ones_like(scores).triu(-self.block_length).tril(self.block_length)
|
216 |
+
scores = scores.masked_fill(block_mask == 0, -1e4)
|
217 |
+
p_attn = F.softmax(scores, dim=-1) # [b, n_h, t_t, t_s]
|
218 |
+
p_attn = self.drop(p_attn)
|
219 |
+
output = torch.matmul(p_attn, value)
|
220 |
+
if self.window_size is not None:
|
221 |
+
relative_weights = self._absolute_position_to_relative_position(p_attn)
|
222 |
+
value_relative_embeddings = self._get_relative_embeddings(self.emb_rel_v, t_s)
|
223 |
+
output = output + self._matmul_with_relative_values(relative_weights, value_relative_embeddings)
|
224 |
+
output = output.transpose(2, 3).contiguous().view(b, d, t_t) # [b, n_h, t_t, d_k] -> [b, d, t_t]
|
225 |
+
return output, p_attn
|
226 |
+
|
227 |
+
def _matmul_with_relative_values(self, x, y):
|
228 |
+
"""
|
229 |
+
x: [b, h, l, m]
|
230 |
+
y: [h or 1, m, d]
|
231 |
+
ret: [b, h, l, d]
|
232 |
+
"""
|
233 |
+
ret = torch.matmul(x, y.unsqueeze(0))
|
234 |
+
return ret
|
235 |
+
|
236 |
+
def _matmul_with_relative_keys(self, x, y):
|
237 |
+
"""
|
238 |
+
x: [b, h, l, d]
|
239 |
+
y: [h or 1, m, d]
|
240 |
+
ret: [b, h, l, m]
|
241 |
+
"""
|
242 |
+
ret = torch.matmul(x, y.unsqueeze(0).transpose(-2, -1))
|
243 |
+
return ret
|
244 |
+
|
245 |
+
def _get_relative_embeddings(self, relative_embeddings, length):
|
246 |
+
max_relative_position = 2 * self.window_size + 1
|
247 |
+
# Pad first before slice to avoid using cond ops.
|
248 |
+
pad_length = max(length - (self.window_size + 1), 0)
|
249 |
+
slice_start_position = max((self.window_size + 1) - length, 0)
|
250 |
+
slice_end_position = slice_start_position + 2 * length - 1
|
251 |
+
if pad_length > 0:
|
252 |
+
padded_relative_embeddings = F.pad(
|
253 |
+
relative_embeddings,
|
254 |
+
commons.convert_pad_shape([[0, 0], [pad_length, pad_length], [0, 0]]))
|
255 |
+
else:
|
256 |
+
padded_relative_embeddings = relative_embeddings
|
257 |
+
used_relative_embeddings = padded_relative_embeddings[:,slice_start_position:slice_end_position]
|
258 |
+
return used_relative_embeddings
|
259 |
+
|
260 |
+
def _relative_position_to_absolute_position(self, x):
|
261 |
+
"""
|
262 |
+
x: [b, h, l, 2*l-1]
|
263 |
+
ret: [b, h, l, l]
|
264 |
+
"""
|
265 |
+
batch, heads, length, _ = x.size()
|
266 |
+
# Concat columns of pad to shift from relative to absolute indexing.
|
267 |
+
x = F.pad(x, commons.convert_pad_shape([[0,0],[0,0],[0,0],[0,1]]))
|
268 |
+
|
269 |
+
# Concat extra elements so to add up to shape (len+1, 2*len-1).
|
270 |
+
x_flat = x.view([batch, heads, length * 2 * length])
|
271 |
+
x_flat = F.pad(x_flat, commons.convert_pad_shape([[0,0],[0,0],[0,length-1]]))
|
272 |
+
|
273 |
+
# Reshape and slice out the padded elements.
|
274 |
+
x_final = x_flat.view([batch, heads, length+1, 2*length-1])[:, :, :length, length-1:]
|
275 |
+
return x_final
|
276 |
+
|
277 |
+
def _absolute_position_to_relative_position(self, x):
|
278 |
+
"""
|
279 |
+
x: [b, h, l, l]
|
280 |
+
ret: [b, h, l, 2*l-1]
|
281 |
+
"""
|
282 |
+
batch, heads, length, _ = x.size()
|
283 |
+
# padd along column
|
284 |
+
x = F.pad(x, commons.convert_pad_shape([[0, 0], [0, 0], [0, 0], [0, length-1]]))
|
285 |
+
x_flat = x.view([batch, heads, length**2 + length*(length -1)])
|
286 |
+
# add 0's in the beginning that will skew the elements after reshape
|
287 |
+
x_flat = F.pad(x_flat, commons.convert_pad_shape([[0, 0], [0, 0], [length, 0]]))
|
288 |
+
x_final = x_flat.view([batch, heads, length, 2*length])[:,:,:,1:]
|
289 |
+
return x_final
|
290 |
+
|
291 |
+
def _attention_bias_proximal(self, length):
|
292 |
+
"""Bias for self-attention to encourage attention to close positions.
|
293 |
+
Args:
|
294 |
+
length: an integer scalar.
|
295 |
+
Returns:
|
296 |
+
a Tensor with shape [1, 1, length, length]
|
297 |
+
"""
|
298 |
+
r = torch.arange(length, dtype=torch.float32)
|
299 |
+
diff = torch.unsqueeze(r, 0) - torch.unsqueeze(r, 1)
|
300 |
+
return torch.unsqueeze(torch.unsqueeze(-torch.log1p(torch.abs(diff)), 0), 0)
|
301 |
+
|
302 |
+
|
303 |
+
class FFN(nn.Module):
|
304 |
+
def __init__(self, in_channels, out_channels, filter_channels, kernel_size, p_dropout=0., activation=None, causal=False):
|
305 |
+
super().__init__()
|
306 |
+
self.in_channels = in_channels
|
307 |
+
self.out_channels = out_channels
|
308 |
+
self.filter_channels = filter_channels
|
309 |
+
self.kernel_size = kernel_size
|
310 |
+
self.p_dropout = p_dropout
|
311 |
+
self.activation = activation
|
312 |
+
self.causal = causal
|
313 |
+
|
314 |
+
if causal:
|
315 |
+
self.padding = self._causal_padding
|
316 |
+
else:
|
317 |
+
self.padding = self._same_padding
|
318 |
+
|
319 |
+
self.conv_1 = nn.Conv1d(in_channels, filter_channels, kernel_size)
|
320 |
+
self.conv_2 = nn.Conv1d(filter_channels, out_channels, kernel_size)
|
321 |
+
self.drop = nn.Dropout(p_dropout)
|
322 |
+
|
323 |
+
def forward(self, x, x_mask):
|
324 |
+
x = self.conv_1(self.padding(x * x_mask))
|
325 |
+
if self.activation == "gelu":
|
326 |
+
x = x * torch.sigmoid(1.702 * x)
|
327 |
+
else:
|
328 |
+
x = torch.relu(x)
|
329 |
+
x = self.drop(x)
|
330 |
+
x = self.conv_2(self.padding(x * x_mask))
|
331 |
+
return x * x_mask
|
332 |
+
|
333 |
+
def _causal_padding(self, x):
|
334 |
+
if self.kernel_size == 1:
|
335 |
+
return x
|
336 |
+
pad_l = self.kernel_size - 1
|
337 |
+
pad_r = 0
|
338 |
+
padding = [[0, 0], [0, 0], [pad_l, pad_r]]
|
339 |
+
x = F.pad(x, commons.convert_pad_shape(padding))
|
340 |
+
return x
|
341 |
+
|
342 |
+
def _same_padding(self, x):
|
343 |
+
if self.kernel_size == 1:
|
344 |
+
return x
|
345 |
+
pad_l = (self.kernel_size - 1) // 2
|
346 |
+
pad_r = self.kernel_size // 2
|
347 |
+
padding = [[0, 0], [0, 0], [pad_l, pad_r]]
|
348 |
+
x = F.pad(x, commons.convert_pad_shape(padding))
|
349 |
+
return x
|
modules/commons.py
ADDED
@@ -0,0 +1,188 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
import numpy as np
|
3 |
+
import torch
|
4 |
+
from torch import nn
|
5 |
+
from torch.nn import functional as F
|
6 |
+
|
7 |
+
def slice_pitch_segments(x, ids_str, segment_size=4):
|
8 |
+
ret = torch.zeros_like(x[:, :segment_size])
|
9 |
+
for i in range(x.size(0)):
|
10 |
+
idx_str = ids_str[i]
|
11 |
+
idx_end = idx_str + segment_size
|
12 |
+
ret[i] = x[i, idx_str:idx_end]
|
13 |
+
return ret
|
14 |
+
|
15 |
+
def rand_slice_segments_with_pitch(x, pitch, x_lengths=None, segment_size=4):
|
16 |
+
b, d, t = x.size()
|
17 |
+
if x_lengths is None:
|
18 |
+
x_lengths = t
|
19 |
+
ids_str_max = x_lengths - segment_size + 1
|
20 |
+
ids_str = (torch.rand([b]).to(device=x.device) * ids_str_max).to(dtype=torch.long)
|
21 |
+
ret = slice_segments(x, ids_str, segment_size)
|
22 |
+
ret_pitch = slice_pitch_segments(pitch, ids_str, segment_size)
|
23 |
+
return ret, ret_pitch, ids_str
|
24 |
+
|
25 |
+
def init_weights(m, mean=0.0, std=0.01):
|
26 |
+
classname = m.__class__.__name__
|
27 |
+
if classname.find("Conv") != -1:
|
28 |
+
m.weight.data.normal_(mean, std)
|
29 |
+
|
30 |
+
|
31 |
+
def get_padding(kernel_size, dilation=1):
|
32 |
+
return int((kernel_size*dilation - dilation)/2)
|
33 |
+
|
34 |
+
|
35 |
+
def convert_pad_shape(pad_shape):
|
36 |
+
l = pad_shape[::-1]
|
37 |
+
pad_shape = [item for sublist in l for item in sublist]
|
38 |
+
return pad_shape
|
39 |
+
|
40 |
+
|
41 |
+
def intersperse(lst, item):
|
42 |
+
result = [item] * (len(lst) * 2 + 1)
|
43 |
+
result[1::2] = lst
|
44 |
+
return result
|
45 |
+
|
46 |
+
|
47 |
+
def kl_divergence(m_p, logs_p, m_q, logs_q):
|
48 |
+
"""KL(P||Q)"""
|
49 |
+
kl = (logs_q - logs_p) - 0.5
|
50 |
+
kl += 0.5 * (torch.exp(2. * logs_p) + ((m_p - m_q)**2)) * torch.exp(-2. * logs_q)
|
51 |
+
return kl
|
52 |
+
|
53 |
+
|
54 |
+
def rand_gumbel(shape):
|
55 |
+
"""Sample from the Gumbel distribution, protect from overflows."""
|
56 |
+
uniform_samples = torch.rand(shape) * 0.99998 + 0.00001
|
57 |
+
return -torch.log(-torch.log(uniform_samples))
|
58 |
+
|
59 |
+
|
60 |
+
def rand_gumbel_like(x):
|
61 |
+
g = rand_gumbel(x.size()).to(dtype=x.dtype, device=x.device)
|
62 |
+
return g
|
63 |
+
|
64 |
+
|
65 |
+
def slice_segments(x, ids_str, segment_size=4):
|
66 |
+
ret = torch.zeros_like(x[:, :, :segment_size])
|
67 |
+
for i in range(x.size(0)):
|
68 |
+
idx_str = ids_str[i]
|
69 |
+
idx_end = idx_str + segment_size
|
70 |
+
ret[i] = x[i, :, idx_str:idx_end]
|
71 |
+
return ret
|
72 |
+
|
73 |
+
|
74 |
+
def rand_slice_segments(x, x_lengths=None, segment_size=4):
|
75 |
+
b, d, t = x.size()
|
76 |
+
if x_lengths is None:
|
77 |
+
x_lengths = t
|
78 |
+
ids_str_max = x_lengths - segment_size + 1
|
79 |
+
ids_str = (torch.rand([b]).to(device=x.device) * ids_str_max).to(dtype=torch.long)
|
80 |
+
ret = slice_segments(x, ids_str, segment_size)
|
81 |
+
return ret, ids_str
|
82 |
+
|
83 |
+
|
84 |
+
def rand_spec_segments(x, x_lengths=None, segment_size=4):
|
85 |
+
b, d, t = x.size()
|
86 |
+
if x_lengths is None:
|
87 |
+
x_lengths = t
|
88 |
+
ids_str_max = x_lengths - segment_size
|
89 |
+
ids_str = (torch.rand([b]).to(device=x.device) * ids_str_max).to(dtype=torch.long)
|
90 |
+
ret = slice_segments(x, ids_str, segment_size)
|
91 |
+
return ret, ids_str
|
92 |
+
|
93 |
+
|
94 |
+
def get_timing_signal_1d(
|
95 |
+
length, channels, min_timescale=1.0, max_timescale=1.0e4):
|
96 |
+
position = torch.arange(length, dtype=torch.float)
|
97 |
+
num_timescales = channels // 2
|
98 |
+
log_timescale_increment = (
|
99 |
+
math.log(float(max_timescale) / float(min_timescale)) /
|
100 |
+
(num_timescales - 1))
|
101 |
+
inv_timescales = min_timescale * torch.exp(
|
102 |
+
torch.arange(num_timescales, dtype=torch.float) * -log_timescale_increment)
|
103 |
+
scaled_time = position.unsqueeze(0) * inv_timescales.unsqueeze(1)
|
104 |
+
signal = torch.cat([torch.sin(scaled_time), torch.cos(scaled_time)], 0)
|
105 |
+
signal = F.pad(signal, [0, 0, 0, channels % 2])
|
106 |
+
signal = signal.view(1, channels, length)
|
107 |
+
return signal
|
108 |
+
|
109 |
+
|
110 |
+
def add_timing_signal_1d(x, min_timescale=1.0, max_timescale=1.0e4):
|
111 |
+
b, channels, length = x.size()
|
112 |
+
signal = get_timing_signal_1d(length, channels, min_timescale, max_timescale)
|
113 |
+
return x + signal.to(dtype=x.dtype, device=x.device)
|
114 |
+
|
115 |
+
|
116 |
+
def cat_timing_signal_1d(x, min_timescale=1.0, max_timescale=1.0e4, axis=1):
|
117 |
+
b, channels, length = x.size()
|
118 |
+
signal = get_timing_signal_1d(length, channels, min_timescale, max_timescale)
|
119 |
+
return torch.cat([x, signal.to(dtype=x.dtype, device=x.device)], axis)
|
120 |
+
|
121 |
+
|
122 |
+
def subsequent_mask(length):
|
123 |
+
mask = torch.tril(torch.ones(length, length)).unsqueeze(0).unsqueeze(0)
|
124 |
+
return mask
|
125 |
+
|
126 |
+
|
127 |
+
@torch.jit.script
|
128 |
+
def fused_add_tanh_sigmoid_multiply(input_a, input_b, n_channels):
|
129 |
+
n_channels_int = n_channels[0]
|
130 |
+
in_act = input_a + input_b
|
131 |
+
t_act = torch.tanh(in_act[:, :n_channels_int, :])
|
132 |
+
s_act = torch.sigmoid(in_act[:, n_channels_int:, :])
|
133 |
+
acts = t_act * s_act
|
134 |
+
return acts
|
135 |
+
|
136 |
+
|
137 |
+
def convert_pad_shape(pad_shape):
|
138 |
+
l = pad_shape[::-1]
|
139 |
+
pad_shape = [item for sublist in l for item in sublist]
|
140 |
+
return pad_shape
|
141 |
+
|
142 |
+
|
143 |
+
def shift_1d(x):
|
144 |
+
x = F.pad(x, convert_pad_shape([[0, 0], [0, 0], [1, 0]]))[:, :, :-1]
|
145 |
+
return x
|
146 |
+
|
147 |
+
|
148 |
+
def sequence_mask(length, max_length=None):
|
149 |
+
if max_length is None:
|
150 |
+
max_length = length.max()
|
151 |
+
x = torch.arange(max_length, dtype=length.dtype, device=length.device)
|
152 |
+
return x.unsqueeze(0) < length.unsqueeze(1)
|
153 |
+
|
154 |
+
|
155 |
+
def generate_path(duration, mask):
|
156 |
+
"""
|
157 |
+
duration: [b, 1, t_x]
|
158 |
+
mask: [b, 1, t_y, t_x]
|
159 |
+
"""
|
160 |
+
device = duration.device
|
161 |
+
|
162 |
+
b, _, t_y, t_x = mask.shape
|
163 |
+
cum_duration = torch.cumsum(duration, -1)
|
164 |
+
|
165 |
+
cum_duration_flat = cum_duration.view(b * t_x)
|
166 |
+
path = sequence_mask(cum_duration_flat, t_y).to(mask.dtype)
|
167 |
+
path = path.view(b, t_x, t_y)
|
168 |
+
path = path - F.pad(path, convert_pad_shape([[0, 0], [1, 0], [0, 0]]))[:, :-1]
|
169 |
+
path = path.unsqueeze(1).transpose(2,3) * mask
|
170 |
+
return path
|
171 |
+
|
172 |
+
|
173 |
+
def clip_grad_value_(parameters, clip_value, norm_type=2):
|
174 |
+
if isinstance(parameters, torch.Tensor):
|
175 |
+
parameters = [parameters]
|
176 |
+
parameters = list(filter(lambda p: p.grad is not None, parameters))
|
177 |
+
norm_type = float(norm_type)
|
178 |
+
if clip_value is not None:
|
179 |
+
clip_value = float(clip_value)
|
180 |
+
|
181 |
+
total_norm = 0
|
182 |
+
for p in parameters:
|
183 |
+
param_norm = p.grad.data.norm(norm_type)
|
184 |
+
total_norm += param_norm.item() ** norm_type
|
185 |
+
if clip_value is not None:
|
186 |
+
p.grad.data.clamp_(min=-clip_value, max=clip_value)
|
187 |
+
total_norm = total_norm ** (1. / norm_type)
|
188 |
+
return total_norm
|
modules/ddsp.py
ADDED
@@ -0,0 +1,190 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
from torch.nn import functional as F
|
4 |
+
import torch.fft as fft
|
5 |
+
import numpy as np
|
6 |
+
import librosa as li
|
7 |
+
import math
|
8 |
+
from scipy.signal import get_window
|
9 |
+
|
10 |
+
|
11 |
+
def safe_log(x):
|
12 |
+
return torch.log(x + 1e-7)
|
13 |
+
|
14 |
+
|
15 |
+
@torch.no_grad()
|
16 |
+
def mean_std_loudness(dataset):
|
17 |
+
mean = 0
|
18 |
+
std = 0
|
19 |
+
n = 0
|
20 |
+
for _, _, l in dataset:
|
21 |
+
n += 1
|
22 |
+
mean += (l.mean().item() - mean) / n
|
23 |
+
std += (l.std().item() - std) / n
|
24 |
+
return mean, std
|
25 |
+
|
26 |
+
|
27 |
+
def multiscale_fft(signal, scales, overlap):
|
28 |
+
stfts = []
|
29 |
+
for s in scales:
|
30 |
+
S = torch.stft(
|
31 |
+
signal,
|
32 |
+
s,
|
33 |
+
int(s * (1 - overlap)),
|
34 |
+
s,
|
35 |
+
torch.hann_window(s).to(signal),
|
36 |
+
True,
|
37 |
+
normalized=True,
|
38 |
+
return_complex=True,
|
39 |
+
).abs()
|
40 |
+
stfts.append(S)
|
41 |
+
return stfts
|
42 |
+
|
43 |
+
|
44 |
+
def resample(x, factor: int):
|
45 |
+
batch, frame, channel = x.shape
|
46 |
+
x = x.permute(0, 2, 1).reshape(batch * channel, 1, frame)
|
47 |
+
|
48 |
+
window = torch.hann_window(
|
49 |
+
factor * 2,
|
50 |
+
dtype=x.dtype,
|
51 |
+
device=x.device,
|
52 |
+
).reshape(1, 1, -1)
|
53 |
+
y = torch.zeros(x.shape[0], x.shape[1], factor * x.shape[2]).to(x)
|
54 |
+
y[..., ::factor] = x
|
55 |
+
y[..., -1:] = x[..., -1:]
|
56 |
+
y = torch.nn.functional.pad(y, [factor, factor])
|
57 |
+
y = torch.nn.functional.conv1d(y, window)[..., :-1]
|
58 |
+
|
59 |
+
y = y.reshape(batch, channel, factor * frame).permute(0, 2, 1)
|
60 |
+
|
61 |
+
return y
|
62 |
+
|
63 |
+
|
64 |
+
def upsample(signal, factor):
|
65 |
+
signal = signal.permute(0, 2, 1)
|
66 |
+
signal = nn.functional.interpolate(signal, size=signal.shape[-1] * factor)
|
67 |
+
return signal.permute(0, 2, 1)
|
68 |
+
|
69 |
+
|
70 |
+
def remove_above_nyquist(amplitudes, pitch, sampling_rate):
|
71 |
+
n_harm = amplitudes.shape[-1]
|
72 |
+
pitches = pitch * torch.arange(1, n_harm + 1).to(pitch)
|
73 |
+
aa = (pitches < sampling_rate / 2).float() + 1e-4
|
74 |
+
return amplitudes * aa
|
75 |
+
|
76 |
+
|
77 |
+
def scale_function(x):
|
78 |
+
return 2 * torch.sigmoid(x) ** (math.log(10)) + 1e-7
|
79 |
+
|
80 |
+
|
81 |
+
def extract_loudness(signal, sampling_rate, block_size, n_fft=2048):
|
82 |
+
S = li.stft(
|
83 |
+
signal,
|
84 |
+
n_fft=n_fft,
|
85 |
+
hop_length=block_size,
|
86 |
+
win_length=n_fft,
|
87 |
+
center=True,
|
88 |
+
)
|
89 |
+
S = np.log(abs(S) + 1e-7)
|
90 |
+
f = li.fft_frequencies(sampling_rate, n_fft)
|
91 |
+
a_weight = li.A_weighting(f)
|
92 |
+
|
93 |
+
S = S + a_weight.reshape(-1, 1)
|
94 |
+
|
95 |
+
S = np.mean(S, 0)[..., :-1]
|
96 |
+
|
97 |
+
return S
|
98 |
+
|
99 |
+
|
100 |
+
def extract_pitch(signal, sampling_rate, block_size):
|
101 |
+
length = signal.shape[-1] // block_size
|
102 |
+
f0 = crepe.predict(
|
103 |
+
signal,
|
104 |
+
sampling_rate,
|
105 |
+
step_size=int(1000 * block_size / sampling_rate),
|
106 |
+
verbose=1,
|
107 |
+
center=True,
|
108 |
+
viterbi=True,
|
109 |
+
)
|
110 |
+
f0 = f0[1].reshape(-1)[:-1]
|
111 |
+
|
112 |
+
if f0.shape[-1] != length:
|
113 |
+
f0 = np.interp(
|
114 |
+
np.linspace(0, 1, length, endpoint=False),
|
115 |
+
np.linspace(0, 1, f0.shape[-1], endpoint=False),
|
116 |
+
f0,
|
117 |
+
)
|
118 |
+
|
119 |
+
return f0
|
120 |
+
|
121 |
+
|
122 |
+
def mlp(in_size, hidden_size, n_layers):
|
123 |
+
channels = [in_size] + (n_layers) * [hidden_size]
|
124 |
+
net = []
|
125 |
+
for i in range(n_layers):
|
126 |
+
net.append(nn.Linear(channels[i], channels[i + 1]))
|
127 |
+
net.append(nn.LayerNorm(channels[i + 1]))
|
128 |
+
net.append(nn.LeakyReLU())
|
129 |
+
return nn.Sequential(*net)
|
130 |
+
|
131 |
+
|
132 |
+
def gru(n_input, hidden_size):
|
133 |
+
return nn.GRU(n_input * hidden_size, hidden_size, batch_first=True)
|
134 |
+
|
135 |
+
|
136 |
+
def harmonic_synth(pitch, amplitudes, sampling_rate):
|
137 |
+
n_harmonic = amplitudes.shape[-1]
|
138 |
+
omega = torch.cumsum(2 * math.pi * pitch / sampling_rate, 1)
|
139 |
+
omegas = omega * torch.arange(1, n_harmonic + 1).to(omega)
|
140 |
+
signal = (torch.sin(omegas) * amplitudes).sum(-1, keepdim=True)
|
141 |
+
return signal
|
142 |
+
|
143 |
+
|
144 |
+
def amp_to_impulse_response(amp, target_size):
|
145 |
+
amp = torch.stack([amp, torch.zeros_like(amp)], -1)
|
146 |
+
amp = torch.view_as_complex(amp)
|
147 |
+
amp = fft.irfft(amp)
|
148 |
+
|
149 |
+
filter_size = amp.shape[-1]
|
150 |
+
|
151 |
+
amp = torch.roll(amp, filter_size // 2, -1)
|
152 |
+
win = torch.hann_window(filter_size, dtype=amp.dtype, device=amp.device)
|
153 |
+
|
154 |
+
amp = amp * win
|
155 |
+
|
156 |
+
amp = nn.functional.pad(amp, (0, int(target_size) - int(filter_size)))
|
157 |
+
amp = torch.roll(amp, -filter_size // 2, -1)
|
158 |
+
|
159 |
+
return amp
|
160 |
+
|
161 |
+
|
162 |
+
def fft_convolve(signal, kernel):
|
163 |
+
signal = nn.functional.pad(signal, (0, signal.shape[-1]))
|
164 |
+
kernel = nn.functional.pad(kernel, (kernel.shape[-1], 0))
|
165 |
+
|
166 |
+
output = fft.irfft(fft.rfft(signal) * fft.rfft(kernel))
|
167 |
+
output = output[..., output.shape[-1] // 2:]
|
168 |
+
|
169 |
+
return output
|
170 |
+
|
171 |
+
|
172 |
+
def init_kernels(win_len, win_inc, fft_len, win_type=None, invers=False):
|
173 |
+
if win_type == 'None' or win_type is None:
|
174 |
+
window = np.ones(win_len)
|
175 |
+
else:
|
176 |
+
window = get_window(win_type, win_len, fftbins=True) # **0.5
|
177 |
+
|
178 |
+
N = fft_len
|
179 |
+
fourier_basis = np.fft.rfft(np.eye(N))[:win_len]
|
180 |
+
real_kernel = np.real(fourier_basis)
|
181 |
+
imag_kernel = np.imag(fourier_basis)
|
182 |
+
kernel = np.concatenate([real_kernel, imag_kernel], 1).T
|
183 |
+
|
184 |
+
if invers:
|
185 |
+
kernel = np.linalg.pinv(kernel).T
|
186 |
+
|
187 |
+
kernel = kernel * window
|
188 |
+
kernel = kernel[:, None, :]
|
189 |
+
return torch.from_numpy(kernel.astype(np.float32)), torch.from_numpy(window[None, :, None].astype(np.float32))
|
190 |
+
|
modules/losses.py
ADDED
@@ -0,0 +1,61 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from torch.nn import functional as F
|
3 |
+
|
4 |
+
import modules.commons as commons
|
5 |
+
|
6 |
+
|
7 |
+
def feature_loss(fmap_r, fmap_g):
|
8 |
+
loss = 0
|
9 |
+
for dr, dg in zip(fmap_r, fmap_g):
|
10 |
+
for rl, gl in zip(dr, dg):
|
11 |
+
rl = rl.float().detach()
|
12 |
+
gl = gl.float()
|
13 |
+
loss += torch.mean(torch.abs(rl - gl))
|
14 |
+
|
15 |
+
return loss * 2
|
16 |
+
|
17 |
+
|
18 |
+
def discriminator_loss(disc_real_outputs, disc_generated_outputs):
|
19 |
+
loss = 0
|
20 |
+
r_losses = []
|
21 |
+
g_losses = []
|
22 |
+
for dr, dg in zip(disc_real_outputs, disc_generated_outputs):
|
23 |
+
dr = dr.float()
|
24 |
+
dg = dg.float()
|
25 |
+
r_loss = torch.mean((1-dr)**2)
|
26 |
+
g_loss = torch.mean(dg**2)
|
27 |
+
loss += (r_loss + g_loss)
|
28 |
+
r_losses.append(r_loss.item())
|
29 |
+
g_losses.append(g_loss.item())
|
30 |
+
|
31 |
+
return loss, r_losses, g_losses
|
32 |
+
|
33 |
+
|
34 |
+
def generator_loss(disc_outputs):
|
35 |
+
loss = 0
|
36 |
+
gen_losses = []
|
37 |
+
for dg in disc_outputs:
|
38 |
+
dg = dg.float()
|
39 |
+
l = torch.mean((1-dg)**2)
|
40 |
+
gen_losses.append(l)
|
41 |
+
loss += l
|
42 |
+
|
43 |
+
return loss, gen_losses
|
44 |
+
|
45 |
+
|
46 |
+
def kl_loss(z_p, logs_q, m_p, logs_p, z_mask):
|
47 |
+
"""
|
48 |
+
z_p, logs_q: [b, h, t_t]
|
49 |
+
m_p, logs_p: [b, h, t_t]
|
50 |
+
"""
|
51 |
+
z_p = z_p.float()
|
52 |
+
logs_q = logs_q.float()
|
53 |
+
m_p = m_p.float()
|
54 |
+
logs_p = logs_p.float()
|
55 |
+
z_mask = z_mask.float()
|
56 |
+
#print(logs_p)
|
57 |
+
kl = logs_p - logs_q - 0.5
|
58 |
+
kl += 0.5 * ((z_p - m_p)**2) * torch.exp(-2. * logs_p)
|
59 |
+
kl = torch.sum(kl * z_mask)
|
60 |
+
l = kl / torch.sum(z_mask)
|
61 |
+
return l
|
modules/mel_processing.py
ADDED
@@ -0,0 +1,112 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
import os
|
3 |
+
import random
|
4 |
+
import torch
|
5 |
+
from torch import nn
|
6 |
+
import torch.nn.functional as F
|
7 |
+
import torch.utils.data
|
8 |
+
import numpy as np
|
9 |
+
import librosa
|
10 |
+
import librosa.util as librosa_util
|
11 |
+
from librosa.util import normalize, pad_center, tiny
|
12 |
+
from scipy.signal import get_window
|
13 |
+
from scipy.io.wavfile import read
|
14 |
+
from librosa.filters import mel as librosa_mel_fn
|
15 |
+
|
16 |
+
MAX_WAV_VALUE = 32768.0
|
17 |
+
|
18 |
+
|
19 |
+
def dynamic_range_compression_torch(x, C=1, clip_val=1e-5):
|
20 |
+
"""
|
21 |
+
PARAMS
|
22 |
+
------
|
23 |
+
C: compression factor
|
24 |
+
"""
|
25 |
+
return torch.log(torch.clamp(x, min=clip_val) * C)
|
26 |
+
|
27 |
+
|
28 |
+
def dynamic_range_decompression_torch(x, C=1):
|
29 |
+
"""
|
30 |
+
PARAMS
|
31 |
+
------
|
32 |
+
C: compression factor used to compress
|
33 |
+
"""
|
34 |
+
return torch.exp(x) / C
|
35 |
+
|
36 |
+
|
37 |
+
def spectral_normalize_torch(magnitudes):
|
38 |
+
output = dynamic_range_compression_torch(magnitudes)
|
39 |
+
return output
|
40 |
+
|
41 |
+
|
42 |
+
def spectral_de_normalize_torch(magnitudes):
|
43 |
+
output = dynamic_range_decompression_torch(magnitudes)
|
44 |
+
return output
|
45 |
+
|
46 |
+
|
47 |
+
mel_basis = {}
|
48 |
+
hann_window = {}
|
49 |
+
|
50 |
+
|
51 |
+
def spectrogram_torch(y, n_fft, sampling_rate, hop_size, win_size, center=False):
|
52 |
+
if torch.min(y) < -1.:
|
53 |
+
print('min value is ', torch.min(y))
|
54 |
+
if torch.max(y) > 1.:
|
55 |
+
print('max value is ', torch.max(y))
|
56 |
+
|
57 |
+
global hann_window
|
58 |
+
dtype_device = str(y.dtype) + '_' + str(y.device)
|
59 |
+
wnsize_dtype_device = str(win_size) + '_' + dtype_device
|
60 |
+
if wnsize_dtype_device not in hann_window:
|
61 |
+
hann_window[wnsize_dtype_device] = torch.hann_window(win_size).to(dtype=y.dtype, device=y.device)
|
62 |
+
|
63 |
+
y = torch.nn.functional.pad(y.unsqueeze(1), (int((n_fft-hop_size)/2), int((n_fft-hop_size)/2)), mode='reflect')
|
64 |
+
y = y.squeeze(1)
|
65 |
+
|
66 |
+
spec = torch.stft(y, n_fft, hop_length=hop_size, win_length=win_size, window=hann_window[wnsize_dtype_device],
|
67 |
+
center=center, pad_mode='reflect', normalized=False, onesided=True, return_complex=False)
|
68 |
+
|
69 |
+
spec = torch.sqrt(spec.pow(2).sum(-1) + 1e-6)
|
70 |
+
return spec
|
71 |
+
|
72 |
+
|
73 |
+
def spec_to_mel_torch(spec, n_fft, num_mels, sampling_rate, fmin, fmax):
|
74 |
+
global mel_basis
|
75 |
+
dtype_device = str(spec.dtype) + '_' + str(spec.device)
|
76 |
+
fmax_dtype_device = str(fmax) + '_' + dtype_device
|
77 |
+
if fmax_dtype_device not in mel_basis:
|
78 |
+
mel = librosa_mel_fn(sr=sampling_rate, n_fft=n_fft, n_mels=num_mels, fmin=fmin, fmax=fmax)
|
79 |
+
mel_basis[fmax_dtype_device] = torch.from_numpy(mel).to(dtype=spec.dtype, device=spec.device)
|
80 |
+
spec = torch.matmul(mel_basis[fmax_dtype_device], spec)
|
81 |
+
spec = spectral_normalize_torch(spec)
|
82 |
+
return spec
|
83 |
+
|
84 |
+
|
85 |
+
def mel_spectrogram_torch(y, n_fft, num_mels, sampling_rate, hop_size, win_size, fmin, fmax, center=False):
|
86 |
+
if torch.min(y) < -1.:
|
87 |
+
print('min value is ', torch.min(y))
|
88 |
+
if torch.max(y) > 1.:
|
89 |
+
print('max value is ', torch.max(y))
|
90 |
+
|
91 |
+
global mel_basis, hann_window
|
92 |
+
dtype_device = str(y.dtype) + '_' + str(y.device)
|
93 |
+
fmax_dtype_device = str(fmax) + '_' + dtype_device
|
94 |
+
wnsize_dtype_device = str(win_size) + '_' + dtype_device
|
95 |
+
if fmax_dtype_device not in mel_basis:
|
96 |
+
mel = librosa_mel_fn(sr=sampling_rate, n_fft=n_fft, n_mels=num_mels, fmin=fmin, fmax=fmax)
|
97 |
+
mel_basis[fmax_dtype_device] = torch.from_numpy(mel).to(dtype=y.dtype, device=y.device)
|
98 |
+
if wnsize_dtype_device not in hann_window:
|
99 |
+
hann_window[wnsize_dtype_device] = torch.hann_window(win_size).to(dtype=y.dtype, device=y.device)
|
100 |
+
|
101 |
+
y = torch.nn.functional.pad(y.unsqueeze(1), (int((n_fft-hop_size)/2), int((n_fft-hop_size)/2)), mode='reflect')
|
102 |
+
y = y.squeeze(1)
|
103 |
+
|
104 |
+
spec = torch.stft(y, n_fft, hop_length=hop_size, win_length=win_size, window=hann_window[wnsize_dtype_device],
|
105 |
+
center=center, pad_mode='reflect', normalized=False, onesided=True, return_complex=False)
|
106 |
+
|
107 |
+
spec = torch.sqrt(spec.pow(2).sum(-1) + 1e-6)
|
108 |
+
|
109 |
+
spec = torch.matmul(mel_basis[fmax_dtype_device], spec)
|
110 |
+
spec = spectral_normalize_torch(spec)
|
111 |
+
|
112 |
+
return spec
|
modules/modules.py
ADDED
@@ -0,0 +1,342 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import copy
|
2 |
+
import math
|
3 |
+
import numpy as np
|
4 |
+
import scipy
|
5 |
+
import torch
|
6 |
+
from torch import nn
|
7 |
+
from torch.nn import functional as F
|
8 |
+
|
9 |
+
from torch.nn import Conv1d, ConvTranspose1d, AvgPool1d, Conv2d
|
10 |
+
from torch.nn.utils import weight_norm, remove_weight_norm
|
11 |
+
|
12 |
+
import modules.commons as commons
|
13 |
+
from modules.commons import init_weights, get_padding
|
14 |
+
|
15 |
+
|
16 |
+
LRELU_SLOPE = 0.1
|
17 |
+
|
18 |
+
|
19 |
+
class LayerNorm(nn.Module):
|
20 |
+
def __init__(self, channels, eps=1e-5):
|
21 |
+
super().__init__()
|
22 |
+
self.channels = channels
|
23 |
+
self.eps = eps
|
24 |
+
|
25 |
+
self.gamma = nn.Parameter(torch.ones(channels))
|
26 |
+
self.beta = nn.Parameter(torch.zeros(channels))
|
27 |
+
|
28 |
+
def forward(self, x):
|
29 |
+
x = x.transpose(1, -1)
|
30 |
+
x = F.layer_norm(x, (self.channels,), self.gamma, self.beta, self.eps)
|
31 |
+
return x.transpose(1, -1)
|
32 |
+
|
33 |
+
|
34 |
+
class ConvReluNorm(nn.Module):
|
35 |
+
def __init__(self, in_channels, hidden_channels, out_channels, kernel_size, n_layers, p_dropout):
|
36 |
+
super().__init__()
|
37 |
+
self.in_channels = in_channels
|
38 |
+
self.hidden_channels = hidden_channels
|
39 |
+
self.out_channels = out_channels
|
40 |
+
self.kernel_size = kernel_size
|
41 |
+
self.n_layers = n_layers
|
42 |
+
self.p_dropout = p_dropout
|
43 |
+
assert n_layers > 1, "Number of layers should be larger than 0."
|
44 |
+
|
45 |
+
self.conv_layers = nn.ModuleList()
|
46 |
+
self.norm_layers = nn.ModuleList()
|
47 |
+
self.conv_layers.append(nn.Conv1d(in_channels, hidden_channels, kernel_size, padding=kernel_size//2))
|
48 |
+
self.norm_layers.append(LayerNorm(hidden_channels))
|
49 |
+
self.relu_drop = nn.Sequential(
|
50 |
+
nn.ReLU(),
|
51 |
+
nn.Dropout(p_dropout))
|
52 |
+
for _ in range(n_layers-1):
|
53 |
+
self.conv_layers.append(nn.Conv1d(hidden_channels, hidden_channels, kernel_size, padding=kernel_size//2))
|
54 |
+
self.norm_layers.append(LayerNorm(hidden_channels))
|
55 |
+
self.proj = nn.Conv1d(hidden_channels, out_channels, 1)
|
56 |
+
self.proj.weight.data.zero_()
|
57 |
+
self.proj.bias.data.zero_()
|
58 |
+
|
59 |
+
def forward(self, x, x_mask):
|
60 |
+
x_org = x
|
61 |
+
for i in range(self.n_layers):
|
62 |
+
x = self.conv_layers[i](x * x_mask)
|
63 |
+
x = self.norm_layers[i](x)
|
64 |
+
x = self.relu_drop(x)
|
65 |
+
x = x_org + self.proj(x)
|
66 |
+
return x * x_mask
|
67 |
+
|
68 |
+
|
69 |
+
class DDSConv(nn.Module):
|
70 |
+
"""
|
71 |
+
Dialted and Depth-Separable Convolution
|
72 |
+
"""
|
73 |
+
def __init__(self, channels, kernel_size, n_layers, p_dropout=0.):
|
74 |
+
super().__init__()
|
75 |
+
self.channels = channels
|
76 |
+
self.kernel_size = kernel_size
|
77 |
+
self.n_layers = n_layers
|
78 |
+
self.p_dropout = p_dropout
|
79 |
+
|
80 |
+
self.drop = nn.Dropout(p_dropout)
|
81 |
+
self.convs_sep = nn.ModuleList()
|
82 |
+
self.convs_1x1 = nn.ModuleList()
|
83 |
+
self.norms_1 = nn.ModuleList()
|
84 |
+
self.norms_2 = nn.ModuleList()
|
85 |
+
for i in range(n_layers):
|
86 |
+
dilation = kernel_size ** i
|
87 |
+
padding = (kernel_size * dilation - dilation) // 2
|
88 |
+
self.convs_sep.append(nn.Conv1d(channels, channels, kernel_size,
|
89 |
+
groups=channels, dilation=dilation, padding=padding
|
90 |
+
))
|
91 |
+
self.convs_1x1.append(nn.Conv1d(channels, channels, 1))
|
92 |
+
self.norms_1.append(LayerNorm(channels))
|
93 |
+
self.norms_2.append(LayerNorm(channels))
|
94 |
+
|
95 |
+
def forward(self, x, x_mask, g=None):
|
96 |
+
if g is not None:
|
97 |
+
x = x + g
|
98 |
+
for i in range(self.n_layers):
|
99 |
+
y = self.convs_sep[i](x * x_mask)
|
100 |
+
y = self.norms_1[i](y)
|
101 |
+
y = F.gelu(y)
|
102 |
+
y = self.convs_1x1[i](y)
|
103 |
+
y = self.norms_2[i](y)
|
104 |
+
y = F.gelu(y)
|
105 |
+
y = self.drop(y)
|
106 |
+
x = x + y
|
107 |
+
return x * x_mask
|
108 |
+
|
109 |
+
|
110 |
+
class WN(torch.nn.Module):
|
111 |
+
def __init__(self, hidden_channels, kernel_size, dilation_rate, n_layers, gin_channels=0, p_dropout=0):
|
112 |
+
super(WN, self).__init__()
|
113 |
+
assert(kernel_size % 2 == 1)
|
114 |
+
self.hidden_channels =hidden_channels
|
115 |
+
self.kernel_size = kernel_size,
|
116 |
+
self.dilation_rate = dilation_rate
|
117 |
+
self.n_layers = n_layers
|
118 |
+
self.gin_channels = gin_channels
|
119 |
+
self.p_dropout = p_dropout
|
120 |
+
|
121 |
+
self.in_layers = torch.nn.ModuleList()
|
122 |
+
self.res_skip_layers = torch.nn.ModuleList()
|
123 |
+
self.drop = nn.Dropout(p_dropout)
|
124 |
+
|
125 |
+
if gin_channels != 0:
|
126 |
+
cond_layer = torch.nn.Conv1d(gin_channels, 2*hidden_channels*n_layers, 1)
|
127 |
+
self.cond_layer = torch.nn.utils.weight_norm(cond_layer, name='weight')
|
128 |
+
|
129 |
+
for i in range(n_layers):
|
130 |
+
dilation = dilation_rate ** i
|
131 |
+
padding = int((kernel_size * dilation - dilation) / 2)
|
132 |
+
in_layer = torch.nn.Conv1d(hidden_channels, 2*hidden_channels, kernel_size,
|
133 |
+
dilation=dilation, padding=padding)
|
134 |
+
in_layer = torch.nn.utils.weight_norm(in_layer, name='weight')
|
135 |
+
self.in_layers.append(in_layer)
|
136 |
+
|
137 |
+
# last one is not necessary
|
138 |
+
if i < n_layers - 1:
|
139 |
+
res_skip_channels = 2 * hidden_channels
|
140 |
+
else:
|
141 |
+
res_skip_channels = hidden_channels
|
142 |
+
|
143 |
+
res_skip_layer = torch.nn.Conv1d(hidden_channels, res_skip_channels, 1)
|
144 |
+
res_skip_layer = torch.nn.utils.weight_norm(res_skip_layer, name='weight')
|
145 |
+
self.res_skip_layers.append(res_skip_layer)
|
146 |
+
|
147 |
+
def forward(self, x, x_mask, g=None, **kwargs):
|
148 |
+
output = torch.zeros_like(x)
|
149 |
+
n_channels_tensor = torch.IntTensor([self.hidden_channels])
|
150 |
+
|
151 |
+
if g is not None:
|
152 |
+
g = self.cond_layer(g)
|
153 |
+
|
154 |
+
for i in range(self.n_layers):
|
155 |
+
x_in = self.in_layers[i](x)
|
156 |
+
if g is not None:
|
157 |
+
cond_offset = i * 2 * self.hidden_channels
|
158 |
+
g_l = g[:,cond_offset:cond_offset+2*self.hidden_channels,:]
|
159 |
+
else:
|
160 |
+
g_l = torch.zeros_like(x_in)
|
161 |
+
|
162 |
+
acts = commons.fused_add_tanh_sigmoid_multiply(
|
163 |
+
x_in,
|
164 |
+
g_l,
|
165 |
+
n_channels_tensor)
|
166 |
+
acts = self.drop(acts)
|
167 |
+
|
168 |
+
res_skip_acts = self.res_skip_layers[i](acts)
|
169 |
+
if i < self.n_layers - 1:
|
170 |
+
res_acts = res_skip_acts[:,:self.hidden_channels,:]
|
171 |
+
x = (x + res_acts) * x_mask
|
172 |
+
output = output + res_skip_acts[:,self.hidden_channels:,:]
|
173 |
+
else:
|
174 |
+
output = output + res_skip_acts
|
175 |
+
return output * x_mask
|
176 |
+
|
177 |
+
def remove_weight_norm(self):
|
178 |
+
if self.gin_channels != 0:
|
179 |
+
torch.nn.utils.remove_weight_norm(self.cond_layer)
|
180 |
+
for l in self.in_layers:
|
181 |
+
torch.nn.utils.remove_weight_norm(l)
|
182 |
+
for l in self.res_skip_layers:
|
183 |
+
torch.nn.utils.remove_weight_norm(l)
|
184 |
+
|
185 |
+
|
186 |
+
class ResBlock1(torch.nn.Module):
|
187 |
+
def __init__(self, channels, kernel_size=3, dilation=(1, 3, 5)):
|
188 |
+
super(ResBlock1, self).__init__()
|
189 |
+
self.convs1 = nn.ModuleList([
|
190 |
+
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[0],
|
191 |
+
padding=get_padding(kernel_size, dilation[0]))),
|
192 |
+
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[1],
|
193 |
+
padding=get_padding(kernel_size, dilation[1]))),
|
194 |
+
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[2],
|
195 |
+
padding=get_padding(kernel_size, dilation[2])))
|
196 |
+
])
|
197 |
+
self.convs1.apply(init_weights)
|
198 |
+
|
199 |
+
self.convs2 = nn.ModuleList([
|
200 |
+
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1,
|
201 |
+
padding=get_padding(kernel_size, 1))),
|
202 |
+
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1,
|
203 |
+
padding=get_padding(kernel_size, 1))),
|
204 |
+
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1,
|
205 |
+
padding=get_padding(kernel_size, 1)))
|
206 |
+
])
|
207 |
+
self.convs2.apply(init_weights)
|
208 |
+
|
209 |
+
def forward(self, x, x_mask=None):
|
210 |
+
for c1, c2 in zip(self.convs1, self.convs2):
|
211 |
+
xt = F.leaky_relu(x, LRELU_SLOPE)
|
212 |
+
if x_mask is not None:
|
213 |
+
xt = xt * x_mask
|
214 |
+
xt = c1(xt)
|
215 |
+
xt = F.leaky_relu(xt, LRELU_SLOPE)
|
216 |
+
if x_mask is not None:
|
217 |
+
xt = xt * x_mask
|
218 |
+
xt = c2(xt)
|
219 |
+
x = xt + x
|
220 |
+
if x_mask is not None:
|
221 |
+
x = x * x_mask
|
222 |
+
return x
|
223 |
+
|
224 |
+
def remove_weight_norm(self):
|
225 |
+
for l in self.convs1:
|
226 |
+
remove_weight_norm(l)
|
227 |
+
for l in self.convs2:
|
228 |
+
remove_weight_norm(l)
|
229 |
+
|
230 |
+
|
231 |
+
class ResBlock2(torch.nn.Module):
|
232 |
+
def __init__(self, channels, kernel_size=3, dilation=(1, 3)):
|
233 |
+
super(ResBlock2, self).__init__()
|
234 |
+
self.convs = nn.ModuleList([
|
235 |
+
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[0],
|
236 |
+
padding=get_padding(kernel_size, dilation[0]))),
|
237 |
+
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[1],
|
238 |
+
padding=get_padding(kernel_size, dilation[1])))
|
239 |
+
])
|
240 |
+
self.convs.apply(init_weights)
|
241 |
+
|
242 |
+
def forward(self, x, x_mask=None):
|
243 |
+
for c in self.convs:
|
244 |
+
xt = F.leaky_relu(x, LRELU_SLOPE)
|
245 |
+
if x_mask is not None:
|
246 |
+
xt = xt * x_mask
|
247 |
+
xt = c(xt)
|
248 |
+
x = xt + x
|
249 |
+
if x_mask is not None:
|
250 |
+
x = x * x_mask
|
251 |
+
return x
|
252 |
+
|
253 |
+
def remove_weight_norm(self):
|
254 |
+
for l in self.convs:
|
255 |
+
remove_weight_norm(l)
|
256 |
+
|
257 |
+
|
258 |
+
class Log(nn.Module):
|
259 |
+
def forward(self, x, x_mask, reverse=False, **kwargs):
|
260 |
+
if not reverse:
|
261 |
+
y = torch.log(torch.clamp_min(x, 1e-5)) * x_mask
|
262 |
+
logdet = torch.sum(-y, [1, 2])
|
263 |
+
return y, logdet
|
264 |
+
else:
|
265 |
+
x = torch.exp(x) * x_mask
|
266 |
+
return x
|
267 |
+
|
268 |
+
|
269 |
+
class Flip(nn.Module):
|
270 |
+
def forward(self, x, *args, reverse=False, **kwargs):
|
271 |
+
x = torch.flip(x, [1])
|
272 |
+
if not reverse:
|
273 |
+
logdet = torch.zeros(x.size(0)).to(dtype=x.dtype, device=x.device)
|
274 |
+
return x, logdet
|
275 |
+
else:
|
276 |
+
return x
|
277 |
+
|
278 |
+
|
279 |
+
class ElementwiseAffine(nn.Module):
|
280 |
+
def __init__(self, channels):
|
281 |
+
super().__init__()
|
282 |
+
self.channels = channels
|
283 |
+
self.m = nn.Parameter(torch.zeros(channels,1))
|
284 |
+
self.logs = nn.Parameter(torch.zeros(channels,1))
|
285 |
+
|
286 |
+
def forward(self, x, x_mask, reverse=False, **kwargs):
|
287 |
+
if not reverse:
|
288 |
+
y = self.m + torch.exp(self.logs) * x
|
289 |
+
y = y * x_mask
|
290 |
+
logdet = torch.sum(self.logs * x_mask, [1,2])
|
291 |
+
return y, logdet
|
292 |
+
else:
|
293 |
+
x = (x - self.m) * torch.exp(-self.logs) * x_mask
|
294 |
+
return x
|
295 |
+
|
296 |
+
|
297 |
+
class ResidualCouplingLayer(nn.Module):
|
298 |
+
def __init__(self,
|
299 |
+
channels,
|
300 |
+
hidden_channels,
|
301 |
+
kernel_size,
|
302 |
+
dilation_rate,
|
303 |
+
n_layers,
|
304 |
+
p_dropout=0,
|
305 |
+
gin_channels=0,
|
306 |
+
mean_only=False):
|
307 |
+
assert channels % 2 == 0, "channels should be divisible by 2"
|
308 |
+
super().__init__()
|
309 |
+
self.channels = channels
|
310 |
+
self.hidden_channels = hidden_channels
|
311 |
+
self.kernel_size = kernel_size
|
312 |
+
self.dilation_rate = dilation_rate
|
313 |
+
self.n_layers = n_layers
|
314 |
+
self.half_channels = channels // 2
|
315 |
+
self.mean_only = mean_only
|
316 |
+
|
317 |
+
self.pre = nn.Conv1d(self.half_channels, hidden_channels, 1)
|
318 |
+
self.enc = WN(hidden_channels, kernel_size, dilation_rate, n_layers, p_dropout=p_dropout, gin_channels=gin_channels)
|
319 |
+
self.post = nn.Conv1d(hidden_channels, self.half_channels * (2 - mean_only), 1)
|
320 |
+
self.post.weight.data.zero_()
|
321 |
+
self.post.bias.data.zero_()
|
322 |
+
|
323 |
+
def forward(self, x, x_mask, g=None, reverse=False):
|
324 |
+
x0, x1 = torch.split(x, [self.half_channels]*2, 1)
|
325 |
+
h = self.pre(x0) * x_mask
|
326 |
+
h = self.enc(h, x_mask, g=g)
|
327 |
+
stats = self.post(h) * x_mask
|
328 |
+
if not self.mean_only:
|
329 |
+
m, logs = torch.split(stats, [self.half_channels]*2, 1)
|
330 |
+
else:
|
331 |
+
m = stats
|
332 |
+
logs = torch.zeros_like(m)
|
333 |
+
|
334 |
+
if not reverse:
|
335 |
+
x1 = m + x1 * torch.exp(logs) * x_mask
|
336 |
+
x = torch.cat([x0, x1], 1)
|
337 |
+
logdet = torch.sum(logs, [1,2])
|
338 |
+
return x, logdet
|
339 |
+
else:
|
340 |
+
x1 = (x1 - m) * torch.exp(-logs) * x_mask
|
341 |
+
x = torch.cat([x0, x1], 1)
|
342 |
+
return x
|
preprocess_flist_config.py
ADDED
@@ -0,0 +1,67 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import argparse
|
3 |
+
import re
|
4 |
+
|
5 |
+
from tqdm import tqdm
|
6 |
+
from random import shuffle
|
7 |
+
import json
|
8 |
+
|
9 |
+
config_template = json.load(open("configs/config.json"))
|
10 |
+
|
11 |
+
pattern = re.compile(r'^[\.a-zA-Z0-9_\/]+$')
|
12 |
+
|
13 |
+
if __name__ == "__main__":
|
14 |
+
parser = argparse.ArgumentParser()
|
15 |
+
parser.add_argument("--train_list", type=str, default="./filelists/train.txt", help="path to train list")
|
16 |
+
parser.add_argument("--val_list", type=str, default="./filelists/val.txt", help="path to val list")
|
17 |
+
parser.add_argument("--test_list", type=str, default="./filelists/test.txt", help="path to test list")
|
18 |
+
parser.add_argument("--source_dir", type=str, default="./dataset/44k", help="path to source dir")
|
19 |
+
args = parser.parse_args()
|
20 |
+
|
21 |
+
train = []
|
22 |
+
val = []
|
23 |
+
test = []
|
24 |
+
idx = 0
|
25 |
+
spk_dict = {}
|
26 |
+
spk_id = 0
|
27 |
+
for speaker in tqdm(os.listdir(args.source_dir)):
|
28 |
+
spk_dict[speaker] = spk_id
|
29 |
+
spk_id += 1
|
30 |
+
wavs = ["/".join([args.source_dir, speaker, i]) for i in os.listdir(os.path.join(args.source_dir, speaker))]
|
31 |
+
for wavpath in wavs:
|
32 |
+
if not pattern.match(wavpath):
|
33 |
+
print(f"warning:文件名{wavpath}中包含非字母数字下划线,可能会导致错误。(也可能不会)")
|
34 |
+
if len(wavs) < 10:
|
35 |
+
print(f"warning:{speaker}数据集数量小于10条,请补充数据")
|
36 |
+
wavs = [i for i in wavs if i.endswith("wav")]
|
37 |
+
shuffle(wavs)
|
38 |
+
train += wavs[2:-2]
|
39 |
+
val += wavs[:2]
|
40 |
+
test += wavs[-2:]
|
41 |
+
|
42 |
+
shuffle(train)
|
43 |
+
shuffle(val)
|
44 |
+
shuffle(test)
|
45 |
+
|
46 |
+
print("Writing", args.train_list)
|
47 |
+
with open(args.train_list, "w") as f:
|
48 |
+
for fname in tqdm(train):
|
49 |
+
wavpath = fname
|
50 |
+
f.write(wavpath + "\n")
|
51 |
+
|
52 |
+
print("Writing", args.val_list)
|
53 |
+
with open(args.val_list, "w") as f:
|
54 |
+
for fname in tqdm(val):
|
55 |
+
wavpath = fname
|
56 |
+
f.write(wavpath + "\n")
|
57 |
+
|
58 |
+
print("Writing", args.test_list)
|
59 |
+
with open(args.test_list, "w") as f:
|
60 |
+
for fname in tqdm(test):
|
61 |
+
wavpath = fname
|
62 |
+
f.write(wavpath + "\n")
|
63 |
+
|
64 |
+
config_template["spk"] = spk_dict
|
65 |
+
print("Writing configs/config.json")
|
66 |
+
with open("configs/config.json", "w") as f:
|
67 |
+
json.dump(config_template, f, indent=2)
|
preprocess_hubert_f0.py
ADDED
@@ -0,0 +1,62 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
import multiprocessing
|
3 |
+
import os
|
4 |
+
import argparse
|
5 |
+
from random import shuffle
|
6 |
+
|
7 |
+
import torch
|
8 |
+
from glob import glob
|
9 |
+
from tqdm import tqdm
|
10 |
+
|
11 |
+
import utils
|
12 |
+
import logging
|
13 |
+
logging.getLogger('numba').setLevel(logging.WARNING)
|
14 |
+
import librosa
|
15 |
+
import numpy as np
|
16 |
+
|
17 |
+
hps = utils.get_hparams_from_file("configs/config.json")
|
18 |
+
sampling_rate = hps.data.sampling_rate
|
19 |
+
hop_length = hps.data.hop_length
|
20 |
+
|
21 |
+
|
22 |
+
def process_one(filename, hmodel):
|
23 |
+
# print(filename)
|
24 |
+
wav, sr = librosa.load(filename, sr=sampling_rate)
|
25 |
+
soft_path = filename + ".soft.pt"
|
26 |
+
if not os.path.exists(soft_path):
|
27 |
+
devive = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
28 |
+
wav16k = librosa.resample(wav, orig_sr=sampling_rate, target_sr=16000)
|
29 |
+
wav16k = torch.from_numpy(wav16k).to(devive)
|
30 |
+
c = utils.get_hubert_content(hmodel, wav_16k_tensor=wav16k)
|
31 |
+
torch.save(c.cpu(), soft_path)
|
32 |
+
f0_path = filename + ".f0.npy"
|
33 |
+
if not os.path.exists(f0_path):
|
34 |
+
f0 = utils.compute_f0_dio(wav, sampling_rate=sampling_rate, hop_length=hop_length)
|
35 |
+
np.save(f0_path, f0)
|
36 |
+
|
37 |
+
|
38 |
+
def process_batch(filenames):
|
39 |
+
print("Loading hubert for content...")
|
40 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
41 |
+
hmodel = utils.get_hubert_model().to(device)
|
42 |
+
print("Loaded hubert.")
|
43 |
+
for filename in tqdm(filenames):
|
44 |
+
process_one(filename, hmodel)
|
45 |
+
|
46 |
+
|
47 |
+
if __name__ == "__main__":
|
48 |
+
parser = argparse.ArgumentParser()
|
49 |
+
parser.add_argument("--in_dir", type=str, default="dataset/44k", help="path to input dir")
|
50 |
+
|
51 |
+
args = parser.parse_args()
|
52 |
+
filenames = glob(f'{args.in_dir}/*/*.wav', recursive=True) # [:10]
|
53 |
+
shuffle(filenames)
|
54 |
+
multiprocessing.set_start_method('spawn')
|
55 |
+
|
56 |
+
num_processes = 1
|
57 |
+
chunk_size = int(math.ceil(len(filenames) / num_processes))
|
58 |
+
chunks = [filenames[i:i + chunk_size] for i in range(0, len(filenames), chunk_size)]
|
59 |
+
print([len(c) for c in chunks])
|
60 |
+
processes = [multiprocessing.Process(target=process_batch, args=(chunk,)) for chunk in chunks]
|
61 |
+
for p in processes:
|
62 |
+
p.start()
|
requirements.txt
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Flask
|
2 |
+
Flask_Cors
|
3 |
+
gradio
|
4 |
+
numpy
|
5 |
+
playsound
|
6 |
+
pydub
|
7 |
+
requests
|
8 |
+
scipy
|
9 |
+
sounddevice
|
10 |
+
SoundFile
|
11 |
+
starlette
|
12 |
+
torch
|
13 |
+
torchaudio
|
14 |
+
tqdm
|
15 |
+
scikit-maad
|
16 |
+
praat-parselmouth
|
17 |
+
onnx
|
18 |
+
onnxsim
|
19 |
+
onnxoptimizer
|
20 |
+
fairseq
|
21 |
+
librosa
|
resample.py
ADDED
@@ -0,0 +1,48 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import argparse
|
3 |
+
import librosa
|
4 |
+
import numpy as np
|
5 |
+
from multiprocessing import Pool, cpu_count
|
6 |
+
from scipy.io import wavfile
|
7 |
+
from tqdm import tqdm
|
8 |
+
|
9 |
+
|
10 |
+
def process(item):
|
11 |
+
spkdir, wav_name, args = item
|
12 |
+
# speaker 's5', 'p280', 'p315' are excluded,
|
13 |
+
speaker = spkdir.replace("\\", "/").split("/")[-1]
|
14 |
+
wav_path = os.path.join(args.in_dir, speaker, wav_name)
|
15 |
+
if os.path.exists(wav_path) and '.wav' in wav_path:
|
16 |
+
os.makedirs(os.path.join(args.out_dir2, speaker), exist_ok=True)
|
17 |
+
wav, sr = librosa.load(wav_path, None)
|
18 |
+
wav, _ = librosa.effects.trim(wav, top_db=20)
|
19 |
+
peak = np.abs(wav).max()
|
20 |
+
if peak > 1.0:
|
21 |
+
wav = 0.98 * wav / peak
|
22 |
+
wav2 = librosa.resample(wav, orig_sr=sr, target_sr=args.sr2)
|
23 |
+
wav2 /= max(wav2.max(), -wav2.min())
|
24 |
+
save_name = wav_name
|
25 |
+
save_path2 = os.path.join(args.out_dir2, speaker, save_name)
|
26 |
+
wavfile.write(
|
27 |
+
save_path2,
|
28 |
+
args.sr2,
|
29 |
+
(wav2 * np.iinfo(np.int16).max).astype(np.int16)
|
30 |
+
)
|
31 |
+
|
32 |
+
|
33 |
+
|
34 |
+
if __name__ == "__main__":
|
35 |
+
parser = argparse.ArgumentParser()
|
36 |
+
parser.add_argument("--sr2", type=int, default=44100, help="sampling rate")
|
37 |
+
parser.add_argument("--in_dir", type=str, default="./dataset_raw", help="path to source dir")
|
38 |
+
parser.add_argument("--out_dir2", type=str, default="./dataset/44k", help="path to target dir")
|
39 |
+
args = parser.parse_args()
|
40 |
+
processs = cpu_count()-2 if cpu_count() >4 else 1
|
41 |
+
pool = Pool(processes=processs)
|
42 |
+
|
43 |
+
for speaker in os.listdir(args.in_dir):
|
44 |
+
spk_dir = os.path.join(args.in_dir, speaker)
|
45 |
+
if os.path.isdir(spk_dir):
|
46 |
+
print(spk_dir)
|
47 |
+
for _ in tqdm(pool.imap_unordered(process, [(spk_dir, i, args) for i in os.listdir(spk_dir) if i.endswith("wav")])):
|
48 |
+
pass
|
spec_gen.py
ADDED
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from data_utils import TextAudioSpeakerLoader
|
2 |
+
import json
|
3 |
+
from tqdm import tqdm
|
4 |
+
|
5 |
+
from utils import HParams
|
6 |
+
|
7 |
+
config_path = 'configs/config.json'
|
8 |
+
with open(config_path, "r") as f:
|
9 |
+
data = f.read()
|
10 |
+
config = json.loads(data)
|
11 |
+
hps = HParams(**config)
|
12 |
+
|
13 |
+
train_dataset = TextAudioSpeakerLoader("filelists/train.txt", hps)
|
14 |
+
test_dataset = TextAudioSpeakerLoader("filelists/test.txt", hps)
|
15 |
+
eval_dataset = TextAudioSpeakerLoader("filelists/val.txt", hps)
|
16 |
+
|
17 |
+
for _ in tqdm(train_dataset):
|
18 |
+
pass
|
19 |
+
for _ in tqdm(eval_dataset):
|
20 |
+
pass
|
21 |
+
for _ in tqdm(test_dataset):
|
22 |
+
pass
|
train.py
ADDED
@@ -0,0 +1,297 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import logging
|
2 |
+
logging.getLogger('matplotlib').setLevel(logging.WARNING)
|
3 |
+
import os
|
4 |
+
import json
|
5 |
+
import argparse
|
6 |
+
import itertools
|
7 |
+
import math
|
8 |
+
import torch
|
9 |
+
from torch import nn, optim
|
10 |
+
from torch.nn import functional as F
|
11 |
+
from torch.utils.data import DataLoader
|
12 |
+
from torch.utils.tensorboard import SummaryWriter
|
13 |
+
import torch.multiprocessing as mp
|
14 |
+
import torch.distributed as dist
|
15 |
+
from torch.nn.parallel import DistributedDataParallel as DDP
|
16 |
+
from torch.cuda.amp import autocast, GradScaler
|
17 |
+
|
18 |
+
import modules.commons as commons
|
19 |
+
import utils
|
20 |
+
from data_utils import TextAudioSpeakerLoader, TextAudioCollate
|
21 |
+
from models import (
|
22 |
+
SynthesizerTrn,
|
23 |
+
MultiPeriodDiscriminator,
|
24 |
+
)
|
25 |
+
from modules.losses import (
|
26 |
+
kl_loss,
|
27 |
+
generator_loss, discriminator_loss, feature_loss
|
28 |
+
)
|
29 |
+
|
30 |
+
from modules.mel_processing import mel_spectrogram_torch, spec_to_mel_torch
|
31 |
+
|
32 |
+
torch.backends.cudnn.benchmark = True
|
33 |
+
global_step = 0
|
34 |
+
|
35 |
+
|
36 |
+
# os.environ['TORCH_DISTRIBUTED_DEBUG'] = 'INFO'
|
37 |
+
|
38 |
+
|
39 |
+
def main():
|
40 |
+
"""Assume Single Node Multi GPUs Training Only"""
|
41 |
+
assert torch.cuda.is_available(), "CPU training is not allowed."
|
42 |
+
hps = utils.get_hparams()
|
43 |
+
|
44 |
+
n_gpus = torch.cuda.device_count()
|
45 |
+
os.environ['MASTER_ADDR'] = 'localhost'
|
46 |
+
os.environ['MASTER_PORT'] = hps.train.port
|
47 |
+
|
48 |
+
mp.spawn(run, nprocs=n_gpus, args=(n_gpus, hps,))
|
49 |
+
|
50 |
+
|
51 |
+
def run(rank, n_gpus, hps):
|
52 |
+
global global_step
|
53 |
+
if rank == 0:
|
54 |
+
logger = utils.get_logger(hps.model_dir)
|
55 |
+
logger.info(hps)
|
56 |
+
utils.check_git_hash(hps.model_dir)
|
57 |
+
writer = SummaryWriter(log_dir=hps.model_dir)
|
58 |
+
writer_eval = SummaryWriter(log_dir=os.path.join(hps.model_dir, "eval"))
|
59 |
+
|
60 |
+
# for pytorch on win, backend use gloo
|
61 |
+
dist.init_process_group(backend= 'gloo' if os.name == 'nt' else 'nccl', init_method='env://', world_size=n_gpus, rank=rank)
|
62 |
+
torch.manual_seed(hps.train.seed)
|
63 |
+
torch.cuda.set_device(rank)
|
64 |
+
collate_fn = TextAudioCollate()
|
65 |
+
train_dataset = TextAudioSpeakerLoader(hps.data.training_files, hps)
|
66 |
+
train_loader = DataLoader(train_dataset, num_workers=8, shuffle=False, pin_memory=True,
|
67 |
+
batch_size=hps.train.batch_size,collate_fn=collate_fn)
|
68 |
+
if rank == 0:
|
69 |
+
eval_dataset = TextAudioSpeakerLoader(hps.data.validation_files, hps)
|
70 |
+
eval_loader = DataLoader(eval_dataset, num_workers=1, shuffle=False,
|
71 |
+
batch_size=1, pin_memory=False,
|
72 |
+
drop_last=False, collate_fn=collate_fn)
|
73 |
+
|
74 |
+
net_g = SynthesizerTrn(
|
75 |
+
hps.data.filter_length // 2 + 1,
|
76 |
+
hps.train.segment_size // hps.data.hop_length,
|
77 |
+
**hps.model).cuda(rank)
|
78 |
+
net_d = MultiPeriodDiscriminator(hps.model.use_spectral_norm).cuda(rank)
|
79 |
+
optim_g = torch.optim.AdamW(
|
80 |
+
net_g.parameters(),
|
81 |
+
hps.train.learning_rate,
|
82 |
+
betas=hps.train.betas,
|
83 |
+
eps=hps.train.eps)
|
84 |
+
optim_d = torch.optim.AdamW(
|
85 |
+
net_d.parameters(),
|
86 |
+
hps.train.learning_rate,
|
87 |
+
betas=hps.train.betas,
|
88 |
+
eps=hps.train.eps)
|
89 |
+
net_g = DDP(net_g, device_ids=[rank]) # , find_unused_parameters=True)
|
90 |
+
net_d = DDP(net_d, device_ids=[rank])
|
91 |
+
|
92 |
+
skip_optimizer = True
|
93 |
+
try:
|
94 |
+
_, _, _, epoch_str = utils.load_checkpoint(utils.latest_checkpoint_path(hps.model_dir, "G_*.pth"), net_g,
|
95 |
+
optim_g, skip_optimizer)
|
96 |
+
_, _, _, epoch_str = utils.load_checkpoint(utils.latest_checkpoint_path(hps.model_dir, "D_*.pth"), net_d,
|
97 |
+
optim_d, skip_optimizer)
|
98 |
+
global_step = (epoch_str - 1) * len(train_loader)
|
99 |
+
except:
|
100 |
+
print("load old checkpoint failed...")
|
101 |
+
epoch_str = 1
|
102 |
+
global_step = 0
|
103 |
+
if skip_optimizer:
|
104 |
+
epoch_str = 1
|
105 |
+
global_step = 0
|
106 |
+
|
107 |
+
scheduler_g = torch.optim.lr_scheduler.ExponentialLR(optim_g, gamma=hps.train.lr_decay, last_epoch=epoch_str - 2)
|
108 |
+
scheduler_d = torch.optim.lr_scheduler.ExponentialLR(optim_d, gamma=hps.train.lr_decay, last_epoch=epoch_str - 2)
|
109 |
+
|
110 |
+
scaler = GradScaler(enabled=hps.train.fp16_run)
|
111 |
+
|
112 |
+
for epoch in range(epoch_str, hps.train.epochs + 1):
|
113 |
+
if rank == 0:
|
114 |
+
train_and_evaluate(rank, epoch, hps, [net_g, net_d], [optim_g, optim_d], [scheduler_g, scheduler_d], scaler,
|
115 |
+
[train_loader, eval_loader], logger, [writer, writer_eval])
|
116 |
+
else:
|
117 |
+
train_and_evaluate(rank, epoch, hps, [net_g, net_d], [optim_g, optim_d], [scheduler_g, scheduler_d], scaler,
|
118 |
+
[train_loader, None], None, None)
|
119 |
+
scheduler_g.step()
|
120 |
+
scheduler_d.step()
|
121 |
+
|
122 |
+
|
123 |
+
def train_and_evaluate(rank, epoch, hps, nets, optims, schedulers, scaler, loaders, logger, writers):
|
124 |
+
net_g, net_d = nets
|
125 |
+
optim_g, optim_d = optims
|
126 |
+
scheduler_g, scheduler_d = schedulers
|
127 |
+
train_loader, eval_loader = loaders
|
128 |
+
if writers is not None:
|
129 |
+
writer, writer_eval = writers
|
130 |
+
|
131 |
+
# train_loader.batch_sampler.set_epoch(epoch)
|
132 |
+
global global_step
|
133 |
+
|
134 |
+
net_g.train()
|
135 |
+
net_d.train()
|
136 |
+
for batch_idx, items in enumerate(train_loader):
|
137 |
+
c, f0, spec, y, spk, lengths, uv = items
|
138 |
+
g = spk.cuda(rank, non_blocking=True)
|
139 |
+
spec, y = spec.cuda(rank, non_blocking=True), y.cuda(rank, non_blocking=True)
|
140 |
+
c = c.cuda(rank, non_blocking=True)
|
141 |
+
f0 = f0.cuda(rank, non_blocking=True)
|
142 |
+
uv = uv.cuda(rank, non_blocking=True)
|
143 |
+
lengths = lengths.cuda(rank, non_blocking=True)
|
144 |
+
mel = spec_to_mel_torch(
|
145 |
+
spec,
|
146 |
+
hps.data.filter_length,
|
147 |
+
hps.data.n_mel_channels,
|
148 |
+
hps.data.sampling_rate,
|
149 |
+
hps.data.mel_fmin,
|
150 |
+
hps.data.mel_fmax)
|
151 |
+
|
152 |
+
with autocast(enabled=hps.train.fp16_run):
|
153 |
+
y_hat, ids_slice, z_mask, \
|
154 |
+
(z, z_p, m_p, logs_p, m_q, logs_q), pred_lf0, norm_lf0, lf0 = net_g(c, f0, uv, spec, g=g, c_lengths=lengths,
|
155 |
+
spec_lengths=lengths)
|
156 |
+
|
157 |
+
y_mel = commons.slice_segments(mel, ids_slice, hps.train.segment_size // hps.data.hop_length)
|
158 |
+
y_hat_mel = mel_spectrogram_torch(
|
159 |
+
y_hat.squeeze(1),
|
160 |
+
hps.data.filter_length,
|
161 |
+
hps.data.n_mel_channels,
|
162 |
+
hps.data.sampling_rate,
|
163 |
+
hps.data.hop_length,
|
164 |
+
hps.data.win_length,
|
165 |
+
hps.data.mel_fmin,
|
166 |
+
hps.data.mel_fmax
|
167 |
+
)
|
168 |
+
y = commons.slice_segments(y, ids_slice * hps.data.hop_length, hps.train.segment_size) # slice
|
169 |
+
|
170 |
+
# Discriminator
|
171 |
+
y_d_hat_r, y_d_hat_g, _, _ = net_d(y, y_hat.detach())
|
172 |
+
|
173 |
+
with autocast(enabled=False):
|
174 |
+
loss_disc, losses_disc_r, losses_disc_g = discriminator_loss(y_d_hat_r, y_d_hat_g)
|
175 |
+
loss_disc_all = loss_disc
|
176 |
+
|
177 |
+
optim_d.zero_grad()
|
178 |
+
scaler.scale(loss_disc_all).backward()
|
179 |
+
scaler.unscale_(optim_d)
|
180 |
+
grad_norm_d = commons.clip_grad_value_(net_d.parameters(), None)
|
181 |
+
scaler.step(optim_d)
|
182 |
+
|
183 |
+
with autocast(enabled=hps.train.fp16_run):
|
184 |
+
# Generator
|
185 |
+
y_d_hat_r, y_d_hat_g, fmap_r, fmap_g = net_d(y, y_hat)
|
186 |
+
with autocast(enabled=False):
|
187 |
+
loss_mel = F.l1_loss(y_mel, y_hat_mel) * hps.train.c_mel
|
188 |
+
loss_kl = kl_loss(z_p, logs_q, m_p, logs_p, z_mask) * hps.train.c_kl
|
189 |
+
loss_fm = feature_loss(fmap_r, fmap_g)
|
190 |
+
loss_gen, losses_gen = generator_loss(y_d_hat_g)
|
191 |
+
loss_lf0 = F.mse_loss(pred_lf0, lf0)
|
192 |
+
loss_gen_all = loss_gen + loss_fm + loss_mel + loss_kl + loss_lf0
|
193 |
+
optim_g.zero_grad()
|
194 |
+
scaler.scale(loss_gen_all).backward()
|
195 |
+
scaler.unscale_(optim_g)
|
196 |
+
grad_norm_g = commons.clip_grad_value_(net_g.parameters(), None)
|
197 |
+
scaler.step(optim_g)
|
198 |
+
scaler.update()
|
199 |
+
|
200 |
+
if rank == 0:
|
201 |
+
if global_step % hps.train.log_interval == 0:
|
202 |
+
lr = optim_g.param_groups[0]['lr']
|
203 |
+
losses = [loss_disc, loss_gen, loss_fm, loss_mel, loss_kl]
|
204 |
+
logger.info('Train Epoch: {} [{:.0f}%]'.format(
|
205 |
+
epoch,
|
206 |
+
100. * batch_idx / len(train_loader)))
|
207 |
+
logger.info([x.item() for x in losses] + [global_step, lr])
|
208 |
+
|
209 |
+
scalar_dict = {"loss/g/total": loss_gen_all, "loss/d/total": loss_disc_all, "learning_rate": lr,
|
210 |
+
"grad_norm_d": grad_norm_d, "grad_norm_g": grad_norm_g}
|
211 |
+
scalar_dict.update({"loss/g/fm": loss_fm, "loss/g/mel": loss_mel, "loss/g/kl": loss_kl,
|
212 |
+
"loss/g/lf0": loss_lf0})
|
213 |
+
|
214 |
+
# scalar_dict.update({"loss/g/{}".format(i): v for i, v in enumerate(losses_gen)})
|
215 |
+
# scalar_dict.update({"loss/d_r/{}".format(i): v for i, v in enumerate(losses_disc_r)})
|
216 |
+
# scalar_dict.update({"loss/d_g/{}".format(i): v for i, v in enumerate(losses_disc_g)})
|
217 |
+
image_dict = {
|
218 |
+
"slice/mel_org": utils.plot_spectrogram_to_numpy(y_mel[0].data.cpu().numpy()),
|
219 |
+
"slice/mel_gen": utils.plot_spectrogram_to_numpy(y_hat_mel[0].data.cpu().numpy()),
|
220 |
+
"all/mel": utils.plot_spectrogram_to_numpy(mel[0].data.cpu().numpy()),
|
221 |
+
"all/lf0": utils.plot_data_to_numpy(lf0[0, 0, :].cpu().numpy(),
|
222 |
+
pred_lf0[0, 0, :].detach().cpu().numpy()),
|
223 |
+
"all/norm_lf0": utils.plot_data_to_numpy(lf0[0, 0, :].cpu().numpy(),
|
224 |
+
norm_lf0[0, 0, :].detach().cpu().numpy())
|
225 |
+
}
|
226 |
+
|
227 |
+
utils.summarize(
|
228 |
+
writer=writer,
|
229 |
+
global_step=global_step,
|
230 |
+
images=image_dict,
|
231 |
+
scalars=scalar_dict
|
232 |
+
)
|
233 |
+
|
234 |
+
if global_step % hps.train.eval_interval == 0:
|
235 |
+
evaluate(hps, net_g, eval_loader, writer_eval)
|
236 |
+
utils.save_checkpoint(net_g, optim_g, hps.train.learning_rate, epoch,
|
237 |
+
os.path.join(hps.model_dir, "G_{}.pth".format(global_step)), hps.train.eval_interval, global_step)
|
238 |
+
utils.save_checkpoint(net_d, optim_d, hps.train.learning_rate, epoch,
|
239 |
+
os.path.join(hps.model_dir, "D_{}.pth".format(global_step)), hps.train.eval_interval, global_step)
|
240 |
+
global_step += 1
|
241 |
+
|
242 |
+
if rank == 0:
|
243 |
+
logger.info('====> Epoch: {}'.format(epoch))
|
244 |
+
|
245 |
+
|
246 |
+
def evaluate(hps, generator, eval_loader, writer_eval):
|
247 |
+
generator.eval()
|
248 |
+
image_dict = {}
|
249 |
+
audio_dict = {}
|
250 |
+
with torch.no_grad():
|
251 |
+
for batch_idx, items in enumerate(eval_loader):
|
252 |
+
c, f0, spec, y, spk, _, uv = items
|
253 |
+
g = spk[:1].cuda(0)
|
254 |
+
spec, y = spec[:1].cuda(0), y[:1].cuda(0)
|
255 |
+
c = c[:1].cuda(0)
|
256 |
+
f0 = f0[:1].cuda(0)
|
257 |
+
uv= uv[:1].cuda(0)
|
258 |
+
mel = spec_to_mel_torch(
|
259 |
+
spec,
|
260 |
+
hps.data.filter_length,
|
261 |
+
hps.data.n_mel_channels,
|
262 |
+
hps.data.sampling_rate,
|
263 |
+
hps.data.mel_fmin,
|
264 |
+
hps.data.mel_fmax)
|
265 |
+
y_hat = generator.module.infer(c, f0, uv, g=g)
|
266 |
+
|
267 |
+
y_hat_mel = mel_spectrogram_torch(
|
268 |
+
y_hat.squeeze(1).float(),
|
269 |
+
hps.data.filter_length,
|
270 |
+
hps.data.n_mel_channels,
|
271 |
+
hps.data.sampling_rate,
|
272 |
+
hps.data.hop_length,
|
273 |
+
hps.data.win_length,
|
274 |
+
hps.data.mel_fmin,
|
275 |
+
hps.data.mel_fmax
|
276 |
+
)
|
277 |
+
|
278 |
+
audio_dict.update({
|
279 |
+
f"gen/audio_{batch_idx}": y_hat[0],
|
280 |
+
f"gt/audio_{batch_idx}": y[0]
|
281 |
+
})
|
282 |
+
image_dict.update({
|
283 |
+
f"gen/mel": utils.plot_spectrogram_to_numpy(y_hat_mel[0].cpu().numpy()),
|
284 |
+
"gt/mel": utils.plot_spectrogram_to_numpy(mel[0].cpu().numpy())
|
285 |
+
})
|
286 |
+
utils.summarize(
|
287 |
+
writer=writer_eval,
|
288 |
+
global_step=global_step,
|
289 |
+
images=image_dict,
|
290 |
+
audios=audio_dict,
|
291 |
+
audio_sampling_rate=hps.data.sampling_rate
|
292 |
+
)
|
293 |
+
generator.train()
|
294 |
+
|
295 |
+
|
296 |
+
if __name__ == "__main__":
|
297 |
+
main()
|
utils.py
ADDED
@@ -0,0 +1,508 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import glob
|
3 |
+
import re
|
4 |
+
import sys
|
5 |
+
import argparse
|
6 |
+
import logging
|
7 |
+
import json
|
8 |
+
import subprocess
|
9 |
+
import random
|
10 |
+
|
11 |
+
import librosa
|
12 |
+
import numpy as np
|
13 |
+
from scipy.io.wavfile import read
|
14 |
+
import torch
|
15 |
+
from torch.nn import functional as F
|
16 |
+
from modules.commons import sequence_mask
|
17 |
+
from hubert import hubert_model
|
18 |
+
MATPLOTLIB_FLAG = False
|
19 |
+
|
20 |
+
logging.basicConfig(stream=sys.stdout, level=logging.DEBUG)
|
21 |
+
logger = logging
|
22 |
+
|
23 |
+
f0_bin = 256
|
24 |
+
f0_max = 1100.0
|
25 |
+
f0_min = 50.0
|
26 |
+
f0_mel_min = 1127 * np.log(1 + f0_min / 700)
|
27 |
+
f0_mel_max = 1127 * np.log(1 + f0_max / 700)
|
28 |
+
|
29 |
+
|
30 |
+
# def normalize_f0(f0, random_scale=True):
|
31 |
+
# f0_norm = f0.clone() # create a copy of the input Tensor
|
32 |
+
# batch_size, _, frame_length = f0_norm.shape
|
33 |
+
# for i in range(batch_size):
|
34 |
+
# means = torch.mean(f0_norm[i, 0, :])
|
35 |
+
# if random_scale:
|
36 |
+
# factor = random.uniform(0.8, 1.2)
|
37 |
+
# else:
|
38 |
+
# factor = 1
|
39 |
+
# f0_norm[i, 0, :] = (f0_norm[i, 0, :] - means) * factor
|
40 |
+
# return f0_norm
|
41 |
+
# def normalize_f0(f0, random_scale=True):
|
42 |
+
# means = torch.mean(f0[:, 0, :], dim=1, keepdim=True)
|
43 |
+
# if random_scale:
|
44 |
+
# factor = torch.Tensor(f0.shape[0],1).uniform_(0.8, 1.2).to(f0.device)
|
45 |
+
# else:
|
46 |
+
# factor = torch.ones(f0.shape[0], 1, 1).to(f0.device)
|
47 |
+
# f0_norm = (f0 - means.unsqueeze(-1)) * factor.unsqueeze(-1)
|
48 |
+
# return f0_norm
|
49 |
+
def normalize_f0(f0, x_mask, uv, random_scale=True):
|
50 |
+
# calculate means based on x_mask
|
51 |
+
uv_sum = torch.sum(uv, dim=1, keepdim=True)
|
52 |
+
uv_sum[uv_sum == 0] = 9999
|
53 |
+
means = torch.sum(f0[:, 0, :] * uv, dim=1, keepdim=True) / uv_sum
|
54 |
+
|
55 |
+
if random_scale:
|
56 |
+
factor = torch.Tensor(f0.shape[0], 1).uniform_(0.8, 1.2).to(f0.device)
|
57 |
+
else:
|
58 |
+
factor = torch.ones(f0.shape[0], 1).to(f0.device)
|
59 |
+
# normalize f0 based on means and factor
|
60 |
+
f0_norm = (f0 - means.unsqueeze(-1)) * factor.unsqueeze(-1)
|
61 |
+
if torch.isnan(f0_norm).any():
|
62 |
+
exit(0)
|
63 |
+
return f0_norm * x_mask
|
64 |
+
|
65 |
+
|
66 |
+
def plot_data_to_numpy(x, y):
|
67 |
+
global MATPLOTLIB_FLAG
|
68 |
+
if not MATPLOTLIB_FLAG:
|
69 |
+
import matplotlib
|
70 |
+
matplotlib.use("Agg")
|
71 |
+
MATPLOTLIB_FLAG = True
|
72 |
+
mpl_logger = logging.getLogger('matplotlib')
|
73 |
+
mpl_logger.setLevel(logging.WARNING)
|
74 |
+
import matplotlib.pylab as plt
|
75 |
+
import numpy as np
|
76 |
+
|
77 |
+
fig, ax = plt.subplots(figsize=(10, 2))
|
78 |
+
plt.plot(x)
|
79 |
+
plt.plot(y)
|
80 |
+
plt.tight_layout()
|
81 |
+
|
82 |
+
fig.canvas.draw()
|
83 |
+
data = np.fromstring(fig.canvas.tostring_rgb(), dtype=np.uint8, sep='')
|
84 |
+
data = data.reshape(fig.canvas.get_width_height()[::-1] + (3,))
|
85 |
+
plt.close()
|
86 |
+
return data
|
87 |
+
|
88 |
+
|
89 |
+
|
90 |
+
def interpolate_f0(f0):
|
91 |
+
'''
|
92 |
+
对F0进行插值处理
|
93 |
+
'''
|
94 |
+
|
95 |
+
data = np.reshape(f0, (f0.size, 1))
|
96 |
+
|
97 |
+
vuv_vector = np.zeros((data.size, 1), dtype=np.float32)
|
98 |
+
vuv_vector[data > 0.0] = 1.0
|
99 |
+
vuv_vector[data <= 0.0] = 0.0
|
100 |
+
|
101 |
+
ip_data = data
|
102 |
+
|
103 |
+
frame_number = data.size
|
104 |
+
last_value = 0.0
|
105 |
+
for i in range(frame_number):
|
106 |
+
if data[i] <= 0.0:
|
107 |
+
j = i + 1
|
108 |
+
for j in range(i + 1, frame_number):
|
109 |
+
if data[j] > 0.0:
|
110 |
+
break
|
111 |
+
if j < frame_number - 1:
|
112 |
+
if last_value > 0.0:
|
113 |
+
step = (data[j] - data[i - 1]) / float(j - i)
|
114 |
+
for k in range(i, j):
|
115 |
+
ip_data[k] = data[i - 1] + step * (k - i + 1)
|
116 |
+
else:
|
117 |
+
for k in range(i, j):
|
118 |
+
ip_data[k] = data[j]
|
119 |
+
else:
|
120 |
+
for k in range(i, frame_number):
|
121 |
+
ip_data[k] = last_value
|
122 |
+
else:
|
123 |
+
ip_data[i] = data[i]
|
124 |
+
last_value = data[i]
|
125 |
+
|
126 |
+
return ip_data[:,0], vuv_vector[:,0]
|
127 |
+
|
128 |
+
|
129 |
+
def compute_f0_parselmouth(wav_numpy, p_len=None, sampling_rate=44100, hop_length=512):
|
130 |
+
import parselmouth
|
131 |
+
x = wav_numpy
|
132 |
+
if p_len is None:
|
133 |
+
p_len = x.shape[0]//hop_length
|
134 |
+
else:
|
135 |
+
assert abs(p_len-x.shape[0]//hop_length) < 4, "pad length error"
|
136 |
+
time_step = hop_length / sampling_rate * 1000
|
137 |
+
f0_min = 50
|
138 |
+
f0_max = 1100
|
139 |
+
f0 = parselmouth.Sound(x, sampling_rate).to_pitch_ac(
|
140 |
+
time_step=time_step / 1000, voicing_threshold=0.6,
|
141 |
+
pitch_floor=f0_min, pitch_ceiling=f0_max).selected_array['frequency']
|
142 |
+
|
143 |
+
pad_size=(p_len - len(f0) + 1) // 2
|
144 |
+
if(pad_size>0 or p_len - len(f0) - pad_size>0):
|
145 |
+
f0 = np.pad(f0,[[pad_size,p_len - len(f0) - pad_size]], mode='constant')
|
146 |
+
return f0
|
147 |
+
|
148 |
+
def resize_f0(x, target_len):
|
149 |
+
source = np.array(x)
|
150 |
+
source[source<0.001] = np.nan
|
151 |
+
target = np.interp(np.arange(0, len(source)*target_len, len(source))/ target_len, np.arange(0, len(source)), source)
|
152 |
+
res = np.nan_to_num(target)
|
153 |
+
return res
|
154 |
+
|
155 |
+
def compute_f0_dio(wav_numpy, p_len=None, sampling_rate=44100, hop_length=512):
|
156 |
+
import pyworld
|
157 |
+
if p_len is None:
|
158 |
+
p_len = wav_numpy.shape[0]//hop_length
|
159 |
+
f0, t = pyworld.dio(
|
160 |
+
wav_numpy.astype(np.double),
|
161 |
+
fs=sampling_rate,
|
162 |
+
f0_ceil=800,
|
163 |
+
frame_period=1000 * hop_length / sampling_rate,
|
164 |
+
)
|
165 |
+
f0 = pyworld.stonemask(wav_numpy.astype(np.double), f0, t, sampling_rate)
|
166 |
+
for index, pitch in enumerate(f0):
|
167 |
+
f0[index] = round(pitch, 1)
|
168 |
+
return resize_f0(f0, p_len)
|
169 |
+
|
170 |
+
def f0_to_coarse(f0):
|
171 |
+
is_torch = isinstance(f0, torch.Tensor)
|
172 |
+
f0_mel = 1127 * (1 + f0 / 700).log() if is_torch else 1127 * np.log(1 + f0 / 700)
|
173 |
+
f0_mel[f0_mel > 0] = (f0_mel[f0_mel > 0] - f0_mel_min) * (f0_bin - 2) / (f0_mel_max - f0_mel_min) + 1
|
174 |
+
|
175 |
+
f0_mel[f0_mel <= 1] = 1
|
176 |
+
f0_mel[f0_mel > f0_bin - 1] = f0_bin - 1
|
177 |
+
f0_coarse = (f0_mel + 0.5).long() if is_torch else np.rint(f0_mel).astype(np.int)
|
178 |
+
assert f0_coarse.max() <= 255 and f0_coarse.min() >= 1, (f0_coarse.max(), f0_coarse.min())
|
179 |
+
return f0_coarse
|
180 |
+
|
181 |
+
|
182 |
+
def get_hubert_model():
|
183 |
+
vec_path = "hubert/checkpoint_best_legacy_500.pt"
|
184 |
+
print("load model(s) from {}".format(vec_path))
|
185 |
+
from fairseq import checkpoint_utils
|
186 |
+
models, saved_cfg, task = checkpoint_utils.load_model_ensemble_and_task(
|
187 |
+
[vec_path],
|
188 |
+
suffix="",
|
189 |
+
)
|
190 |
+
model = models[0]
|
191 |
+
model.eval()
|
192 |
+
return model
|
193 |
+
|
194 |
+
def get_hubert_content(hmodel, wav_16k_tensor):
|
195 |
+
feats = wav_16k_tensor
|
196 |
+
if feats.dim() == 2: # double channels
|
197 |
+
feats = feats.mean(-1)
|
198 |
+
assert feats.dim() == 1, feats.dim()
|
199 |
+
feats = feats.view(1, -1)
|
200 |
+
padding_mask = torch.BoolTensor(feats.shape).fill_(False)
|
201 |
+
inputs = {
|
202 |
+
"source": feats.to(wav_16k_tensor.device),
|
203 |
+
"padding_mask": padding_mask.to(wav_16k_tensor.device),
|
204 |
+
"output_layer": 9, # layer 9
|
205 |
+
}
|
206 |
+
with torch.no_grad():
|
207 |
+
logits = hmodel.extract_features(**inputs)
|
208 |
+
feats = hmodel.final_proj(logits[0])
|
209 |
+
return feats.transpose(1, 2)
|
210 |
+
|
211 |
+
|
212 |
+
def get_content(cmodel, y):
|
213 |
+
with torch.no_grad():
|
214 |
+
c = cmodel.extract_features(y.squeeze(1))[0]
|
215 |
+
c = c.transpose(1, 2)
|
216 |
+
return c
|
217 |
+
|
218 |
+
|
219 |
+
|
220 |
+
def load_checkpoint(checkpoint_path, model, optimizer=None, skip_optimizer=False):
|
221 |
+
assert os.path.isfile(checkpoint_path)
|
222 |
+
checkpoint_dict = torch.load(checkpoint_path, map_location='cpu')
|
223 |
+
iteration = checkpoint_dict['iteration']
|
224 |
+
learning_rate = checkpoint_dict['learning_rate']
|
225 |
+
if optimizer is not None and not skip_optimizer:
|
226 |
+
optimizer.load_state_dict(checkpoint_dict['optimizer'])
|
227 |
+
saved_state_dict = checkpoint_dict['model']
|
228 |
+
if hasattr(model, 'module'):
|
229 |
+
state_dict = model.module.state_dict()
|
230 |
+
else:
|
231 |
+
state_dict = model.state_dict()
|
232 |
+
new_state_dict = {}
|
233 |
+
for k, v in state_dict.items():
|
234 |
+
try:
|
235 |
+
# assert "dec" in k or "disc" in k
|
236 |
+
# print("load", k)
|
237 |
+
new_state_dict[k] = saved_state_dict[k]
|
238 |
+
assert saved_state_dict[k].shape == v.shape, (saved_state_dict[k].shape, v.shape)
|
239 |
+
except:
|
240 |
+
print("error, %s is not in the checkpoint" % k)
|
241 |
+
logger.info("%s is not in the checkpoint" % k)
|
242 |
+
new_state_dict[k] = v
|
243 |
+
if hasattr(model, 'module'):
|
244 |
+
model.module.load_state_dict(new_state_dict)
|
245 |
+
else:
|
246 |
+
model.load_state_dict(new_state_dict)
|
247 |
+
print("load ")
|
248 |
+
logger.info("Loaded checkpoint '{}' (iteration {})".format(
|
249 |
+
checkpoint_path, iteration))
|
250 |
+
return model, optimizer, learning_rate, iteration
|
251 |
+
|
252 |
+
|
253 |
+
def save_checkpoint(model, optimizer, learning_rate, iteration, checkpoint_path, val_steps, current_step):
|
254 |
+
logger.info("Saving model and optimizer state at iteration {} to {}".format(
|
255 |
+
iteration, checkpoint_path))
|
256 |
+
if hasattr(model, 'module'):
|
257 |
+
state_dict = model.module.state_dict()
|
258 |
+
else:
|
259 |
+
state_dict = model.state_dict()
|
260 |
+
torch.save({'model': state_dict,
|
261 |
+
'iteration': iteration,
|
262 |
+
'optimizer': optimizer.state_dict(),
|
263 |
+
'learning_rate': learning_rate}, checkpoint_path)
|
264 |
+
if current_step >= val_steps * 3:
|
265 |
+
to_del_ckptname = checkpoint_path.replace(str(current_step), str(current_step - val_steps * 3))
|
266 |
+
if os.path.exists(to_del_ckptname):
|
267 |
+
os.remove(to_del_ckptname)
|
268 |
+
print("Removing ", to_del_ckptname)
|
269 |
+
|
270 |
+
|
271 |
+
def clean_checkpoints(path_to_models='logs/48k/', n_ckpts_to_keep=2, sort_by_time=True):
|
272 |
+
"""Freeing up space by deleting saved ckpts
|
273 |
+
|
274 |
+
Arguments:
|
275 |
+
path_to_models -- Path to the model directory
|
276 |
+
n_ckpts_to_keep -- Number of ckpts to keep, excluding G_0.pth and D_0.pth
|
277 |
+
sort_by_time -- True -> chronologically delete ckpts
|
278 |
+
False -> lexicographically delete ckpts
|
279 |
+
"""
|
280 |
+
ckpts_files = [f for f in os.listdir(path_to_models) if os.path.isfile(os.path.join(path_to_models, f))]
|
281 |
+
name_key = (lambda _f: int(re.compile('._(\d+)\.pth').match(_f).group(1)))
|
282 |
+
time_key = (lambda _f: os.path.getmtime(os.path.join(path_to_models, _f)))
|
283 |
+
sort_key = time_key if sort_by_time else name_key
|
284 |
+
x_sorted = lambda _x: sorted([f for f in ckpts_files if f.startswith(_x) and not f.endswith('_0.pth')], key=sort_key)
|
285 |
+
to_del = [os.path.join(path_to_models, fn) for fn in
|
286 |
+
(x_sorted('G')[:-n_ckpts_to_keep] + x_sorted('D')[:-n_ckpts_to_keep])]
|
287 |
+
del_info = lambda fn: logger.info(f".. Free up space by deleting ckpt {fn}")
|
288 |
+
del_routine = lambda x: [os.remove(x), del_info(x)]
|
289 |
+
rs = [del_routine(fn) for fn in to_del]
|
290 |
+
|
291 |
+
def summarize(writer, global_step, scalars={}, histograms={}, images={}, audios={}, audio_sampling_rate=22050):
|
292 |
+
for k, v in scalars.items():
|
293 |
+
writer.add_scalar(k, v, global_step)
|
294 |
+
for k, v in histograms.items():
|
295 |
+
writer.add_histogram(k, v, global_step)
|
296 |
+
for k, v in images.items():
|
297 |
+
writer.add_image(k, v, global_step, dataformats='HWC')
|
298 |
+
for k, v in audios.items():
|
299 |
+
writer.add_audio(k, v, global_step, audio_sampling_rate)
|
300 |
+
|
301 |
+
|
302 |
+
def latest_checkpoint_path(dir_path, regex="G_*.pth"):
|
303 |
+
f_list = glob.glob(os.path.join(dir_path, regex))
|
304 |
+
f_list.sort(key=lambda f: int("".join(filter(str.isdigit, f))))
|
305 |
+
x = f_list[-1]
|
306 |
+
print(x)
|
307 |
+
return x
|
308 |
+
|
309 |
+
|
310 |
+
def plot_spectrogram_to_numpy(spectrogram):
|
311 |
+
global MATPLOTLIB_FLAG
|
312 |
+
if not MATPLOTLIB_FLAG:
|
313 |
+
import matplotlib
|
314 |
+
matplotlib.use("Agg")
|
315 |
+
MATPLOTLIB_FLAG = True
|
316 |
+
mpl_logger = logging.getLogger('matplotlib')
|
317 |
+
mpl_logger.setLevel(logging.WARNING)
|
318 |
+
import matplotlib.pylab as plt
|
319 |
+
import numpy as np
|
320 |
+
|
321 |
+
fig, ax = plt.subplots(figsize=(10,2))
|
322 |
+
im = ax.imshow(spectrogram, aspect="auto", origin="lower",
|
323 |
+
interpolation='none')
|
324 |
+
plt.colorbar(im, ax=ax)
|
325 |
+
plt.xlabel("Frames")
|
326 |
+
plt.ylabel("Channels")
|
327 |
+
plt.tight_layout()
|
328 |
+
|
329 |
+
fig.canvas.draw()
|
330 |
+
data = np.fromstring(fig.canvas.tostring_rgb(), dtype=np.uint8, sep='')
|
331 |
+
data = data.reshape(fig.canvas.get_width_height()[::-1] + (3,))
|
332 |
+
plt.close()
|
333 |
+
return data
|
334 |
+
|
335 |
+
|
336 |
+
def plot_alignment_to_numpy(alignment, info=None):
|
337 |
+
global MATPLOTLIB_FLAG
|
338 |
+
if not MATPLOTLIB_FLAG:
|
339 |
+
import matplotlib
|
340 |
+
matplotlib.use("Agg")
|
341 |
+
MATPLOTLIB_FLAG = True
|
342 |
+
mpl_logger = logging.getLogger('matplotlib')
|
343 |
+
mpl_logger.setLevel(logging.WARNING)
|
344 |
+
import matplotlib.pylab as plt
|
345 |
+
import numpy as np
|
346 |
+
|
347 |
+
fig, ax = plt.subplots(figsize=(6, 4))
|
348 |
+
im = ax.imshow(alignment.transpose(), aspect='auto', origin='lower',
|
349 |
+
interpolation='none')
|
350 |
+
fig.colorbar(im, ax=ax)
|
351 |
+
xlabel = 'Decoder timestep'
|
352 |
+
if info is not None:
|
353 |
+
xlabel += '\n\n' + info
|
354 |
+
plt.xlabel(xlabel)
|
355 |
+
plt.ylabel('Encoder timestep')
|
356 |
+
plt.tight_layout()
|
357 |
+
|
358 |
+
fig.canvas.draw()
|
359 |
+
data = np.fromstring(fig.canvas.tostring_rgb(), dtype=np.uint8, sep='')
|
360 |
+
data = data.reshape(fig.canvas.get_width_height()[::-1] + (3,))
|
361 |
+
plt.close()
|
362 |
+
return data
|
363 |
+
|
364 |
+
|
365 |
+
def load_wav_to_torch(full_path):
|
366 |
+
sampling_rate, data = read(full_path)
|
367 |
+
return torch.FloatTensor(data.astype(np.float32)), sampling_rate
|
368 |
+
|
369 |
+
|
370 |
+
def load_filepaths_and_text(filename, split="|"):
|
371 |
+
with open(filename, encoding='utf-8') as f:
|
372 |
+
filepaths_and_text = [line.strip().split(split) for line in f]
|
373 |
+
return filepaths_and_text
|
374 |
+
|
375 |
+
|
376 |
+
def get_hparams(init=True):
|
377 |
+
parser = argparse.ArgumentParser()
|
378 |
+
parser.add_argument('-c', '--config', type=str, default="./configs/base.json",
|
379 |
+
help='JSON file for configuration')
|
380 |
+
parser.add_argument('-m', '--model', type=str, required=True,
|
381 |
+
help='Model name')
|
382 |
+
|
383 |
+
args = parser.parse_args()
|
384 |
+
model_dir = os.path.join("./logs", args.model)
|
385 |
+
|
386 |
+
if not os.path.exists(model_dir):
|
387 |
+
os.makedirs(model_dir)
|
388 |
+
|
389 |
+
config_path = args.config
|
390 |
+
config_save_path = os.path.join(model_dir, "config.json")
|
391 |
+
if init:
|
392 |
+
with open(config_path, "r") as f:
|
393 |
+
data = f.read()
|
394 |
+
with open(config_save_path, "w") as f:
|
395 |
+
f.write(data)
|
396 |
+
else:
|
397 |
+
with open(config_save_path, "r") as f:
|
398 |
+
data = f.read()
|
399 |
+
config = json.loads(data)
|
400 |
+
|
401 |
+
hparams = HParams(**config)
|
402 |
+
hparams.model_dir = model_dir
|
403 |
+
return hparams
|
404 |
+
|
405 |
+
|
406 |
+
def get_hparams_from_dir(model_dir):
|
407 |
+
config_save_path = os.path.join(model_dir, "config.json")
|
408 |
+
with open(config_save_path, "r") as f:
|
409 |
+
data = f.read()
|
410 |
+
config = json.loads(data)
|
411 |
+
|
412 |
+
hparams =HParams(**config)
|
413 |
+
hparams.model_dir = model_dir
|
414 |
+
return hparams
|
415 |
+
|
416 |
+
|
417 |
+
def get_hparams_from_file(config_path):
|
418 |
+
with open(config_path, "r") as f:
|
419 |
+
data = f.read()
|
420 |
+
config = json.loads(data)
|
421 |
+
|
422 |
+
hparams =HParams(**config)
|
423 |
+
return hparams
|
424 |
+
|
425 |
+
|
426 |
+
def check_git_hash(model_dir):
|
427 |
+
source_dir = os.path.dirname(os.path.realpath(__file__))
|
428 |
+
if not os.path.exists(os.path.join(source_dir, ".git")):
|
429 |
+
logger.warn("{} is not a git repository, therefore hash value comparison will be ignored.".format(
|
430 |
+
source_dir
|
431 |
+
))
|
432 |
+
return
|
433 |
+
|
434 |
+
cur_hash = subprocess.getoutput("git rev-parse HEAD")
|
435 |
+
|
436 |
+
path = os.path.join(model_dir, "githash")
|
437 |
+
if os.path.exists(path):
|
438 |
+
saved_hash = open(path).read()
|
439 |
+
if saved_hash != cur_hash:
|
440 |
+
logger.warn("git hash values are different. {}(saved) != {}(current)".format(
|
441 |
+
saved_hash[:8], cur_hash[:8]))
|
442 |
+
else:
|
443 |
+
open(path, "w").write(cur_hash)
|
444 |
+
|
445 |
+
|
446 |
+
def get_logger(model_dir, filename="train.log"):
|
447 |
+
global logger
|
448 |
+
logger = logging.getLogger(os.path.basename(model_dir))
|
449 |
+
logger.setLevel(logging.DEBUG)
|
450 |
+
|
451 |
+
formatter = logging.Formatter("%(asctime)s\t%(name)s\t%(levelname)s\t%(message)s")
|
452 |
+
if not os.path.exists(model_dir):
|
453 |
+
os.makedirs(model_dir)
|
454 |
+
h = logging.FileHandler(os.path.join(model_dir, filename))
|
455 |
+
h.setLevel(logging.DEBUG)
|
456 |
+
h.setFormatter(formatter)
|
457 |
+
logger.addHandler(h)
|
458 |
+
return logger
|
459 |
+
|
460 |
+
|
461 |
+
def repeat_expand_2d(content, target_len):
|
462 |
+
# content : [h, t]
|
463 |
+
|
464 |
+
src_len = content.shape[-1]
|
465 |
+
target = torch.zeros([content.shape[0], target_len], dtype=torch.float).to(content.device)
|
466 |
+
temp = torch.arange(src_len+1) * target_len / src_len
|
467 |
+
current_pos = 0
|
468 |
+
for i in range(target_len):
|
469 |
+
if i < temp[current_pos+1]:
|
470 |
+
target[:, i] = content[:, current_pos]
|
471 |
+
else:
|
472 |
+
current_pos += 1
|
473 |
+
target[:, i] = content[:, current_pos]
|
474 |
+
|
475 |
+
return target
|
476 |
+
|
477 |
+
|
478 |
+
class HParams():
|
479 |
+
def __init__(self, **kwargs):
|
480 |
+
for k, v in kwargs.items():
|
481 |
+
if type(v) == dict:
|
482 |
+
v = HParams(**v)
|
483 |
+
self[k] = v
|
484 |
+
|
485 |
+
def keys(self):
|
486 |
+
return self.__dict__.keys()
|
487 |
+
|
488 |
+
def items(self):
|
489 |
+
return self.__dict__.items()
|
490 |
+
|
491 |
+
def values(self):
|
492 |
+
return self.__dict__.values()
|
493 |
+
|
494 |
+
def __len__(self):
|
495 |
+
return len(self.__dict__)
|
496 |
+
|
497 |
+
def __getitem__(self, key):
|
498 |
+
return getattr(self, key)
|
499 |
+
|
500 |
+
def __setitem__(self, key, value):
|
501 |
+
return setattr(self, key, value)
|
502 |
+
|
503 |
+
def __contains__(self, key):
|
504 |
+
return key in self.__dict__
|
505 |
+
|
506 |
+
def __repr__(self):
|
507 |
+
return self.__dict__.__repr__()
|
508 |
+
|
vdecoder/__init__.py
ADDED
File without changes
|
vdecoder/hifigan/__pycache__/env.cpython-38.pyc
ADDED
Binary file (790 Bytes). View file
|
|
vdecoder/hifigan/__pycache__/models.cpython-38.pyc
ADDED
Binary file (15.1 kB). View file
|
|
vdecoder/hifigan/__pycache__/utils.cpython-38.pyc
ADDED
Binary file (2.31 kB). View file
|
|
vdecoder/hifigan/env.py
ADDED
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import shutil
|
3 |
+
|
4 |
+
|
5 |
+
class AttrDict(dict):
|
6 |
+
def __init__(self, *args, **kwargs):
|
7 |
+
super(AttrDict, self).__init__(*args, **kwargs)
|
8 |
+
self.__dict__ = self
|
9 |
+
|
10 |
+
|
11 |
+
def build_env(config, config_name, path):
|
12 |
+
t_path = os.path.join(path, config_name)
|
13 |
+
if config != t_path:
|
14 |
+
os.makedirs(path, exist_ok=True)
|
15 |
+
shutil.copyfile(config, os.path.join(path, config_name))
|
vdecoder/hifigan/models.py
ADDED
@@ -0,0 +1,503 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import json
|
3 |
+
from .env import AttrDict
|
4 |
+
import numpy as np
|
5 |
+
import torch
|
6 |
+
import torch.nn.functional as F
|
7 |
+
import torch.nn as nn
|
8 |
+
from torch.nn import Conv1d, ConvTranspose1d, AvgPool1d, Conv2d
|
9 |
+
from torch.nn.utils import weight_norm, remove_weight_norm, spectral_norm
|
10 |
+
from .utils import init_weights, get_padding
|
11 |
+
|
12 |
+
LRELU_SLOPE = 0.1
|
13 |
+
|
14 |
+
|
15 |
+
def load_model(model_path, device='cuda'):
|
16 |
+
config_file = os.path.join(os.path.split(model_path)[0], 'config.json')
|
17 |
+
with open(config_file) as f:
|
18 |
+
data = f.read()
|
19 |
+
|
20 |
+
global h
|
21 |
+
json_config = json.loads(data)
|
22 |
+
h = AttrDict(json_config)
|
23 |
+
|
24 |
+
generator = Generator(h).to(device)
|
25 |
+
|
26 |
+
cp_dict = torch.load(model_path)
|
27 |
+
generator.load_state_dict(cp_dict['generator'])
|
28 |
+
generator.eval()
|
29 |
+
generator.remove_weight_norm()
|
30 |
+
del cp_dict
|
31 |
+
return generator, h
|
32 |
+
|
33 |
+
|
34 |
+
class ResBlock1(torch.nn.Module):
|
35 |
+
def __init__(self, h, channels, kernel_size=3, dilation=(1, 3, 5)):
|
36 |
+
super(ResBlock1, self).__init__()
|
37 |
+
self.h = h
|
38 |
+
self.convs1 = nn.ModuleList([
|
39 |
+
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[0],
|
40 |
+
padding=get_padding(kernel_size, dilation[0]))),
|
41 |
+
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[1],
|
42 |
+
padding=get_padding(kernel_size, dilation[1]))),
|
43 |
+
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[2],
|
44 |
+
padding=get_padding(kernel_size, dilation[2])))
|
45 |
+
])
|
46 |
+
self.convs1.apply(init_weights)
|
47 |
+
|
48 |
+
self.convs2 = nn.ModuleList([
|
49 |
+
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1,
|
50 |
+
padding=get_padding(kernel_size, 1))),
|
51 |
+
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1,
|
52 |
+
padding=get_padding(kernel_size, 1))),
|
53 |
+
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1,
|
54 |
+
padding=get_padding(kernel_size, 1)))
|
55 |
+
])
|
56 |
+
self.convs2.apply(init_weights)
|
57 |
+
|
58 |
+
def forward(self, x):
|
59 |
+
for c1, c2 in zip(self.convs1, self.convs2):
|
60 |
+
xt = F.leaky_relu(x, LRELU_SLOPE)
|
61 |
+
xt = c1(xt)
|
62 |
+
xt = F.leaky_relu(xt, LRELU_SLOPE)
|
63 |
+
xt = c2(xt)
|
64 |
+
x = xt + x
|
65 |
+
return x
|
66 |
+
|
67 |
+
def remove_weight_norm(self):
|
68 |
+
for l in self.convs1:
|
69 |
+
remove_weight_norm(l)
|
70 |
+
for l in self.convs2:
|
71 |
+
remove_weight_norm(l)
|
72 |
+
|
73 |
+
|
74 |
+
class ResBlock2(torch.nn.Module):
|
75 |
+
def __init__(self, h, channels, kernel_size=3, dilation=(1, 3)):
|
76 |
+
super(ResBlock2, self).__init__()
|
77 |
+
self.h = h
|
78 |
+
self.convs = nn.ModuleList([
|
79 |
+
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[0],
|
80 |
+
padding=get_padding(kernel_size, dilation[0]))),
|
81 |
+
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[1],
|
82 |
+
padding=get_padding(kernel_size, dilation[1])))
|
83 |
+
])
|
84 |
+
self.convs.apply(init_weights)
|
85 |
+
|
86 |
+
def forward(self, x):
|
87 |
+
for c in self.convs:
|
88 |
+
xt = F.leaky_relu(x, LRELU_SLOPE)
|
89 |
+
xt = c(xt)
|
90 |
+
x = xt + x
|
91 |
+
return x
|
92 |
+
|
93 |
+
def remove_weight_norm(self):
|
94 |
+
for l in self.convs:
|
95 |
+
remove_weight_norm(l)
|
96 |
+
|
97 |
+
|
98 |
+
def padDiff(x):
|
99 |
+
return F.pad(F.pad(x, (0,0,-1,1), 'constant', 0) - x, (0,0,0,-1), 'constant', 0)
|
100 |
+
|
101 |
+
class SineGen(torch.nn.Module):
|
102 |
+
""" Definition of sine generator
|
103 |
+
SineGen(samp_rate, harmonic_num = 0,
|
104 |
+
sine_amp = 0.1, noise_std = 0.003,
|
105 |
+
voiced_threshold = 0,
|
106 |
+
flag_for_pulse=False)
|
107 |
+
samp_rate: sampling rate in Hz
|
108 |
+
harmonic_num: number of harmonic overtones (default 0)
|
109 |
+
sine_amp: amplitude of sine-wavefrom (default 0.1)
|
110 |
+
noise_std: std of Gaussian noise (default 0.003)
|
111 |
+
voiced_thoreshold: F0 threshold for U/V classification (default 0)
|
112 |
+
flag_for_pulse: this SinGen is used inside PulseGen (default False)
|
113 |
+
Note: when flag_for_pulse is True, the first time step of a voiced
|
114 |
+
segment is always sin(np.pi) or cos(0)
|
115 |
+
"""
|
116 |
+
|
117 |
+
def __init__(self, samp_rate, harmonic_num=0,
|
118 |
+
sine_amp=0.1, noise_std=0.003,
|
119 |
+
voiced_threshold=0,
|
120 |
+
flag_for_pulse=False):
|
121 |
+
super(SineGen, self).__init__()
|
122 |
+
self.sine_amp = sine_amp
|
123 |
+
self.noise_std = noise_std
|
124 |
+
self.harmonic_num = harmonic_num
|
125 |
+
self.dim = self.harmonic_num + 1
|
126 |
+
self.sampling_rate = samp_rate
|
127 |
+
self.voiced_threshold = voiced_threshold
|
128 |
+
self.flag_for_pulse = flag_for_pulse
|
129 |
+
|
130 |
+
def _f02uv(self, f0):
|
131 |
+
# generate uv signal
|
132 |
+
uv = (f0 > self.voiced_threshold).type(torch.float32)
|
133 |
+
return uv
|
134 |
+
|
135 |
+
def _f02sine(self, f0_values):
|
136 |
+
""" f0_values: (batchsize, length, dim)
|
137 |
+
where dim indicates fundamental tone and overtones
|
138 |
+
"""
|
139 |
+
# convert to F0 in rad. The interger part n can be ignored
|
140 |
+
# because 2 * np.pi * n doesn't affect phase
|
141 |
+
rad_values = (f0_values / self.sampling_rate) % 1
|
142 |
+
|
143 |
+
# initial phase noise (no noise for fundamental component)
|
144 |
+
rand_ini = torch.rand(f0_values.shape[0], f0_values.shape[2], \
|
145 |
+
device=f0_values.device)
|
146 |
+
rand_ini[:, 0] = 0
|
147 |
+
rad_values[:, 0, :] = rad_values[:, 0, :] + rand_ini
|
148 |
+
|
149 |
+
# instantanouse phase sine[t] = sin(2*pi \sum_i=1 ^{t} rad)
|
150 |
+
if not self.flag_for_pulse:
|
151 |
+
# for normal case
|
152 |
+
|
153 |
+
# To prevent torch.cumsum numerical overflow,
|
154 |
+
# it is necessary to add -1 whenever \sum_k=1^n rad_value_k > 1.
|
155 |
+
# Buffer tmp_over_one_idx indicates the time step to add -1.
|
156 |
+
# This will not change F0 of sine because (x-1) * 2*pi = x * 2*pi
|
157 |
+
tmp_over_one = torch.cumsum(rad_values, 1) % 1
|
158 |
+
tmp_over_one_idx = (padDiff(tmp_over_one)) < 0
|
159 |
+
cumsum_shift = torch.zeros_like(rad_values)
|
160 |
+
cumsum_shift[:, 1:, :] = tmp_over_one_idx * -1.0
|
161 |
+
|
162 |
+
sines = torch.sin(torch.cumsum(rad_values + cumsum_shift, dim=1)
|
163 |
+
* 2 * np.pi)
|
164 |
+
else:
|
165 |
+
# If necessary, make sure that the first time step of every
|
166 |
+
# voiced segments is sin(pi) or cos(0)
|
167 |
+
# This is used for pulse-train generation
|
168 |
+
|
169 |
+
# identify the last time step in unvoiced segments
|
170 |
+
uv = self._f02uv(f0_values)
|
171 |
+
uv_1 = torch.roll(uv, shifts=-1, dims=1)
|
172 |
+
uv_1[:, -1, :] = 1
|
173 |
+
u_loc = (uv < 1) * (uv_1 > 0)
|
174 |
+
|
175 |
+
# get the instantanouse phase
|
176 |
+
tmp_cumsum = torch.cumsum(rad_values, dim=1)
|
177 |
+
# different batch needs to be processed differently
|
178 |
+
for idx in range(f0_values.shape[0]):
|
179 |
+
temp_sum = tmp_cumsum[idx, u_loc[idx, :, 0], :]
|
180 |
+
temp_sum[1:, :] = temp_sum[1:, :] - temp_sum[0:-1, :]
|
181 |
+
# stores the accumulation of i.phase within
|
182 |
+
# each voiced segments
|
183 |
+
tmp_cumsum[idx, :, :] = 0
|
184 |
+
tmp_cumsum[idx, u_loc[idx, :, 0], :] = temp_sum
|
185 |
+
|
186 |
+
# rad_values - tmp_cumsum: remove the accumulation of i.phase
|
187 |
+
# within the previous voiced segment.
|
188 |
+
i_phase = torch.cumsum(rad_values - tmp_cumsum, dim=1)
|
189 |
+
|
190 |
+
# get the sines
|
191 |
+
sines = torch.cos(i_phase * 2 * np.pi)
|
192 |
+
return sines
|
193 |
+
|
194 |
+
def forward(self, f0):
|
195 |
+
""" sine_tensor, uv = forward(f0)
|
196 |
+
input F0: tensor(batchsize=1, length, dim=1)
|
197 |
+
f0 for unvoiced steps should be 0
|
198 |
+
output sine_tensor: tensor(batchsize=1, length, dim)
|
199 |
+
output uv: tensor(batchsize=1, length, 1)
|
200 |
+
"""
|
201 |
+
with torch.no_grad():
|
202 |
+
f0_buf = torch.zeros(f0.shape[0], f0.shape[1], self.dim,
|
203 |
+
device=f0.device)
|
204 |
+
# fundamental component
|
205 |
+
fn = torch.multiply(f0, torch.FloatTensor([[range(1, self.harmonic_num + 2)]]).to(f0.device))
|
206 |
+
|
207 |
+
# generate sine waveforms
|
208 |
+
sine_waves = self._f02sine(fn) * self.sine_amp
|
209 |
+
|
210 |
+
# generate uv signal
|
211 |
+
# uv = torch.ones(f0.shape)
|
212 |
+
# uv = uv * (f0 > self.voiced_threshold)
|
213 |
+
uv = self._f02uv(f0)
|
214 |
+
|
215 |
+
# noise: for unvoiced should be similar to sine_amp
|
216 |
+
# std = self.sine_amp/3 -> max value ~ self.sine_amp
|
217 |
+
# . for voiced regions is self.noise_std
|
218 |
+
noise_amp = uv * self.noise_std + (1 - uv) * self.sine_amp / 3
|
219 |
+
noise = noise_amp * torch.randn_like(sine_waves)
|
220 |
+
|
221 |
+
# first: set the unvoiced part to 0 by uv
|
222 |
+
# then: additive noise
|
223 |
+
sine_waves = sine_waves * uv + noise
|
224 |
+
return sine_waves, uv, noise
|
225 |
+
|
226 |
+
|
227 |
+
class SourceModuleHnNSF(torch.nn.Module):
|
228 |
+
""" SourceModule for hn-nsf
|
229 |
+
SourceModule(sampling_rate, harmonic_num=0, sine_amp=0.1,
|
230 |
+
add_noise_std=0.003, voiced_threshod=0)
|
231 |
+
sampling_rate: sampling_rate in Hz
|
232 |
+
harmonic_num: number of harmonic above F0 (default: 0)
|
233 |
+
sine_amp: amplitude of sine source signal (default: 0.1)
|
234 |
+
add_noise_std: std of additive Gaussian noise (default: 0.003)
|
235 |
+
note that amplitude of noise in unvoiced is decided
|
236 |
+
by sine_amp
|
237 |
+
voiced_threshold: threhold to set U/V given F0 (default: 0)
|
238 |
+
Sine_source, noise_source = SourceModuleHnNSF(F0_sampled)
|
239 |
+
F0_sampled (batchsize, length, 1)
|
240 |
+
Sine_source (batchsize, length, 1)
|
241 |
+
noise_source (batchsize, length 1)
|
242 |
+
uv (batchsize, length, 1)
|
243 |
+
"""
|
244 |
+
|
245 |
+
def __init__(self, sampling_rate, harmonic_num=0, sine_amp=0.1,
|
246 |
+
add_noise_std=0.003, voiced_threshod=0):
|
247 |
+
super(SourceModuleHnNSF, self).__init__()
|
248 |
+
|
249 |
+
self.sine_amp = sine_amp
|
250 |
+
self.noise_std = add_noise_std
|
251 |
+
|
252 |
+
# to produce sine waveforms
|
253 |
+
self.l_sin_gen = SineGen(sampling_rate, harmonic_num,
|
254 |
+
sine_amp, add_noise_std, voiced_threshod)
|
255 |
+
|
256 |
+
# to merge source harmonics into a single excitation
|
257 |
+
self.l_linear = torch.nn.Linear(harmonic_num + 1, 1)
|
258 |
+
self.l_tanh = torch.nn.Tanh()
|
259 |
+
|
260 |
+
def forward(self, x):
|
261 |
+
"""
|
262 |
+
Sine_source, noise_source = SourceModuleHnNSF(F0_sampled)
|
263 |
+
F0_sampled (batchsize, length, 1)
|
264 |
+
Sine_source (batchsize, length, 1)
|
265 |
+
noise_source (batchsize, length 1)
|
266 |
+
"""
|
267 |
+
# source for harmonic branch
|
268 |
+
sine_wavs, uv, _ = self.l_sin_gen(x)
|
269 |
+
sine_merge = self.l_tanh(self.l_linear(sine_wavs))
|
270 |
+
|
271 |
+
# source for noise branch, in the same shape as uv
|
272 |
+
noise = torch.randn_like(uv) * self.sine_amp / 3
|
273 |
+
return sine_merge, noise, uv
|
274 |
+
|
275 |
+
|
276 |
+
class Generator(torch.nn.Module):
|
277 |
+
def __init__(self, h):
|
278 |
+
super(Generator, self).__init__()
|
279 |
+
self.h = h
|
280 |
+
|
281 |
+
self.num_kernels = len(h["resblock_kernel_sizes"])
|
282 |
+
self.num_upsamples = len(h["upsample_rates"])
|
283 |
+
self.f0_upsamp = torch.nn.Upsample(scale_factor=np.prod(h["upsample_rates"]))
|
284 |
+
self.m_source = SourceModuleHnNSF(
|
285 |
+
sampling_rate=h["sampling_rate"],
|
286 |
+
harmonic_num=8)
|
287 |
+
self.noise_convs = nn.ModuleList()
|
288 |
+
self.conv_pre = weight_norm(Conv1d(h["inter_channels"], h["upsample_initial_channel"], 7, 1, padding=3))
|
289 |
+
resblock = ResBlock1 if h["resblock"] == '1' else ResBlock2
|
290 |
+
self.ups = nn.ModuleList()
|
291 |
+
for i, (u, k) in enumerate(zip(h["upsample_rates"], h["upsample_kernel_sizes"])):
|
292 |
+
c_cur = h["upsample_initial_channel"] // (2 ** (i + 1))
|
293 |
+
self.ups.append(weight_norm(
|
294 |
+
ConvTranspose1d(h["upsample_initial_channel"] // (2 ** i), h["upsample_initial_channel"] // (2 ** (i + 1)),
|
295 |
+
k, u, padding=(k - u) // 2)))
|
296 |
+
if i + 1 < len(h["upsample_rates"]): #
|
297 |
+
stride_f0 = np.prod(h["upsample_rates"][i + 1:])
|
298 |
+
self.noise_convs.append(Conv1d(
|
299 |
+
1, c_cur, kernel_size=stride_f0 * 2, stride=stride_f0, padding=stride_f0 // 2))
|
300 |
+
else:
|
301 |
+
self.noise_convs.append(Conv1d(1, c_cur, kernel_size=1))
|
302 |
+
self.resblocks = nn.ModuleList()
|
303 |
+
for i in range(len(self.ups)):
|
304 |
+
ch = h["upsample_initial_channel"] // (2 ** (i + 1))
|
305 |
+
for j, (k, d) in enumerate(zip(h["resblock_kernel_sizes"], h["resblock_dilation_sizes"])):
|
306 |
+
self.resblocks.append(resblock(h, ch, k, d))
|
307 |
+
|
308 |
+
self.conv_post = weight_norm(Conv1d(ch, 1, 7, 1, padding=3))
|
309 |
+
self.ups.apply(init_weights)
|
310 |
+
self.conv_post.apply(init_weights)
|
311 |
+
self.cond = nn.Conv1d(h['gin_channels'], h['upsample_initial_channel'], 1)
|
312 |
+
|
313 |
+
def forward(self, x, f0, g=None):
|
314 |
+
# print(1,x.shape,f0.shape,f0[:, None].shape)
|
315 |
+
f0 = self.f0_upsamp(f0[:, None]).transpose(1, 2) # bs,n,t
|
316 |
+
# print(2,f0.shape)
|
317 |
+
har_source, noi_source, uv = self.m_source(f0)
|
318 |
+
har_source = har_source.transpose(1, 2)
|
319 |
+
x = self.conv_pre(x)
|
320 |
+
x = x + self.cond(g)
|
321 |
+
# print(124,x.shape,har_source.shape)
|
322 |
+
for i in range(self.num_upsamples):
|
323 |
+
x = F.leaky_relu(x, LRELU_SLOPE)
|
324 |
+
# print(3,x.shape)
|
325 |
+
x = self.ups[i](x)
|
326 |
+
x_source = self.noise_convs[i](har_source)
|
327 |
+
# print(4,x_source.shape,har_source.shape,x.shape)
|
328 |
+
x = x + x_source
|
329 |
+
xs = None
|
330 |
+
for j in range(self.num_kernels):
|
331 |
+
if xs is None:
|
332 |
+
xs = self.resblocks[i * self.num_kernels + j](x)
|
333 |
+
else:
|
334 |
+
xs += self.resblocks[i * self.num_kernels + j](x)
|
335 |
+
x = xs / self.num_kernels
|
336 |
+
x = F.leaky_relu(x)
|
337 |
+
x = self.conv_post(x)
|
338 |
+
x = torch.tanh(x)
|
339 |
+
|
340 |
+
return x
|
341 |
+
|
342 |
+
def remove_weight_norm(self):
|
343 |
+
print('Removing weight norm...')
|
344 |
+
for l in self.ups:
|
345 |
+
remove_weight_norm(l)
|
346 |
+
for l in self.resblocks:
|
347 |
+
l.remove_weight_norm()
|
348 |
+
remove_weight_norm(self.conv_pre)
|
349 |
+
remove_weight_norm(self.conv_post)
|
350 |
+
|
351 |
+
|
352 |
+
class DiscriminatorP(torch.nn.Module):
|
353 |
+
def __init__(self, period, kernel_size=5, stride=3, use_spectral_norm=False):
|
354 |
+
super(DiscriminatorP, self).__init__()
|
355 |
+
self.period = period
|
356 |
+
norm_f = weight_norm if use_spectral_norm == False else spectral_norm
|
357 |
+
self.convs = nn.ModuleList([
|
358 |
+
norm_f(Conv2d(1, 32, (kernel_size, 1), (stride, 1), padding=(get_padding(5, 1), 0))),
|
359 |
+
norm_f(Conv2d(32, 128, (kernel_size, 1), (stride, 1), padding=(get_padding(5, 1), 0))),
|
360 |
+
norm_f(Conv2d(128, 512, (kernel_size, 1), (stride, 1), padding=(get_padding(5, 1), 0))),
|
361 |
+
norm_f(Conv2d(512, 1024, (kernel_size, 1), (stride, 1), padding=(get_padding(5, 1), 0))),
|
362 |
+
norm_f(Conv2d(1024, 1024, (kernel_size, 1), 1, padding=(2, 0))),
|
363 |
+
])
|
364 |
+
self.conv_post = norm_f(Conv2d(1024, 1, (3, 1), 1, padding=(1, 0)))
|
365 |
+
|
366 |
+
def forward(self, x):
|
367 |
+
fmap = []
|
368 |
+
|
369 |
+
# 1d to 2d
|
370 |
+
b, c, t = x.shape
|
371 |
+
if t % self.period != 0: # pad first
|
372 |
+
n_pad = self.period - (t % self.period)
|
373 |
+
x = F.pad(x, (0, n_pad), "reflect")
|
374 |
+
t = t + n_pad
|
375 |
+
x = x.view(b, c, t // self.period, self.period)
|
376 |
+
|
377 |
+
for l in self.convs:
|
378 |
+
x = l(x)
|
379 |
+
x = F.leaky_relu(x, LRELU_SLOPE)
|
380 |
+
fmap.append(x)
|
381 |
+
x = self.conv_post(x)
|
382 |
+
fmap.append(x)
|
383 |
+
x = torch.flatten(x, 1, -1)
|
384 |
+
|
385 |
+
return x, fmap
|
386 |
+
|
387 |
+
|
388 |
+
class MultiPeriodDiscriminator(torch.nn.Module):
|
389 |
+
def __init__(self, periods=None):
|
390 |
+
super(MultiPeriodDiscriminator, self).__init__()
|
391 |
+
self.periods = periods if periods is not None else [2, 3, 5, 7, 11]
|
392 |
+
self.discriminators = nn.ModuleList()
|
393 |
+
for period in self.periods:
|
394 |
+
self.discriminators.append(DiscriminatorP(period))
|
395 |
+
|
396 |
+
def forward(self, y, y_hat):
|
397 |
+
y_d_rs = []
|
398 |
+
y_d_gs = []
|
399 |
+
fmap_rs = []
|
400 |
+
fmap_gs = []
|
401 |
+
for i, d in enumerate(self.discriminators):
|
402 |
+
y_d_r, fmap_r = d(y)
|
403 |
+
y_d_g, fmap_g = d(y_hat)
|
404 |
+
y_d_rs.append(y_d_r)
|
405 |
+
fmap_rs.append(fmap_r)
|
406 |
+
y_d_gs.append(y_d_g)
|
407 |
+
fmap_gs.append(fmap_g)
|
408 |
+
|
409 |
+
return y_d_rs, y_d_gs, fmap_rs, fmap_gs
|
410 |
+
|
411 |
+
|
412 |
+
class DiscriminatorS(torch.nn.Module):
|
413 |
+
def __init__(self, use_spectral_norm=False):
|
414 |
+
super(DiscriminatorS, self).__init__()
|
415 |
+
norm_f = weight_norm if use_spectral_norm == False else spectral_norm
|
416 |
+
self.convs = nn.ModuleList([
|
417 |
+
norm_f(Conv1d(1, 128, 15, 1, padding=7)),
|
418 |
+
norm_f(Conv1d(128, 128, 41, 2, groups=4, padding=20)),
|
419 |
+
norm_f(Conv1d(128, 256, 41, 2, groups=16, padding=20)),
|
420 |
+
norm_f(Conv1d(256, 512, 41, 4, groups=16, padding=20)),
|
421 |
+
norm_f(Conv1d(512, 1024, 41, 4, groups=16, padding=20)),
|
422 |
+
norm_f(Conv1d(1024, 1024, 41, 1, groups=16, padding=20)),
|
423 |
+
norm_f(Conv1d(1024, 1024, 5, 1, padding=2)),
|
424 |
+
])
|
425 |
+
self.conv_post = norm_f(Conv1d(1024, 1, 3, 1, padding=1))
|
426 |
+
|
427 |
+
def forward(self, x):
|
428 |
+
fmap = []
|
429 |
+
for l in self.convs:
|
430 |
+
x = l(x)
|
431 |
+
x = F.leaky_relu(x, LRELU_SLOPE)
|
432 |
+
fmap.append(x)
|
433 |
+
x = self.conv_post(x)
|
434 |
+
fmap.append(x)
|
435 |
+
x = torch.flatten(x, 1, -1)
|
436 |
+
|
437 |
+
return x, fmap
|
438 |
+
|
439 |
+
|
440 |
+
class MultiScaleDiscriminator(torch.nn.Module):
|
441 |
+
def __init__(self):
|
442 |
+
super(MultiScaleDiscriminator, self).__init__()
|
443 |
+
self.discriminators = nn.ModuleList([
|
444 |
+
DiscriminatorS(use_spectral_norm=True),
|
445 |
+
DiscriminatorS(),
|
446 |
+
DiscriminatorS(),
|
447 |
+
])
|
448 |
+
self.meanpools = nn.ModuleList([
|
449 |
+
AvgPool1d(4, 2, padding=2),
|
450 |
+
AvgPool1d(4, 2, padding=2)
|
451 |
+
])
|
452 |
+
|
453 |
+
def forward(self, y, y_hat):
|
454 |
+
y_d_rs = []
|
455 |
+
y_d_gs = []
|
456 |
+
fmap_rs = []
|
457 |
+
fmap_gs = []
|
458 |
+
for i, d in enumerate(self.discriminators):
|
459 |
+
if i != 0:
|
460 |
+
y = self.meanpools[i - 1](y)
|
461 |
+
y_hat = self.meanpools[i - 1](y_hat)
|
462 |
+
y_d_r, fmap_r = d(y)
|
463 |
+
y_d_g, fmap_g = d(y_hat)
|
464 |
+
y_d_rs.append(y_d_r)
|
465 |
+
fmap_rs.append(fmap_r)
|
466 |
+
y_d_gs.append(y_d_g)
|
467 |
+
fmap_gs.append(fmap_g)
|
468 |
+
|
469 |
+
return y_d_rs, y_d_gs, fmap_rs, fmap_gs
|
470 |
+
|
471 |
+
|
472 |
+
def feature_loss(fmap_r, fmap_g):
|
473 |
+
loss = 0
|
474 |
+
for dr, dg in zip(fmap_r, fmap_g):
|
475 |
+
for rl, gl in zip(dr, dg):
|
476 |
+
loss += torch.mean(torch.abs(rl - gl))
|
477 |
+
|
478 |
+
return loss * 2
|
479 |
+
|
480 |
+
|
481 |
+
def discriminator_loss(disc_real_outputs, disc_generated_outputs):
|
482 |
+
loss = 0
|
483 |
+
r_losses = []
|
484 |
+
g_losses = []
|
485 |
+
for dr, dg in zip(disc_real_outputs, disc_generated_outputs):
|
486 |
+
r_loss = torch.mean((1 - dr) ** 2)
|
487 |
+
g_loss = torch.mean(dg ** 2)
|
488 |
+
loss += (r_loss + g_loss)
|
489 |
+
r_losses.append(r_loss.item())
|
490 |
+
g_losses.append(g_loss.item())
|
491 |
+
|
492 |
+
return loss, r_losses, g_losses
|
493 |
+
|
494 |
+
|
495 |
+
def generator_loss(disc_outputs):
|
496 |
+
loss = 0
|
497 |
+
gen_losses = []
|
498 |
+
for dg in disc_outputs:
|
499 |
+
l = torch.mean((1 - dg) ** 2)
|
500 |
+
gen_losses.append(l)
|
501 |
+
loss += l
|
502 |
+
|
503 |
+
return loss, gen_losses
|
vdecoder/hifigan/nvSTFT.py
ADDED
@@ -0,0 +1,111 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
import os
|
3 |
+
os.environ["LRU_CACHE_CAPACITY"] = "3"
|
4 |
+
import random
|
5 |
+
import torch
|
6 |
+
import torch.utils.data
|
7 |
+
import numpy as np
|
8 |
+
import librosa
|
9 |
+
from librosa.util import normalize
|
10 |
+
from librosa.filters import mel as librosa_mel_fn
|
11 |
+
from scipy.io.wavfile import read
|
12 |
+
import soundfile as sf
|
13 |
+
|
14 |
+
def load_wav_to_torch(full_path, target_sr=None, return_empty_on_exception=False):
|
15 |
+
sampling_rate = None
|
16 |
+
try:
|
17 |
+
data, sampling_rate = sf.read(full_path, always_2d=True)# than soundfile.
|
18 |
+
except Exception as ex:
|
19 |
+
print(f"'{full_path}' failed to load.\nException:")
|
20 |
+
print(ex)
|
21 |
+
if return_empty_on_exception:
|
22 |
+
return [], sampling_rate or target_sr or 32000
|
23 |
+
else:
|
24 |
+
raise Exception(ex)
|
25 |
+
|
26 |
+
if len(data.shape) > 1:
|
27 |
+
data = data[:, 0]
|
28 |
+
assert len(data) > 2# check duration of audio file is > 2 samples (because otherwise the slice operation was on the wrong dimension)
|
29 |
+
|
30 |
+
if np.issubdtype(data.dtype, np.integer): # if audio data is type int
|
31 |
+
max_mag = -np.iinfo(data.dtype).min # maximum magnitude = min possible value of intXX
|
32 |
+
else: # if audio data is type fp32
|
33 |
+
max_mag = max(np.amax(data), -np.amin(data))
|
34 |
+
max_mag = (2**31)+1 if max_mag > (2**15) else ((2**15)+1 if max_mag > 1.01 else 1.0) # data should be either 16-bit INT, 32-bit INT or [-1 to 1] float32
|
35 |
+
|
36 |
+
data = torch.FloatTensor(data.astype(np.float32))/max_mag
|
37 |
+
|
38 |
+
if (torch.isinf(data) | torch.isnan(data)).any() and return_empty_on_exception:# resample will crash with inf/NaN inputs. return_empty_on_exception will return empty arr instead of except
|
39 |
+
return [], sampling_rate or target_sr or 32000
|
40 |
+
if target_sr is not None and sampling_rate != target_sr:
|
41 |
+
data = torch.from_numpy(librosa.core.resample(data.numpy(), orig_sr=sampling_rate, target_sr=target_sr))
|
42 |
+
sampling_rate = target_sr
|
43 |
+
|
44 |
+
return data, sampling_rate
|
45 |
+
|
46 |
+
def dynamic_range_compression(x, C=1, clip_val=1e-5):
|
47 |
+
return np.log(np.clip(x, a_min=clip_val, a_max=None) * C)
|
48 |
+
|
49 |
+
def dynamic_range_decompression(x, C=1):
|
50 |
+
return np.exp(x) / C
|
51 |
+
|
52 |
+
def dynamic_range_compression_torch(x, C=1, clip_val=1e-5):
|
53 |
+
return torch.log(torch.clamp(x, min=clip_val) * C)
|
54 |
+
|
55 |
+
def dynamic_range_decompression_torch(x, C=1):
|
56 |
+
return torch.exp(x) / C
|
57 |
+
|
58 |
+
class STFT():
|
59 |
+
def __init__(self, sr=22050, n_mels=80, n_fft=1024, win_size=1024, hop_length=256, fmin=20, fmax=11025, clip_val=1e-5):
|
60 |
+
self.target_sr = sr
|
61 |
+
|
62 |
+
self.n_mels = n_mels
|
63 |
+
self.n_fft = n_fft
|
64 |
+
self.win_size = win_size
|
65 |
+
self.hop_length = hop_length
|
66 |
+
self.fmin = fmin
|
67 |
+
self.fmax = fmax
|
68 |
+
self.clip_val = clip_val
|
69 |
+
self.mel_basis = {}
|
70 |
+
self.hann_window = {}
|
71 |
+
|
72 |
+
def get_mel(self, y, center=False):
|
73 |
+
sampling_rate = self.target_sr
|
74 |
+
n_mels = self.n_mels
|
75 |
+
n_fft = self.n_fft
|
76 |
+
win_size = self.win_size
|
77 |
+
hop_length = self.hop_length
|
78 |
+
fmin = self.fmin
|
79 |
+
fmax = self.fmax
|
80 |
+
clip_val = self.clip_val
|
81 |
+
|
82 |
+
if torch.min(y) < -1.:
|
83 |
+
print('min value is ', torch.min(y))
|
84 |
+
if torch.max(y) > 1.:
|
85 |
+
print('max value is ', torch.max(y))
|
86 |
+
|
87 |
+
if fmax not in self.mel_basis:
|
88 |
+
mel = librosa_mel_fn(sr=sampling_rate, n_fft=n_fft, n_mels=n_mels, fmin=fmin, fmax=fmax)
|
89 |
+
self.mel_basis[str(fmax)+'_'+str(y.device)] = torch.from_numpy(mel).float().to(y.device)
|
90 |
+
self.hann_window[str(y.device)] = torch.hann_window(self.win_size).to(y.device)
|
91 |
+
|
92 |
+
y = torch.nn.functional.pad(y.unsqueeze(1), (int((n_fft-hop_length)/2), int((n_fft-hop_length)/2)), mode='reflect')
|
93 |
+
y = y.squeeze(1)
|
94 |
+
|
95 |
+
spec = torch.stft(y, n_fft, hop_length=hop_length, win_length=win_size, window=self.hann_window[str(y.device)],
|
96 |
+
center=center, pad_mode='reflect', normalized=False, onesided=True)
|
97 |
+
# print(111,spec)
|
98 |
+
spec = torch.sqrt(spec.pow(2).sum(-1)+(1e-9))
|
99 |
+
# print(222,spec)
|
100 |
+
spec = torch.matmul(self.mel_basis[str(fmax)+'_'+str(y.device)], spec)
|
101 |
+
# print(333,spec)
|
102 |
+
spec = dynamic_range_compression_torch(spec, clip_val=clip_val)
|
103 |
+
# print(444,spec)
|
104 |
+
return spec
|
105 |
+
|
106 |
+
def __call__(self, audiopath):
|
107 |
+
audio, sr = load_wav_to_torch(audiopath, target_sr=self.target_sr)
|
108 |
+
spect = self.get_mel(audio.unsqueeze(0)).squeeze(0)
|
109 |
+
return spect
|
110 |
+
|
111 |
+
stft = STFT()
|
vdecoder/hifigan/utils.py
ADDED
@@ -0,0 +1,68 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import glob
|
2 |
+
import os
|
3 |
+
import matplotlib
|
4 |
+
import torch
|
5 |
+
from torch.nn.utils import weight_norm
|
6 |
+
# matplotlib.use("Agg")
|
7 |
+
import matplotlib.pylab as plt
|
8 |
+
|
9 |
+
|
10 |
+
def plot_spectrogram(spectrogram):
|
11 |
+
fig, ax = plt.subplots(figsize=(10, 2))
|
12 |
+
im = ax.imshow(spectrogram, aspect="auto", origin="lower",
|
13 |
+
interpolation='none')
|
14 |
+
plt.colorbar(im, ax=ax)
|
15 |
+
|
16 |
+
fig.canvas.draw()
|
17 |
+
plt.close()
|
18 |
+
|
19 |
+
return fig
|
20 |
+
|
21 |
+
|
22 |
+
def init_weights(m, mean=0.0, std=0.01):
|
23 |
+
classname = m.__class__.__name__
|
24 |
+
if classname.find("Conv") != -1:
|
25 |
+
m.weight.data.normal_(mean, std)
|
26 |
+
|
27 |
+
|
28 |
+
def apply_weight_norm(m):
|
29 |
+
classname = m.__class__.__name__
|
30 |
+
if classname.find("Conv") != -1:
|
31 |
+
weight_norm(m)
|
32 |
+
|
33 |
+
|
34 |
+
def get_padding(kernel_size, dilation=1):
|
35 |
+
return int((kernel_size*dilation - dilation)/2)
|
36 |
+
|
37 |
+
|
38 |
+
def load_checkpoint(filepath, device):
|
39 |
+
assert os.path.isfile(filepath)
|
40 |
+
print("Loading '{}'".format(filepath))
|
41 |
+
checkpoint_dict = torch.load(filepath, map_location=device)
|
42 |
+
print("Complete.")
|
43 |
+
return checkpoint_dict
|
44 |
+
|
45 |
+
|
46 |
+
def save_checkpoint(filepath, obj):
|
47 |
+
print("Saving checkpoint to {}".format(filepath))
|
48 |
+
torch.save(obj, filepath)
|
49 |
+
print("Complete.")
|
50 |
+
|
51 |
+
|
52 |
+
def del_old_checkpoints(cp_dir, prefix, n_models=2):
|
53 |
+
pattern = os.path.join(cp_dir, prefix + '????????')
|
54 |
+
cp_list = glob.glob(pattern) # get checkpoint paths
|
55 |
+
cp_list = sorted(cp_list)# sort by iter
|
56 |
+
if len(cp_list) > n_models: # if more than n_models models are found
|
57 |
+
for cp in cp_list[:-n_models]:# delete the oldest models other than lastest n_models
|
58 |
+
open(cp, 'w').close()# empty file contents
|
59 |
+
os.unlink(cp)# delete file (move to trash when using Colab)
|
60 |
+
|
61 |
+
|
62 |
+
def scan_checkpoint(cp_dir, prefix):
|
63 |
+
pattern = os.path.join(cp_dir, prefix + '????????')
|
64 |
+
cp_list = glob.glob(pattern)
|
65 |
+
if len(cp_list) == 0:
|
66 |
+
return None
|
67 |
+
return sorted(cp_list)[-1]
|
68 |
+
|