Spaces:
Runtime error
Runtime error
import io | |
import logging | |
import time | |
from pathlib import Path | |
import librosa | |
import numpy as np | |
import soundfile | |
from inference import infer_tool | |
from inference import slicer | |
from inference.infer_tool import Svc | |
logging.getLogger('numba').setLevel(logging.WARNING) | |
chunks_dict = infer_tool.read_temp("inference/chunks_temp.json") | |
model_path = "logs/48k/G_700000.pth" | |
config_path = "configs/suiji.json" | |
svc_model = Svc(model_path, config_path) | |
infer_tool.mkdir(["raw", "results"]) | |
# 支持多个wav文件,放在raw文件夹下 | |
clean_names = ["2043_7"] | |
# 例如:clean_names = ["千千阙歌_1", "千千阙歌_2", "千千阙歌_3", "千千阙歌_4", "千千阙歌_5", "千千阙歌_6", "千千阙歌_7", "千千阙歌_8"] | |
# 中文字符过多会报编码错误,分两批就好 | |
trans = [0] # 音高调整,支持正负(半音) | |
spk_list = ['suiji'] # 每次同时合成多语者音色 | |
slice_db = -40 # 默认-40,嘈杂的音频可以-30,干声保留呼吸可以-50 | |
wav_format = 'wav' # 音频输出格式 | |
infer_tool.fill_a_to_b(trans, clean_names) | |
for clean_name, tran in zip(clean_names, trans): | |
raw_audio_path = f"raw/{clean_name}" | |
if "." not in raw_audio_path: | |
raw_audio_path += ".wav" | |
infer_tool.format_wav(raw_audio_path) | |
wav_path = Path(raw_audio_path).with_suffix('.wav') | |
chunks = slicer.cut(wav_path, db_thresh=slice_db) | |
audio_data, audio_sr = slicer.chunks2audio(wav_path, chunks) | |
for spk in spk_list: | |
audio = [] | |
for (slice_tag, data) in audio_data: | |
print(f'#=====segment start, {round(len(data) / audio_sr, 3)}s======') | |
length = int(np.ceil(len(data) / audio_sr * svc_model.target_sample)) | |
raw_path = io.BytesIO() | |
soundfile.write(raw_path, data, audio_sr, format="wav") | |
raw_path.seek(0) | |
if slice_tag: | |
print('jump empty segment') | |
_audio = np.zeros(length) | |
else: | |
out_audio, out_sr = svc_model.infer(spk, tran, raw_path) | |
_audio = out_audio.cpu().numpy() | |
audio.extend(list(_audio)) | |
res_path = f'./results/{clean_name}_{tran}key_{spk}.{wav_format}' | |
soundfile.write(res_path, audio, svc_model.target_sample, format=wav_format) | |