File size: 3,765 Bytes
4e9cd67
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
import os
import argparse

import torch
import json
from glob import glob

from pyworld import pyworld
from tqdm import tqdm
from scipy.io import wavfile

import utils
from mel_processing import mel_spectrogram_torch
#import h5py
import logging
logging.getLogger('numba').setLevel(logging.WARNING)

import parselmouth
import librosa
import numpy as np
def stft(y):
    return librosa.stft(
        y=y,
        n_fft=1280,
        hop_length=320,
        win_length=1280,
    )

def energy(y):
    # Extract energy
    S = librosa.magphase(stft(y))[0]
    e = np.sqrt(np.sum(S ** 2, axis=0))  # np.linalg.norm(S, axis=0)
    return e.squeeze()  # (Number of frames) => (654,)

def get_energy(path, p_len=None):
    wav, sr = librosa.load(path, 48000)
    e = energy(wav)
    if p_len is None:
        p_len = wav.shape[0] // 320
    assert e.shape[0] -p_len <2 ,(e.shape[0] ,p_len)
    e = e[: p_len]
    return e



def get_f0(path,p_len=None, f0_up_key=0):
    x, _ = librosa.load(path, 48000)
    if p_len is None:
        p_len = x.shape[0]//320
    else:
        assert abs(p_len-x.shape[0]//320) < 3, (path, p_len, x.shape)
    time_step = 320 / 48000 * 1000
    f0_min = 50
    f0_max = 1100
    f0_mel_min = 1127 * np.log(1 + f0_min / 700)
    f0_mel_max = 1127 * np.log(1 + f0_max / 700)

    f0 = parselmouth.Sound(x, 48000).to_pitch_ac(
        time_step=time_step / 1000, voicing_threshold=0.6,
        pitch_floor=f0_min, pitch_ceiling=f0_max).selected_array['frequency']

    pad_size=(p_len - len(f0) + 1) // 2
    if(pad_size>0 or p_len - len(f0) - pad_size>0):
        f0 = np.pad(f0,[[pad_size,p_len - len(f0) - pad_size]], mode='constant')

    f0bak = f0.copy()
    f0 *= pow(2, f0_up_key / 12)
    f0_mel = 1127 * np.log(1 + f0 / 700)
    f0_mel[f0_mel > 0] = (f0_mel[f0_mel > 0] - f0_mel_min) * 254 / (f0_mel_max - f0_mel_min) + 1
    f0_mel[f0_mel <= 1] = 1
    f0_mel[f0_mel > 255] = 255
    f0_coarse = np.rint(f0_mel).astype(np.int)
    return f0_coarse, f0bak

def resize2d(x, target_len):
    source = np.array(x)
    source[source<0.001] = np.nan
    target = np.interp(np.arange(0, len(source)*target_len, len(source))/ target_len, np.arange(0, len(source)), source)
    res = np.nan_to_num(target)
    return res

def compute_f0(path, c_len):
    x, sr = librosa.load(path, sr=48000)
    f0, t = pyworld.dio(
        x.astype(np.double),
        fs=sr,
        f0_ceil=800,
        frame_period=1000 * 320 / sr,
    )
    f0 = pyworld.stonemask(x.astype(np.double), f0, t, 48000)
    for index, pitch in enumerate(f0):
        f0[index] = round(pitch, 1)
    assert abs(c_len - x.shape[0]//320) < 3, (c_len, f0.shape)

    return None, resize2d(f0, c_len)


def process(filename):
    print(filename)
    save_name = filename+".soft.pt"
    if not os.path.exists(save_name):
        devive = torch.device("cuda" if torch.cuda.is_available() else "cpu")
        wav, _ = librosa.load(filename, sr=16000)
        wav = torch.from_numpy(wav).unsqueeze(0).to(devive)
        c = utils.get_hubert_content(hmodel, wav)
        torch.save(c.cpu(), save_name)
    else:
        c = torch.load(save_name)
    f0path = filename+".f0.npy"
    if not os.path.exists(f0path):
        cf0, f0 = compute_f0(filename, c.shape[-1] * 3)
        np.save(f0path, f0)



if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument("--in_dir", type=str, default="dataset/48k", help="path to input dir")
    args = parser.parse_args()

    print("Loading hubert for content...")
    hmodel = utils.get_hubert_model(0 if torch.cuda.is_available() else None)
    print("Loaded hubert.")

    filenames = glob(f'{args.in_dir}/*/*.wav', recursive=True)#[:10]
    
    for filename in tqdm(filenames):
        process(filename)