Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,63 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from transformers import OwlViTProcessor, OwlViTForObjectDetection
|
3 |
+
from PIL import Image, ImageDraw
|
4 |
+
import gradio as gr
|
5 |
+
|
6 |
+
# Load pre-trained Owl-ViT model and processor
|
7 |
+
model = OwlViTForObjectDetection.from_pretrained("google/owlvit-base-patch32")
|
8 |
+
processor = OwlViTProcessor.from_pretrained("google/owlvit-base-patch32")
|
9 |
+
|
10 |
+
def detect_objects(image: Image.Image, texts: str):
|
11 |
+
# Prepare text queries
|
12 |
+
text_queries = [text.strip() for text in texts.split(',')]
|
13 |
+
|
14 |
+
# Prepare inputs for the model
|
15 |
+
inputs = processor(text=text_queries, images=image, return_tensors="pt")
|
16 |
+
|
17 |
+
# Perform inference with the model
|
18 |
+
with torch.no_grad():
|
19 |
+
outputs = model(**inputs)
|
20 |
+
|
21 |
+
# Post-process the outputs to extract detected boxes and labels
|
22 |
+
target_sizes = torch.tensor([image.size[::-1]])
|
23 |
+
results = processor.post_process(outputs=outputs, target_sizes=target_sizes)
|
24 |
+
|
25 |
+
# Extracting results
|
26 |
+
detected_boxes = []
|
27 |
+
for i, box in enumerate(results[0]["boxes"]):
|
28 |
+
score = results[0]["scores"][i].item()
|
29 |
+
label = results[0]["labels"][i].item()
|
30 |
+
if score > 0.1: # Confidence threshold
|
31 |
+
detected_boxes.append((box, text_queries[label], score))
|
32 |
+
|
33 |
+
return detected_boxes
|
34 |
+
|
35 |
+
def visualize(image, texts):
|
36 |
+
# Detect objects in the image
|
37 |
+
boxes = detect_objects(image, texts)
|
38 |
+
|
39 |
+
# Draw boxes on the image
|
40 |
+
image = image.copy()
|
41 |
+
draw = ImageDraw.Draw(image)
|
42 |
+
for box, label, score in boxes:
|
43 |
+
box = [round(coord) for coord in box.tolist()]
|
44 |
+
draw.rectangle(box, outline="red", width=3)
|
45 |
+
draw.text((box[0], box[1]), f"{label}: {score:.2f}", fill="red")
|
46 |
+
|
47 |
+
return image
|
48 |
+
|
49 |
+
# Gradio Interface
|
50 |
+
def gradio_interface(image, texts):
|
51 |
+
return visualize(image, texts)
|
52 |
+
|
53 |
+
interface = gr.Interface(
|
54 |
+
fn=gradio_interface,
|
55 |
+
inputs=[gr.Image(type="pil", label="Upload an Image"), gr.Textbox(label="Comma-separated Text Queries")],
|
56 |
+
outputs=gr.Image(type="pil", label="Object Detection Output"),
|
57 |
+
title="Owl-ViT Object Detection",
|
58 |
+
description="Upload an image and provide comma-separated text queries for object detection.",
|
59 |
+
allow_flagging="never"
|
60 |
+
)
|
61 |
+
|
62 |
+
if __name__ == "__main__":
|
63 |
+
interface.launch()
|