tfrere's picture
add elevenlabs
dd2e4cf
raw
history blame
16.7 kB
from fastapi import FastAPI, HTTPException, Request
from fastapi.middleware.cors import CORSMiddleware
from fastapi.staticfiles import StaticFiles
from pydantic import BaseModel, Field
from typing import List, Optional, Dict
import os
from dotenv import load_dotenv
import base64
import time
import random
import asyncio
import aiohttp
from lorem.text import TextLorem
from contextlib import asynccontextmanager
lorem = TextLorem(wsep='-', srange=(2,3), words="A B C D".split())
# Import local modules
if os.getenv("DOCKER_ENV"):
from server.game.game_logic import GameState, StoryGenerator, MAX_RADIATION
from server.api_clients import FluxClient
else:
from game.game_logic import GameState, StoryGenerator, MAX_RADIATION
from api_clients import FluxClient
# Load environment variables
load_dotenv()
# API configuration
API_HOST = os.getenv("API_HOST", "0.0.0.0")
API_PORT = int(os.getenv("API_PORT", "8000"))
STATIC_FILES_DIR = os.getenv("STATIC_FILES_DIR", "../client/dist")
HF_API_KEY = os.getenv("HF_API_KEY")
AWS_TOKEN = os.getenv("AWS_TOKEN", "VHVlIEZlYiAyNyAwOTowNzoyMiBDRVQgMjAyNA==") # Token par défaut pour le développement
ELEVEN_LABS_API_KEY = os.getenv("ELEVEN_LABS_API_KEY") # Nouvelle clé d'API
app = FastAPI(title="Echoes of Influence")
# Configure CORS
app.add_middleware(
CORSMiddleware,
allow_origins=[
"http://localhost:5173", # Vite dev server
f"http://localhost:{API_PORT}", # API port
"https://huggingface.co", # HF main domain
"https://*.hf.space", # HF Spaces domains
"https://mistral-ai-game-jam-dont-lookup.hf.space" # Our HF Space URL
],
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
# Initialize game components
game_state = GameState()
# Check for API key
mistral_api_key = os.getenv("MISTRAL_API_KEY")
if not mistral_api_key:
raise ValueError("MISTRAL_API_KEY environment variable is not set")
story_generator = StoryGenerator(api_key=mistral_api_key)
flux_client = FluxClient(api_key=HF_API_KEY)
# Store client sessions and requests by type
client_sessions: Dict[str, aiohttp.ClientSession] = {}
client_requests: Dict[str, Dict[str, asyncio.Task]] = {}
async def get_client_session(client_id: str) -> aiohttp.ClientSession:
"""Get or create a client session"""
if client_id not in client_sessions:
client_sessions[client_id] = aiohttp.ClientSession()
return client_sessions[client_id]
async def cancel_previous_request(client_id: str, request_type: str):
"""Cancel previous request if it exists"""
if client_id in client_requests and request_type in client_requests[client_id]:
task = client_requests[client_id][request_type]
if not task.done():
task.cancel()
try:
await task
except asyncio.CancelledError:
pass
async def store_request(client_id: str, request_type: str, task: asyncio.Task):
"""Store a request for a client"""
if client_id not in client_requests:
client_requests[client_id] = {}
client_requests[client_id][request_type] = task
class Choice(BaseModel):
id: int
text: str
class StoryResponse(BaseModel):
story_text: str = Field(description="The story text with proper nouns in bold using ** markdown")
choices: List[Choice]
radiation_level: int = Field(description="Current radiation level from 0 to 10")
is_victory: bool = Field(description="Whether this segment ends in Sarah's victory", default=False)
is_first_step: bool = Field(description="Whether this is the first step of the story", default=False)
is_last_step: bool = Field(description="Whether this is the last step (victory or death)", default=False)
class ChatMessage(BaseModel):
message: str
choice_id: Optional[int] = None
class ImageGenerationRequest(BaseModel):
prompt: str
width: int = Field(description="Width of the image to generate")
height: int = Field(description="Height of the image to generate")
class ImageGenerationResponse(BaseModel):
success: bool
image_base64: Optional[str] = None
error: Optional[str] = None
class TextToSpeechRequest(BaseModel):
text: str
voice_id: str = "nPczCjzI2devNBz1zQrb" # Default voice ID (Rachel)
async def get_test_image(client_id: str, width=1024, height=1024):
"""Get a random image from Lorem Picsum"""
# Build the Lorem Picsum URL with blur and grayscale effects
url = f"https://picsum.photos/{width}/{height}?grayscale&blur=2"
session = await get_client_session(client_id)
async with session.get(url) as response:
if response.status == 200:
image_bytes = await response.read()
return base64.b64encode(image_bytes).decode('utf-8')
else:
raise Exception(f"Failed to fetch image: {response.status}")
@app.get("/api/health")
async def health_check():
"""Health check endpoint"""
return {
"status": "healthy",
"game_state": {
"story_beat": game_state.story_beat,
"radiation_level": game_state.radiation_level
}
}
@app.post("/api/chat", response_model=StoryResponse)
async def chat_endpoint(chat_message: ChatMessage):
try:
print("Received chat message:", chat_message)
# Handle restart
if chat_message.message.lower() == "restart":
game_state.reset()
previous_choice = "none"
else:
previous_choice = f"Choice {chat_message.choice_id}" if chat_message.choice_id else "none"
print("Previous choice:", previous_choice)
# Generate story segment
story_segment = await story_generator.generate_story_segment(game_state, previous_choice)
print("Generated story segment:", story_segment)
# Update radiation level
game_state.radiation_level += story_segment.radiation_increase
print("Updated radiation level:", game_state.radiation_level)
# Check for radiation death
is_death = game_state.radiation_level >= MAX_RADIATION
if is_death:
story_segment.story_text += f"""
MORT PAR RADIATION: Le corps de Sarah ne peut plus supporter ce niveau de radiation ({game_state.radiation_level}/10).
Ses cellules se désagrègent alors qu'elle s'effondre, l'esprit rempli de regrets concernant sa sœur.
Les fournitures médicales qu'elle transportait n'atteindront jamais leur destination.
Sa mission s'arrête ici, une autre victime du tueur invisible des terres désolées."""
story_segment.choices = []
# Check for victory condition
if not is_death and game_state.story_beat >= 5:
# Chance de victoire augmente avec le nombre de steps
victory_chance = (game_state.story_beat - 4) * 0.2 # 20% de chance par step après le 5ème
if random.random() < victory_chance:
story_segment.is_victory = True
story_segment.story_text = f"""Sarah l'a fait ! Elle a trouvé un bunker sécurisé avec des survivants.
À l'intérieur, elle découvre une communauté organisée qui a réussi à maintenir un semblant de civilisation.
Ils ont même un système de décontamination ! Son niveau de radiation : {game_state.radiation_level}/10.
Elle peut enfin se reposer et peut-être un jour, reconstruire un monde meilleur.
VICTOIRE !"""
story_segment.choices = []
# Only increment story beat if not dead and not victory
if not is_death and not story_segment.is_victory:
game_state.story_beat += 1
print("Incremented story beat to:", game_state.story_beat)
# Convert to response format
choices = [] if is_death or story_segment.is_victory else [
Choice(id=i, text=choice.strip())
for i, choice in enumerate(story_segment.choices, 1)
]
# Determine if this is the first step
is_first_step = chat_message.message == "restart"
# Determine if this is the last step (victory or death)
is_last_step = game_state.radiation_level >= MAX_RADIATION or story_segment.is_victory
# Return the response with the new fields
response = StoryResponse(
story_text=story_segment.story_text,
choices=choices,
radiation_level=game_state.radiation_level,
is_victory=story_segment.is_victory,
is_first_step=is_first_step,
is_last_step=is_last_step
)
print("Sending response:", response)
return response
except Exception as e:
import traceback
print(f"Error in chat_endpoint: {str(e)}")
print("Traceback:", traceback.format_exc())
raise HTTPException(status_code=500, detail=str(e))
@app.post("/api/generate-image")
async def generate_image(request: ImageGenerationRequest):
try:
# Transform story into art prompt
art_prompt = await story_generator.transform_story_to_art_prompt(request.prompt)
print(f"Generating image with dimensions: {request.width}x{request.height}")
print(f"Using prompt: {art_prompt}")
# Generate image using Flux client
image_bytes = flux_client.generate_image(
prompt=art_prompt,
width=request.width,
height=request.height
)
if image_bytes:
print(f"Received image bytes of length: {len(image_bytes)}")
# Ensure we're getting raw bytes and encoding them properly
if isinstance(image_bytes, str):
print("Warning: image_bytes is a string, converting to bytes")
image_bytes = image_bytes.encode('utf-8')
base64_image = base64.b64encode(image_bytes).decode('utf-8').strip('"')
print(f"Converted to base64 string of length: {len(base64_image)}")
print(f"First 100 chars of base64: {base64_image[:100]}")
return {"success": True, "image_base64": base64_image}
else:
print("No image bytes received from Flux client")
return {"success": False, "error": "Failed to generate image"}
except Exception as e:
print(f"Error generating image: {str(e)}")
print(f"Error type: {type(e)}")
import traceback
print(f"Traceback: {traceback.format_exc()}")
return {"success": False, "error": str(e)}
@app.post("/api/test/chat")
async def test_chat_endpoint(request: Request, chat_message: ChatMessage):
"""Endpoint de test qui génère des données aléatoires"""
try:
client_id = request.headers.get("x-client-id", "default")
# Cancel any previous chat request from this client
await cancel_previous_request(client_id, "chat")
async def generate_chat_response():
# Générer un texte aléatoire
story_text = f"**Sarah** {lorem.paragraph()}"
# Générer un niveau de radiation aléatoire qui augmente progressivement
radiation_level = min(10, random.randint(0, 3) + (chat_message.choice_id or 0))
# Déterminer si c'est le premier pas
is_first_step = chat_message.message == "restart"
# Déterminer si c'est le dernier pas (mort ou victoire)
is_last_step = radiation_level >= 30 or (
not is_first_step and random.random() < 0.1 # 10% de chance de victoire
)
# Générer des choix aléatoires sauf si c'est la fin
choices = []
if not is_last_step:
num_choices = 2
for i in range(num_choices):
choices.append(Choice(
id=i+1,
text=f"{lorem.sentence() }"
))
# Construire la réponse
return StoryResponse(
story_text=story_text,
choices=choices,
radiation_level=radiation_level,
is_victory=is_last_step and radiation_level < 30,
is_first_step=is_first_step,
is_last_step=is_last_step
)
# Create and store the new request
task = asyncio.create_task(generate_chat_response())
await store_request(client_id, "chat", task)
try:
response = await task
return response
except asyncio.CancelledError:
print(f"[INFO] Chat request cancelled for client {client_id}")
raise HTTPException(status_code=409, detail="Request cancelled")
except Exception as e:
print(f"[ERROR] Error in test_chat_endpoint: {str(e)}")
raise HTTPException(status_code=500, detail=str(e))
@app.post("/api/test/generate-image")
async def test_generate_image(request: Request, image_request: ImageGenerationRequest):
"""Endpoint de test qui récupère une image aléatoire"""
try:
client_id = request.headers.get("x-client-id", "default")
print(f"[DEBUG] Client ID: {client_id}")
print(f"[DEBUG] Raw request data: {image_request}")
# Cancel any previous image request from this client
await cancel_previous_request(client_id, "image")
# Create and store the new request
task = asyncio.create_task(get_test_image(client_id, image_request.width, image_request.height))
await store_request(client_id, "image", task)
try:
image_base64 = await task
return {
"success": True,
"image_base64": image_base64
}
except asyncio.CancelledError:
print(f"[INFO] Image request cancelled for client {client_id}")
return {
"success": False,
"error": "Request cancelled"
}
except Exception as e:
print(f"[ERROR] Detailed error in test_generate_image: {str(e)}")
return {
"success": False,
"error": str(e)
}
@app.post("/api/text-to-speech")
async def text_to_speech(request: TextToSpeechRequest):
"""Endpoint pour convertir du texte en audio via ElevenLabs"""
try:
if not ELEVEN_LABS_API_KEY:
raise HTTPException(status_code=500, detail="ElevenLabs API key not configured")
# Nettoyer le texte des balises markdown **
clean_text = request.text.replace("**", "")
# Appel à l'API ElevenLabs
url = f"https://api.elevenlabs.io/v1/text-to-speech/{request.voice_id}"
headers = {
"Accept": "audio/mpeg",
"Content-Type": "application/json",
"xi-api-key": ELEVEN_LABS_API_KEY
}
data = {
"text": clean_text,
"model_id": "eleven_multilingual_v2",
"voice_settings": {
"stability": 0.5,
"similarity_boost": 0.75
}
}
async with aiohttp.ClientSession() as session:
async with session.post(url, json=data, headers=headers) as response:
if response.status == 200:
audio_content = await response.read()
# Convertir l'audio en base64 pour l'envoyer au client
audio_base64 = base64.b64encode(audio_content).decode('utf-8')
return {"success": True, "audio_base64": audio_base64}
else:
error_text = await response.text()
raise HTTPException(status_code=response.status, detail=error_text)
except Exception as e:
print(f"Error in text_to_speech: {str(e)}")
raise HTTPException(status_code=500, detail=str(e))
@app.on_event("shutdown")
async def shutdown_event():
"""Clean up sessions on shutdown"""
# Cancel all pending requests
for client_id in client_requests:
for request_type in client_requests[client_id]:
await cancel_previous_request(client_id, request_type)
# Close all sessions
for session in client_sessions.values():
await session.close()
# Mount static files (this should be after all API routes)
app.mount("/", StaticFiles(directory=STATIC_FILES_DIR, html=True), name="static")
if __name__ == "__main__":
import uvicorn
uvicorn.run("server.server:app", host=API_HOST, port=API_PORT, reload=True)