File size: 13,274 Bytes
8744085
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ae89532
8744085
 
 
 
ae89532
8744085
 
 
 
 
 
 
 
 
ae89532
8744085
 
 
 
 
 
 
 
ae89532
8744085
 
 
 
 
 
ae89532
8744085
 
 
 
 
 
 
 
ae89532
8744085
 
 
 
 
 
ae89532
8744085
 
 
 
 
 
 
ae89532
8744085
 
 
ae89532
8744085
 
 
 
 
 
 
ae89532
 
 
 
 
 
 
8744085
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
{
 "metadata": {
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.8.3"
  },
  "orig_nbformat": 2,
  "kernelspec": {
   "name": "python383jvsc74a57bd01cb9a1c850fd1d16c5b98054247a74b7b7a12849bcfa00436ba202c2a9e2bbb2",
   "display_name": "Python 3.8.3 64-bit ('py38': conda)"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2,
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 1,
   "metadata": {},
   "outputs": [],
   "source": [
    "import sys\n",
    "nb_dir = os.path.split(os.getcwd())[0]\n",
    "if nb_dir not in sys.path:\n",
    "    sys.path.append(nb_dir)\n",
    "\n",
    "import numpy as np\n",
    "import pandas as pd\n",
    "# import modin.pandas as mpd\n",
    "import spacy\n",
    "from src.configs import ModelConfigs, Languages\n",
    "from src.utils import wordifier, TextPreprocessor, encode\n",
    "\n",
    "from textacy.preprocessing import make_pipeline, remove, replace, normalize\n",
    "from tqdm import trange\n",
    "from sklearn.feature_extraction.text import TfidfVectorizer\n",
    "from sklearn.linear_model import LogisticRegression\n",
    "from sklearn.preprocessing import LabelEncoder\n",
    "from sklearn.utils import resample\n",
    "import multiprocessing as mp\n",
    "# import dask.dataframe as dask_df\n",
    "from stqdm import stqdm\n",
    "stqdm.pandas()\n",
    "\n",
    "from tqdm import trange\n",
    "\n",
    "import os\n",
    "# os.environ[\"MODIN_ENGINE\"] = \"ray\"  # Modin will use Ray\n",
    "\n",
    "import vaex\n",
    "pd.set_option(\"display.max_colwidth\", None)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "metadata": {},
   "outputs": [],
   "source": [
    "df = pd.read_excel(\"../data/test_de.xlsx\")\n",
    "# mdf = mpd.read_csv(\"../data/test_en.csv\")\n",
    "language = \"English\"\n",
    "nlp = spacy.load(Languages[language].value, exclude=[\"parser\", \"ner\", \"pos\", \"tok2vec\"])"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "metadata": {},
   "outputs": [],
   "source": [
    "prep = TextPreprocessor(\n",
    "    language=\"English\", \n",
    "    cleaning_steps=list(TextPreprocessor._cleaning_options().keys()),\n",
    "    lemmatizer_when=None,\n",
    ")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "metadata": {},
   "outputs": [
    {
     "output_type": "stream",
     "name": "stderr",
     "text": [
      "2021-05-10 18:34:49.425 WARNING root: \n",
      "  \u001b[33m\u001b[1mWarning:\u001b[0m to view this Streamlit app on a browser, run it with the following\n",
      "  command:\n",
      "\n",
      "    streamlit run /Users/49796/miniconda3/envs/py38/lib/python3.8/site-packages/ipykernel_launcher.py [ARGUMENTS]\n",
      "100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 6269/6269 [00:02<00:00, 2750.45it/s]\n"
     ]
    }
   ],
   "source": [
    "df[\"p_text\"] = prep.fit_transform(df[\"text\"])"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "metadata": {},
   "outputs": [],
   "source": [
    "X, y, X_names, y_names = encode(df[\"p_text\"], df[\"label\"]).values()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 21,
   "metadata": {},
   "outputs": [],
   "source": [
    "clf = LogisticRegression(\n",
    "    penalty=\"l1\",\n",
    "    C=0.05,#ModelConfigs.PENALTIES.value[np.random.randint(len(ModelConfigs.PENALTIES.value))],\n",
    "    solver=\"liblinear\",\n",
    "    multi_class=\"auto\",\n",
    "    max_iter=500,\n",
    "    class_weight=\"balanced\",\n",
    ")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 22,
   "metadata": {},
   "outputs": [
    {
     "output_type": "stream",
     "name": "stdout",
     "text": [
      "CPU times: user 1.45 s, sys: 10.6 ms, total: 1.46 s\nWall time: 1.46 s\n"
     ]
    },
    {
     "output_type": "execute_result",
     "data": {
      "text/plain": [
       "LogisticRegression(C=0.05, class_weight='balanced', max_iter=500, penalty='l1',\n",
       "                   solver='liblinear')"
      ]
     },
     "metadata": {},
     "execution_count": 22
    }
   ],
   "source": [
    "%%time\n",
    "clf.fit(X, y)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": []
  },
  {
   "cell_type": "code",
   "execution_count": 14,
   "metadata": {},
   "outputs": [
    {
     "output_type": "stream",
     "name": "stderr",
     "text": [
      "  6%|β–Œ         | 28/500 [01:01<27:33,  3.50s/it]/Users/49796/miniconda3/envs/py38/lib/python3.8/site-packages/sklearn/svm/_base.py:976: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations.\n",
      "  warnings.warn(\"Liblinear failed to converge, increase \"\n",
      " 31%|β–ˆβ–ˆβ–ˆ       | 156/500 [06:18<13:54,  2.43s/it]\n"
     ]
    },
    {
     "output_type": "error",
     "ename": "KeyboardInterrupt",
     "evalue": "",
     "traceback": [
      "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
      "\u001b[0;31mKeyboardInterrupt\u001b[0m                         Traceback (most recent call last)",
      "\u001b[0;32m<ipython-input-14-1fef5b7ccf45>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[1;32m     39\u001b[0m     \u001b[0;31m# fit\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m     40\u001b[0m     \u001b[0;32mtry\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 41\u001b[0;31m         \u001b[0mclf\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mfit\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mX\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mselection\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0my\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mselection\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m     42\u001b[0m     \u001b[0;32mexcept\u001b[0m \u001b[0mValueError\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m     43\u001b[0m         \u001b[0;32mcontinue\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
      "\u001b[0;32m~/miniconda3/envs/py38/lib/python3.8/site-packages/sklearn/linear_model/_logistic.py\u001b[0m in \u001b[0;36mfit\u001b[0;34m(self, X, y, sample_weight)\u001b[0m\n\u001b[1;32m   1354\u001b[0m                               \u001b[0;34m\" 'solver' is set to 'liblinear'. Got 'n_jobs'\"\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m   1355\u001b[0m                               \" = {}.\".format(effective_n_jobs(self.n_jobs)))\n\u001b[0;32m-> 1356\u001b[0;31m             self.coef_, self.intercept_, n_iter_ = _fit_liblinear(\n\u001b[0m\u001b[1;32m   1357\u001b[0m                 \u001b[0mX\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0my\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mC\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mfit_intercept\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mintercept_scaling\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m   1358\u001b[0m                 \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mclass_weight\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mpenalty\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdual\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mverbose\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
      "\u001b[0;32m~/miniconda3/envs/py38/lib/python3.8/site-packages/sklearn/svm/_base.py\u001b[0m in \u001b[0;36m_fit_liblinear\u001b[0;34m(X, y, C, fit_intercept, intercept_scaling, class_weight, penalty, dual, verbose, max_iter, tol, random_state, multi_class, loss, epsilon, sample_weight)\u001b[0m\n\u001b[1;32m    964\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m    965\u001b[0m     \u001b[0msolver_type\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0m_get_liblinear_solver_type\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mmulti_class\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mpenalty\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mloss\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mdual\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 966\u001b[0;31m     raw_coef_, n_iter_ = liblinear.train_wrap(\n\u001b[0m\u001b[1;32m    967\u001b[0m         \u001b[0mX\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0my_ind\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0msp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0misspmatrix\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mX\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0msolver_type\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mtol\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mbias\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mC\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m    968\u001b[0m         \u001b[0mclass_weight_\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mmax_iter\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mrnd\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mrandint\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mnp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0miinfo\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m'i'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mmax\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
      "\u001b[0;31mKeyboardInterrupt\u001b[0m: "
     ]
    }
   ],
   "source": [
    "n_instances, n_features = X.shape\n",
    "n_classes = len(y_names)\n",
    "\n",
    "# NOTE: the * 10 / 10 trick is to have \"nice\" round-ups\n",
    "sample_fraction = np.ceil((n_features / n_instances) * 10) / 10\n",
    "\n",
    "sample_size = min(\n",
    "    # this is the maximum supported\n",
    "    ModelConfigs.MAX_SELECTION.value,\n",
    "    # at minimum you want MIN_SELECTION but in general you want\n",
    "    # n_instances * sample_fraction\n",
    "    max(ModelConfigs.MIN_SELECTION.value, int(n_instances * sample_fraction)),\n",
    "    # however if previous one is bigger the the available instances take\n",
    "    # the number of available instances\n",
    "    n_instances,\n",
    ")\n",
    "\n",
    "# TODO: might want to try out something to subsample features at each iteration\n",
    "\n",
    "# initialize coefficient matrices\n",
    "pos_scores = np.zeros((n_classes, n_features), dtype=int)\n",
    "neg_scores = np.zeros((n_classes, n_features), dtype=int)\n",
    "\n",
    "for _ in trange(ModelConfigs.NUM_ITERS.value):\n",
    "\n",
    "    # run randomized regression\n",
    "    clf = LogisticRegression(\n",
    "        penalty=\"l1\",\n",
    "        C=ModelConfigs.PENALTIES.value[np.random.randint(len(ModelConfigs.PENALTIES.value))],\n",
    "        solver=\"liblinear\",\n",
    "        multi_class=\"auto\",\n",
    "        max_iter=500,\n",
    "        class_weight=\"balanced\",\n",
    "    )\n",
    "\n",
    "    # sample indices to subsample matrix\n",
    "    selection = resample(np.arange(n_instances), replace=True, stratify=y, n_samples=sample_size)\n",
    "\n",
    "    # fit\n",
    "    try:\n",
    "        clf.fit(X[selection], y[selection])\n",
    "    except ValueError:\n",
    "        continue\n",
    "\n",
    "    # record coefficients\n",
    "    if n_classes == 2:\n",
    "        pos_scores[1] = pos_scores[1] + (clf.coef_ > 0.0)\n",
    "        neg_scores[1] = neg_scores[1] + (clf.coef_ < 0.0)\n",
    "        pos_scores[0] = pos_scores[0] + (clf.coef_ < 0.0)\n",
    "        neg_scores[0] = neg_scores[0] + (clf.coef_ > 0.0)\n",
    "    else:\n",
    "        pos_scores += clf.coef_ > 0\n",
    "        neg_scores += clf.coef_ < 0"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# normalize\n",
    "pos_scores = pos_scores / ModelConfigs.NUM_ITERS.value\n",
    "neg_scores = neg_scores / ModelConfigs.NUM_ITERS.value\n",
    "\n",
    "# get only active features\n",
    "pos_positions = np.where(pos_scores >= ModelConfigs.SELECTION_THRESHOLD.value, pos_scores, 0)\n",
    "neg_positions = np.where(neg_scores >= ModelConfigs.SELECTION_THRESHOLD.value, neg_scores, 0)\n",
    "\n",
    "# prepare DataFrame\n",
    "pos = [(X_names[i], pos_scores[c, i], y_names[c]) for c, i in zip(*pos_positions.nonzero())]\n",
    "neg = [(X_names[i], neg_scores[c, i], y_names[c]) for c, i in zip(*neg_positions.nonzero())]\n",
    "\n",
    "posdf = pd.DataFrame(pos, columns=\"word score label\".split()).sort_values([\"label\", \"score\"], ascending=False)\n",
    "negdf = pd.DataFrame(neg, columns=\"word score label\".split()).sort_values([\"label\", \"score\"], ascending=False)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ]
}