Spaces:
Runtime error
Runtime error
Mikhil-jivus
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -1,72 +1,98 @@
|
|
1 |
import gradio as gr
|
2 |
-
|
3 |
-
from huggingface_hub import InferenceClient
|
4 |
import torch
|
5 |
-
from transformers import
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
|
7 |
-
"""
|
8 |
-
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
|
9 |
-
"""
|
10 |
-
repo_id = "Mikhil-jivus/Llama-32-3B-FineTuned"
|
11 |
access_token = os.getenv('HF_TOKEN')
|
12 |
-
|
13 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
|
15 |
|
16 |
-
|
|
|
|
|
|
|
17 |
|
|
|
|
|
|
|
18 |
|
19 |
-
|
20 |
-
|
21 |
-
history: list[tuple[str, str]],
|
22 |
-
system_message,
|
23 |
-
max_tokens,
|
24 |
-
temperature,
|
25 |
-
top_p,
|
26 |
-
):
|
27 |
-
messages = [{"role": "system", "content": system_message}]
|
28 |
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
|
35 |
-
|
|
|
|
|
|
|
36 |
|
37 |
-
|
|
|
38 |
|
39 |
-
|
40 |
-
|
41 |
-
max_tokens=max_tokens,
|
42 |
-
stream=True,
|
43 |
-
temperature=temperature,
|
44 |
-
top_p=top_p,
|
45 |
-
):
|
46 |
-
token = message.choices[0].delta.content
|
47 |
|
48 |
-
response += token
|
49 |
yield response
|
50 |
|
51 |
-
"""
|
52 |
-
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
|
53 |
-
"""
|
54 |
-
demo = gr.ChatInterface(
|
55 |
-
respond,
|
56 |
-
additional_inputs=[
|
57 |
-
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
|
58 |
-
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
59 |
-
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
60 |
-
gr.Slider(
|
61 |
-
minimum=0.1,
|
62 |
-
maximum=1.0,
|
63 |
-
value=0.95,
|
64 |
-
step=0.05,
|
65 |
-
label="Top-p (nucleus sampling)",
|
66 |
-
),
|
67 |
-
],
|
68 |
-
)
|
69 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
70 |
|
71 |
-
|
72 |
-
demo.launch()
|
|
|
1 |
import gradio as gr
|
2 |
+
|
|
|
3 |
import torch
|
4 |
+
from transformers import (
|
5 |
+
AutoTokenizer,
|
6 |
+
AutoModelForCausalLM,
|
7 |
+
TextIteratorStreamer,
|
8 |
+
pipeline,
|
9 |
+
)
|
10 |
+
from threading import Thread
|
11 |
|
|
|
|
|
|
|
|
|
12 |
access_token = os.getenv('HF_TOKEN')
|
13 |
+
|
14 |
+
# The huggingface model id for Finetuned model
|
15 |
+
checkpoint = "Mikhil-jivus/Llama-32-3B-FineTuned"
|
16 |
+
|
17 |
+
# Download and load model and tokenizer
|
18 |
+
tokenizer = AutoTokenizer.from_pretrained(checkpoint, trust_remote_code=True,token=access_token)
|
19 |
+
model = AutoModelForCausalLM.from_pretrained(
|
20 |
+
checkpoint, torch_dtype=torch.bfloat16, device_map="auto", trust_remote_code=True,token=access_token
|
21 |
+
)
|
22 |
+
|
23 |
+
# Text generation pipeline
|
24 |
+
phi2 = pipeline(
|
25 |
+
"text-generation",
|
26 |
+
tokenizer=tokenizer,
|
27 |
+
model=model,
|
28 |
+
pad_token_id=tokenizer.eos_token_id,
|
29 |
+
eos_token_id=tokenizer.eos_token_id,
|
30 |
+
device_map="auto",
|
31 |
+
)
|
32 |
|
33 |
|
34 |
+
# Function that accepts a prompt and generates text using the phi2 pipeline
|
35 |
+
def generate(message, chat_history, max_new_tokens):
|
36 |
+
instruction = "You are a helpful assistant to 'User'. You do not respond as 'User' or pretend to be 'User'. You only respond once as 'Assistant'."
|
37 |
+
final_prompt = f"Instruction: {instruction}\n"
|
38 |
|
39 |
+
for sent, received in chat_history:
|
40 |
+
final_prompt += "User: " + sent + "\n"
|
41 |
+
final_prompt += "Assistant: " + received + "\n"
|
42 |
|
43 |
+
final_prompt += "User: " + message + "\n"
|
44 |
+
final_prompt += "Output:"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
45 |
|
46 |
+
# Streamer
|
47 |
+
streamer = TextIteratorStreamer(
|
48 |
+
tokenizer=tokenizer, skip_prompt=True, skip_special_tokens=True, timeout=300.0
|
49 |
+
)
|
50 |
+
thread = Thread(
|
51 |
+
target=phi2,
|
52 |
+
kwargs={
|
53 |
+
"text_inputs": final_prompt,
|
54 |
+
"max_new_tokens": max_new_tokens,
|
55 |
+
"streamer": streamer,
|
56 |
+
},
|
57 |
+
)
|
58 |
+
thread.start()
|
59 |
|
60 |
+
generated_text = ""
|
61 |
+
for word in streamer:
|
62 |
+
generated_text += word
|
63 |
+
response = generated_text.strip()
|
64 |
|
65 |
+
if "User:" in response:
|
66 |
+
response = response.split("User:")[0].strip()
|
67 |
|
68 |
+
if "Assistant:" in response:
|
69 |
+
response = response.split("Assistant:")[1].strip()
|
|
|
|
|
|
|
|
|
|
|
|
|
70 |
|
|
|
71 |
yield response
|
72 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
73 |
|
74 |
+
# Chat interface with gradio
|
75 |
+
with gr.Blocks() as demo:
|
76 |
+
gr.Markdown(
|
77 |
+
"""
|
78 |
+
# Jivus AI Chatbot Demo
|
79 |
+
This chatbot was created using Llama 3 billion parameter Transformer model.
|
80 |
+
"""
|
81 |
+
)
|
82 |
+
|
83 |
+
tokens_slider = gr.Slider(
|
84 |
+
8,
|
85 |
+
128,
|
86 |
+
value=21,
|
87 |
+
label="Maximum new tokens",
|
88 |
+
info="A larger `max_new_tokens` parameter value gives you longer text responses but at the cost of a slower response time.",
|
89 |
+
)
|
90 |
+
|
91 |
+
chatbot = gr.ChatInterface(
|
92 |
+
fn=generate,
|
93 |
+
additional_inputs=[tokens_slider],
|
94 |
+
stop_btn=None,
|
95 |
+
examples=[["Who is Leonhard Euler?"]],
|
96 |
+
)
|
97 |
|
98 |
+
demo.queue().launch()
|
|