Spaces:
Build error
Build error
File size: 14,445 Bytes
6cc79fe |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 |
import torchvision
import random
from PIL import Image, ImageOps
import numpy as np
import numbers
import math
import torch
class GroupRandomCrop(object):
def __init__(self, size):
if isinstance(size, numbers.Number):
self.size = (int(size), int(size))
else:
self.size = size
def __call__(self, img_group):
w, h = img_group[0].size
th, tw = self.size
out_images = list()
x1 = random.randint(0, w - tw)
y1 = random.randint(0, h - th)
for img in img_group:
assert(img.size[0] == w and img.size[1] == h)
if w == tw and h == th:
out_images.append(img)
else:
out_images.append(img.crop((x1, y1, x1 + tw, y1 + th)))
return out_images
class MultiGroupRandomCrop(object):
def __init__(self, size, groups=1):
if isinstance(size, numbers.Number):
self.size = (int(size), int(size))
else:
self.size = size
self.groups = groups
def __call__(self, img_group):
w, h = img_group[0].size
th, tw = self.size
out_images = list()
for i in range(self.groups):
x1 = random.randint(0, w - tw)
y1 = random.randint(0, h - th)
for img in img_group:
assert(img.size[0] == w and img.size[1] == h)
if w == tw and h == th:
out_images.append(img)
else:
out_images.append(img.crop((x1, y1, x1 + tw, y1 + th)))
return out_images
class GroupCenterCrop(object):
def __init__(self, size):
self.worker = torchvision.transforms.CenterCrop(size)
def __call__(self, img_group):
return [self.worker(img) for img in img_group]
class GroupRandomHorizontalFlip(object):
"""Randomly horizontally flips the given PIL.Image with a probability of 0.5
"""
def __init__(self, is_flow=False):
self.is_flow = is_flow
def __call__(self, img_group, is_flow=False):
v = random.random()
if v < 0.5:
ret = [img.transpose(Image.FLIP_LEFT_RIGHT) for img in img_group]
if self.is_flow:
for i in range(0, len(ret), 2):
# invert flow pixel values when flipping
ret[i] = ImageOps.invert(ret[i])
return ret
else:
return img_group
class GroupNormalize(object):
def __init__(self, mean, std):
self.mean = mean
self.std = std
def __call__(self, tensor):
rep_mean = self.mean * (tensor.size()[0] // len(self.mean))
rep_std = self.std * (tensor.size()[0] // len(self.std))
# TODO: make efficient
for t, m, s in zip(tensor, rep_mean, rep_std):
t.sub_(m).div_(s)
return tensor
class GroupScale(object):
""" Rescales the input PIL.Image to the given 'size'.
'size' will be the size of the smaller edge.
For example, if height > width, then image will be
rescaled to (size * height / width, size)
size: size of the smaller edge
interpolation: Default: PIL.Image.BILINEAR
"""
def __init__(self, size, interpolation=Image.BILINEAR):
self.worker = torchvision.transforms.Resize(size, interpolation)
def __call__(self, img_group):
return [self.worker(img) for img in img_group]
class GroupOverSample(object):
def __init__(self, crop_size, scale_size=None, flip=True):
self.crop_size = crop_size if not isinstance(
crop_size, int) else (crop_size, crop_size)
if scale_size is not None:
self.scale_worker = GroupScale(scale_size)
else:
self.scale_worker = None
self.flip = flip
def __call__(self, img_group):
if self.scale_worker is not None:
img_group = self.scale_worker(img_group)
image_w, image_h = img_group[0].size
crop_w, crop_h = self.crop_size
offsets = GroupMultiScaleCrop.fill_fix_offset(
False, image_w, image_h, crop_w, crop_h)
oversample_group = list()
for o_w, o_h in offsets:
normal_group = list()
flip_group = list()
for i, img in enumerate(img_group):
crop = img.crop((o_w, o_h, o_w + crop_w, o_h + crop_h))
normal_group.append(crop)
flip_crop = crop.copy().transpose(Image.FLIP_LEFT_RIGHT)
if img.mode == 'L' and i % 2 == 0:
flip_group.append(ImageOps.invert(flip_crop))
else:
flip_group.append(flip_crop)
oversample_group.extend(normal_group)
if self.flip:
oversample_group.extend(flip_group)
return oversample_group
class GroupFullResSample(object):
def __init__(self, crop_size, scale_size=None, flip=True):
self.crop_size = crop_size if not isinstance(
crop_size, int) else (crop_size, crop_size)
if scale_size is not None:
self.scale_worker = GroupScale(scale_size)
else:
self.scale_worker = None
self.flip = flip
def __call__(self, img_group):
if self.scale_worker is not None:
img_group = self.scale_worker(img_group)
image_w, image_h = img_group[0].size
crop_w, crop_h = self.crop_size
w_step = (image_w - crop_w) // 4
h_step = (image_h - crop_h) // 4
offsets = list()
offsets.append((0 * w_step, 2 * h_step)) # left
offsets.append((4 * w_step, 2 * h_step)) # right
offsets.append((2 * w_step, 2 * h_step)) # center
oversample_group = list()
for o_w, o_h in offsets:
normal_group = list()
flip_group = list()
for i, img in enumerate(img_group):
crop = img.crop((o_w, o_h, o_w + crop_w, o_h + crop_h))
normal_group.append(crop)
if self.flip:
flip_crop = crop.copy().transpose(Image.FLIP_LEFT_RIGHT)
if img.mode == 'L' and i % 2 == 0:
flip_group.append(ImageOps.invert(flip_crop))
else:
flip_group.append(flip_crop)
oversample_group.extend(normal_group)
oversample_group.extend(flip_group)
return oversample_group
class GroupMultiScaleCrop(object):
def __init__(self, input_size, scales=None, max_distort=1,
fix_crop=True, more_fix_crop=True):
self.scales = scales if scales is not None else [1, .875, .75, .66]
self.max_distort = max_distort
self.fix_crop = fix_crop
self.more_fix_crop = more_fix_crop
self.input_size = input_size if not isinstance(input_size, int) else [
input_size, input_size]
self.interpolation = Image.BILINEAR
def __call__(self, img_group):
im_size = img_group[0].size
crop_w, crop_h, offset_w, offset_h = self._sample_crop_size(im_size)
crop_img_group = [
img.crop(
(offset_w,
offset_h,
offset_w +
crop_w,
offset_h +
crop_h)) for img in img_group]
ret_img_group = [img.resize((self.input_size[0], self.input_size[1]), self.interpolation)
for img in crop_img_group]
return ret_img_group
def _sample_crop_size(self, im_size):
image_w, image_h = im_size[0], im_size[1]
# find a crop size
base_size = min(image_w, image_h)
crop_sizes = [int(base_size * x) for x in self.scales]
crop_h = [
self.input_size[1] if abs(
x - self.input_size[1]) < 3 else x for x in crop_sizes]
crop_w = [
self.input_size[0] if abs(
x - self.input_size[0]) < 3 else x for x in crop_sizes]
pairs = []
for i, h in enumerate(crop_h):
for j, w in enumerate(crop_w):
if abs(i - j) <= self.max_distort:
pairs.append((w, h))
crop_pair = random.choice(pairs)
if not self.fix_crop:
w_offset = random.randint(0, image_w - crop_pair[0])
h_offset = random.randint(0, image_h - crop_pair[1])
else:
w_offset, h_offset = self._sample_fix_offset(
image_w, image_h, crop_pair[0], crop_pair[1])
return crop_pair[0], crop_pair[1], w_offset, h_offset
def _sample_fix_offset(self, image_w, image_h, crop_w, crop_h):
offsets = self.fill_fix_offset(
self.more_fix_crop, image_w, image_h, crop_w, crop_h)
return random.choice(offsets)
@staticmethod
def fill_fix_offset(more_fix_crop, image_w, image_h, crop_w, crop_h):
w_step = (image_w - crop_w) // 4
h_step = (image_h - crop_h) // 4
ret = list()
ret.append((0, 0)) # upper left
ret.append((4 * w_step, 0)) # upper right
ret.append((0, 4 * h_step)) # lower left
ret.append((4 * w_step, 4 * h_step)) # lower right
ret.append((2 * w_step, 2 * h_step)) # center
if more_fix_crop:
ret.append((0, 2 * h_step)) # center left
ret.append((4 * w_step, 2 * h_step)) # center right
ret.append((2 * w_step, 4 * h_step)) # lower center
ret.append((2 * w_step, 0 * h_step)) # upper center
ret.append((1 * w_step, 1 * h_step)) # upper left quarter
ret.append((3 * w_step, 1 * h_step)) # upper right quarter
ret.append((1 * w_step, 3 * h_step)) # lower left quarter
ret.append((3 * w_step, 3 * h_step)) # lower righ quarter
return ret
class GroupRandomSizedCrop(object):
"""Random crop the given PIL.Image to a random size of (0.08 to 1.0) of the original size
and and a random aspect ratio of 3/4 to 4/3 of the original aspect ratio
This is popularly used to train the Inception networks
size: size of the smaller edge
interpolation: Default: PIL.Image.BILINEAR
"""
def __init__(self, size, interpolation=Image.BILINEAR):
self.size = size
self.interpolation = interpolation
def __call__(self, img_group):
for attempt in range(10):
area = img_group[0].size[0] * img_group[0].size[1]
target_area = random.uniform(0.08, 1.0) * area
aspect_ratio = random.uniform(3. / 4, 4. / 3)
w = int(round(math.sqrt(target_area * aspect_ratio)))
h = int(round(math.sqrt(target_area / aspect_ratio)))
if random.random() < 0.5:
w, h = h, w
if w <= img_group[0].size[0] and h <= img_group[0].size[1]:
x1 = random.randint(0, img_group[0].size[0] - w)
y1 = random.randint(0, img_group[0].size[1] - h)
found = True
break
else:
found = False
x1 = 0
y1 = 0
if found:
out_group = list()
for img in img_group:
img = img.crop((x1, y1, x1 + w, y1 + h))
assert(img.size == (w, h))
out_group.append(
img.resize(
(self.size, self.size), self.interpolation))
return out_group
else:
# Fallback
scale = GroupScale(self.size, interpolation=self.interpolation)
crop = GroupRandomCrop(self.size)
return crop(scale(img_group))
class ConvertDataFormat(object):
def __init__(self, model_type):
self.model_type = model_type
def __call__(self, images):
if self.model_type == '2D':
return images
tc, h, w = images.size()
t = tc // 3
images = images.view(t, 3, h, w)
images = images.permute(1, 0, 2, 3)
return images
class Stack(object):
def __init__(self, roll=False):
self.roll = roll
def __call__(self, img_group):
if img_group[0].mode == 'L':
return np.concatenate([np.expand_dims(x, 2)
for x in img_group], axis=2)
elif img_group[0].mode == 'RGB':
if self.roll:
return np.concatenate([np.array(x)[:, :, ::-1]
for x in img_group], axis=2)
else:
#print(np.concatenate(img_group, axis=2).shape)
# print(img_group[0].shape)
return np.concatenate(img_group, axis=2)
class ToTorchFormatTensor(object):
""" Converts a PIL.Image (RGB) or numpy.ndarray (H x W x C) in the range [0, 255]
to a torch.FloatTensor of shape (C x H x W) in the range [0.0, 1.0] """
def __init__(self, div=True):
self.div = div
def __call__(self, pic):
if isinstance(pic, np.ndarray):
# handle numpy array
img = torch.from_numpy(pic).permute(2, 0, 1).contiguous()
else:
# handle PIL Image
img = torch.ByteTensor(
torch.ByteStorage.from_buffer(
pic.tobytes()))
img = img.view(pic.size[1], pic.size[0], len(pic.mode))
# put it from HWC to CHW format
# yikes, this transpose takes 80% of the loading time/CPU
img = img.transpose(0, 1).transpose(0, 2).contiguous()
return img.float().div(255) if self.div else img.float()
class IdentityTransform(object):
def __call__(self, data):
return data
if __name__ == "__main__":
trans = torchvision.transforms.Compose([
GroupScale(256),
GroupRandomCrop(224),
Stack(),
ToTorchFormatTensor(),
GroupNormalize(
mean=[.485, .456, .406],
std=[.229, .224, .225]
)]
)
im = Image.open('../tensorflow-model-zoo.torch/lena_299.png')
color_group = [im] * 3
rst = trans(color_group)
gray_group = [im.convert('L')] * 9
gray_rst = trans(gray_group)
trans2 = torchvision.transforms.Compose([
GroupRandomSizedCrop(256),
Stack(),
ToTorchFormatTensor(),
GroupNormalize(
mean=[.485, .456, .406],
std=[.229, .224, .225])
])
print(trans2(color_group))
|