Spaces:
Build error
Build error
File size: 4,340 Bytes
6cc79fe |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 |
"""
Copyright (c) 2023, salesforce.com, inc.
All rights reserved.
SPDX-License-Identifier: BSD-3-Clause
For full license text, see the LICENSE_Lavis file in the repo root or https://opensource.org/licenses/BSD-3-Clause
"""
import contextlib
import os
import logging
import torch
import torch.nn as nn
from .Qformer import BertConfig, BertLMHeadModel
from .eva_vit import create_eva_vit_g
from transformers import BertTokenizer
class Blip2Base(nn.Module):
def __init__(self):
super().__init__()
@classmethod
def init_tokenizer(cls):
tokenizer = BertTokenizer.from_pretrained("bert-base-uncased")
tokenizer.add_special_tokens({"bos_token": "[DEC]"})
return tokenizer
@property
def device(self):
return list(self.parameters())[0].device
def maybe_autocast(self, dtype=torch.float16):
# if on cpu, don't use autocast
# if on gpu, use autocast with dtype if provided, otherwise use torch.float16
enable_autocast = self.device != torch.device("cpu")
if enable_autocast:
return torch.cuda.amp.autocast(dtype=dtype)
else:
return contextlib.nullcontext()
@classmethod
def init_Qformer(
cls,
num_query_token, vision_width,
qformer_hidden_dropout_prob=0.,
qformer_attention_probs_dropout_prob=0.,
qformer_drop_path_rate=0.,
):
encoder_config = BertConfig.from_pretrained("bert-base-uncased")
encoder_config.encoder_width = vision_width
# insert cross-attention layer every other block
encoder_config.add_cross_attention = True
encoder_config.cross_attention_freq = 2
encoder_config.query_length = num_query_token
encoder_config.hidden_dropout_prob = qformer_hidden_dropout_prob
encoder_config.attention_probs_dropout_prob = qformer_attention_probs_dropout_prob
encoder_config.drop_path_list = [x.item() for x in torch.linspace(0, qformer_drop_path_rate, encoder_config.num_hidden_layers)]
print(f"Drop_path:{encoder_config.drop_path_list}")
print(encoder_config)
Qformer = BertLMHeadModel(config=encoder_config)
query_tokens = nn.Parameter(
torch.zeros(1, num_query_token, encoder_config.hidden_size)
)
query_tokens.data.normal_(mean=0.0, std=encoder_config.initializer_range)
return Qformer, query_tokens
@classmethod
def init_vision_encoder(
cls,
model_name, img_size, drop_path_rate,
use_grad_checkpoint, precision, vit_model_path,
temporal_downsample=True,
no_lmhra=False,
double_lmhra=False,
lmhra_reduction=2.0,
gmhra_layers=8,
gmhra_drop_path_rate=0.,
gmhra_dropout=0.5,
):
assert model_name == "eva_clip_g", "vit model must be eva_clip_g for current version of VideoChat"
visual_encoder = create_eva_vit_g(
img_size, drop_path_rate,
use_grad_checkpoint, precision, vit_model_path,
temporal_downsample=temporal_downsample,
no_lmhra=no_lmhra,
double_lmhra=double_lmhra,
lmhra_reduction=lmhra_reduction,
gmhra_layers=gmhra_layers,
gmhra_drop_path_rate=gmhra_drop_path_rate,
gmhra_dropout=gmhra_dropout,
)
ln_vision = LayerNorm(visual_encoder.num_features)
return visual_encoder, ln_vision
def load_from_pretrained(self, model_path):
if model_path is not None and os.path.isfile(model_path):
checkpoint = torch.load(model_path, map_location="cpu")
else:
raise RuntimeError("checkpoint url or path is invalid")
state_dict = checkpoint["model"]
msg = self.load_state_dict(state_dict, strict=False)
print(f"Load QFormer from {model_path}")
print(msg)
return msg
def disabled_train(self, mode=True):
"""Overwrite model.train with this function to make sure train/eval mode
does not change anymore."""
return self
class LayerNorm(nn.LayerNorm):
"""Subclass torch's LayerNorm to handle fp16."""
def forward(self, x: torch.Tensor):
orig_type = x.dtype
ret = super().forward(x.type(torch.float32))
return ret.type(orig_type)
|