File size: 9,946 Bytes
dcf8a98
 
 
 
 
 
7d39cf2
 
 
 
 
dcf8a98
 
 
7d39cf2
 
 
 
 
 
 
 
 
 
 
dcf8a98
 
7d39cf2
 
 
 
 
 
 
 
 
 
 
 
dcf8a98
7d39cf2
 
 
dcf8a98
 
7d39cf2
dcf8a98
7d39cf2
 
dcf8a98
 
7d39cf2
 
dcf8a98
 
7d39cf2
 
dcf8a98
7d39cf2
 
 
 
dcf8a98
 
7d39cf2
dcf8a98
 
 
 
 
 
7d39cf2
 
dcf8a98
 
7d39cf2
 
 
 
dcf8a98
7d39cf2
 
 
 
 
 
 
dcf8a98
 
7d39cf2
 
 
dcf8a98
7d39cf2
 
 
dcf8a98
 
 
7d39cf2
dcf8a98
7d39cf2
 
dcf8a98
7d39cf2
dcf8a98
7d39cf2
 
 
 
 
dcf8a98
7d39cf2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dcf8a98
 
 
 
 
7d39cf2
dcf8a98
7d39cf2
dcf8a98
7d39cf2
dcf8a98
7d39cf2
 
 
dcf8a98
7d39cf2
dcf8a98
 
7d39cf2
dcf8a98
 
 
 
7d39cf2
 
dcf8a98
 
7d39cf2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dcf8a98
 
7d39cf2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dcf8a98
 
7d39cf2
 
 
 
dcf8a98
7d39cf2
 
 
 
dcf8a98
7d39cf2
 
 
 
 
 
 
 
 
 
 
dcf8a98
7d39cf2
 
 
 
 
 
dcf8a98
7d39cf2
 
 
dcf8a98
7d39cf2
 
 
dcf8a98
7d39cf2
 
 
 
 
 
 
dcf8a98
7d39cf2
 
 
 
 
dcf8a98
7d39cf2
 
 
dcf8a98
7d39cf2
 
dcf8a98
 
7d39cf2
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
import os
import json
import logging
import re
import requests
import hashlib
import PyPDF2
import numpy as np
import pandas as pd
from io import BytesIO
from typing import List, Dict, Optional
from urllib.parse import urlparse, urljoin
from concurrent.futures import ThreadPoolExecutor, as_completed
from bs4 import BeautifulSoup
from pathlib import Path
from datetime import datetime
from collections import defaultdict

import gradio as gr
import matplotlib.pyplot as plt
from sklearn.feature_extractioimport json
import logging
import re
import requests
import hashlib
import PyPDF2
import numpy as np
import pandas as pd
from io import BytesIO
from typing import List, Dict, Optional
from urllib.parse import urlparse, urljoin
from concurrent.futures import ThreadPoolExecutor, as_completed
from bs4 import BeautifulSoup
from pathlib import Path
from datetime import datetime
from collections import defaultdict

import gradio as gr
import matplotlib.pyplot as plt
from sklearn.feature_extraction.text import TfidfVectorizer
from requests.adapters import HTTPAdapter
from requests.packages.urllib3.util.retry import Retry
from transformers import pipeline, AutoModelForQuestionAnswering, AutoTokenizer
from sentence_transformers import SentenceTransformer
import spacy
import torch

# Configuración inicial
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

class SEOSpaceAnalyzer:
    def __init__(self):
        self.session = self._configure_session()
        self.models = self._load_models()
        self.base_dir = Path("content_storage")
        self.link_analysis = defaultdict(list)
        self.documents = []
        self.current_analysis = {}
        
    def _configure_session(self):
        """Configuración avanzada de sesión HTTP con reintentos"""
        session = requests.Session()
        retry = Retry(
            total=3,
            backoff_factor=1,
            status_forcelist=[500, 502, 503, 504]
        )
        adapter = HTTPAdapter(max_retries=retry)
        session.mount('https://', adapter)
        session.headers.update({
            'User-Agent': 'Mozilla/5.0 (compatible; SEOBot/1.0)',
            'Accept-Language': 'es-ES,es;q=0.9'
        })
        return session
    
    def _load_models(self):
        """Carga modelos de Hugging Face optimizados"""
        device = 0 if torch.cuda.is_available() else -1
        return {
            'summarizer': pipeline("summarization", 
                                 model="facebook/bart-large-cnn",
                                 device=device),
            'ner': pipeline("ner", 
                           model="dslim/bert-base-NER",
                           aggregation_strategy="simple",
                           device=device),
            'qa': pipeline("question-answering",
                         model="deepset/roberta-base-squad2",
                         device=device),
            'semantic': SentenceTransformer('paraphrase-multilingual-MiniLM-L12-v2'),
            'spacy': spacy.load("es_core_news_lg")
        }
    
    def _process_url(self, url):
        """Procesa una URL y extrae su contenido"""
        try:
            response = self.session.get(url, timeout=15)
            response.raise_for_status()
            
            content_type = response.headers.get('Content-Type', '')
            result = {'url': url, 'links': []}
            
            if 'application/pdf' in content_type:
                result.update(self._process_pdf(response.content))
            elif 'text/html' in content_type:
                result.update(self._process_html(response.text, url))
                
            self._save_content(url, response.content)
            return result
            
        except Exception as e:
            logger.error(f"Error procesando {url}: {str(e)}")
            return {'url': url, 'error': str(e)}
    
    def _process_html(self, html, base_url):
        """Procesa contenido HTML"""
        soup = BeautifulSoup(html, 'lxml')
        return {
            'content': self._clean_text(soup.get_text()),
            'type': 'html',
            'metadata': self._extract_metadata(soup),
            'links': self._extract_links(soup, base_url)
        }
    
    def _process_pdf(self, content):
        """Procesa documentos PDF"""
        text = ""
        with BytesIO(content) as pdf_file:
            reader = PyPDF2.PdfReader(pdf_file)
            for page in reader.pages:
                text += page.extract_text()
                
        return {
            'content': self._clean_text(text),
            'type': 'pdf',
            'metadata': {'pages': len(reader.pages)}
        }
    
    def _extract_links(self, soup, base_url):
        """Extrae y clasifica enlaces"""
        links = []
        for tag in soup.find_all('a', href=True):
            href = tag['href']
            full_url = urljoin(base_url, href)
            link_type = 'internal' if urlparse(full_url).netloc == urlparse(base_url).netloc else 'external'
            
            links.append({
                'url': full_url,
                'type': link_type,
                'anchor': self._clean_text(tag.text),
                'file_type': self._get_file_type(href)
            })
        return links
    
    def _get_file_type(self, url):
        """Determina el tipo de archivo por extensión"""
        ext = Path(urlparse(url).path).suffix.lower()
        return ext[1:] if ext else 'html'
    
    def _clean_text(self, text):
        """Limpieza avanzada de texto"""
        text = re.sub(r'\s+', ' ', text)
        return re.sub(r'[^\w\sáéíóúñÁÉÍÓÚÑ]', ' ', text).strip()
    
    def _save_content(self, url, content):
        """Almacena el contenido descargado"""
        path = urlparse(url).path.lstrip('/')
        save_path = self.base_dir / urlparse(url).netloc / path
        save_path.parent.mkdir(parents=True, exist_ok=True)
        
        with open(save_path.with_suffix(self._get_file_type(url)), 'wb') as f:
            f.write(content)
    
    def analyze_sitemap(self, sitemap_url):
        """Analiza todo el sitemap y genera reportes"""
        urls = self._parse_sitemap(sitemap_url)
        results = []
        
        with ThreadPoolExecutor(max_workers=4) as executor:
            futures = [executor.submit(self._process_url, url) for url in urls]
            for future in as_completed(futures):
                results.append(future.result())
                progress(len(results)/len(urls))
        
        self.current_analysis = {
            'basic_stats': self._calculate_stats(results),
            'content_analysis': self._analyze_content(results),
            'link_analysis': self._analyze_links(results),
            'seo_recommendations': self._generate_recommendations(results)
        }
        
        return self.current_analysis
    
    def _parse_sitemap(self, sitemap_url):
        """Parsea sitemaps XML incluyendo sitemaps indexados"""
        # Implementación de parsing de sitemap (similar a versiones anteriores)
        return []
    
    def _calculate_stats(self, results):
        """Calcula estadísticas básicas del análisis"""
        return {
            'total_urls': len(results),
            'content_types': pd.Series([r.get('type', 'unknown') for r in results]).value_counts().to_dict(),
            'avg_content_length': np.mean([len(r.get('content', '')) for r in results])
        }
    
    def create_report(self):
        """Crea un reporte descargable en múltiples formatos"""
        report = {
            'timestamp': datetime.now().isoformat(),
            'analysis': self.current_analysis
        }
        
        # Guardar en JSON
        json_path = self.base_dir / 'seo_report.json'
        with open(json_path, 'w') as f:
            json.dump(report, f)
            
        # Crear CSV con enlaces
        df = pd.DataFrame([link for result in self.current_analysis['link_analysis'] for link in result['links']])
        csv_path = self.base_dir / 'links_analysis.csv'
        df.to_csv(csv_path, index=False)
        
        return [str(json_path), str(csv_path)]
    
    def create_visualization(self):
        """Genera visualizaciones interactivas"""
        fig, ax = plt.subplots()
        pd.Series(self.current_analysis['basic_stats']['content_types']).plot.pie(
            ax=ax, 
            title='Distribución de Tipos de Contenido',
            ylabel=''
        )
        return fig

# Interface Gradio
def create_interface():
    analyzer = SEOSpaceAnalyzer()
    
    with gr.Blocks(title="SEO Analyzer Pro", theme=gr.themes.Soft()) as interface:
        gr.Markdown("# 🕵️ SEO Analyzer Pro")
        
        with gr.Row():
            sitemap_url = gr.Textbox(label="URL del Sitemap", placeholder="https://www.ing.es/ennaranja/sitemap.xml")
            analyze_btn = gr.Button("Analizar", variant="primary")
        
        with gr.Tab("Resultados"):
            json_output = gr.JSON(label="Análisis Completo")
            plot_output = gr.Plot(label="Visualización")
            
        with gr.Tab("Enlaces"):
            internal_links = gr.Dataframe(label="Enlaces Internos")
            external_links = gr.Dataframe(label="Enlaces Externos")
            
        with gr.Tab("Descargas"):
            report_download = gr.Files(label="Descargar Reporte")
            download_btn = gr.Button("Generar Reporte", variant="secondary")
        
        analyze_btn.click(
            fn=analyzer.analyze_sitemap,
            inputs=sitemap_url,
            outputs=[json_output, plot_output, internal_links, external_links]
        )
        
        download_btn.click(
            fn=analyzer.create_report,
            outputs=report_download
        )
        
    return interface

if __name__ == "__main__":
    interface = create_interface()
    interface.launch(server_name="0.0.0.0", server_port=7860)