|
import random |
|
import gradio as gr |
|
import numpy as np |
|
import spaces |
|
import torch |
|
from diffusers import AutoPipelineForText2Image, AutoencoderKL, EulerDiscreteScheduler |
|
from compel import Compel, ReturnedEmbeddingsType |
|
|
|
import re |
|
|
|
|
|
|
|
|
|
import torch |
|
import re |
|
def parse_prompt_attention(text): |
|
re_attention = re.compile(r""" |
|
\\\(| |
|
\\\)| |
|
\\\[| |
|
\\]| |
|
\\\\| |
|
\\| |
|
\(| |
|
\[| |
|
:([+-]?[.\d]+)\)| |
|
\)| |
|
]| |
|
[^\\()\[\]:]+| |
|
: |
|
""", re.X) |
|
|
|
res = [] |
|
round_brackets = [] |
|
square_brackets = [] |
|
|
|
round_bracket_multiplier = 1.1 |
|
square_bracket_multiplier = 1 / 1.1 |
|
|
|
def multiply_range(start_position, multiplier): |
|
for p in range(start_position, len(res)): |
|
res[p][1] *= multiplier |
|
|
|
for m in re_attention.finditer(text): |
|
text = m.group(0) |
|
weight = m.group(1) |
|
|
|
if text.startswith('\\'): |
|
res.append([text[1:], 1.0]) |
|
elif text == '(': |
|
round_brackets.append(len(res)) |
|
elif text == '[': |
|
square_brackets.append(len(res)) |
|
elif weight is not None and len(round_brackets) > 0: |
|
multiply_range(round_brackets.pop(), float(weight)) |
|
elif text == ')' and len(round_brackets) > 0: |
|
multiply_range(round_brackets.pop(), round_bracket_multiplier) |
|
elif text == ']' and len(square_brackets) > 0: |
|
multiply_range(square_brackets.pop(), square_bracket_multiplier) |
|
else: |
|
parts = re.split(re.compile(r"\s*\bBREAK\b\s*", re.S), text) |
|
for i, part in enumerate(parts): |
|
if i > 0: |
|
res.append(["BREAK", -1]) |
|
res.append([part, 1.0]) |
|
|
|
for pos in round_brackets: |
|
multiply_range(pos, round_bracket_multiplier) |
|
|
|
for pos in square_brackets: |
|
multiply_range(pos, square_bracket_multiplier) |
|
|
|
if len(res) == 0: |
|
res = [["", 1.0]] |
|
|
|
|
|
i = 0 |
|
while i + 1 < len(res): |
|
if res[i][1] == res[i + 1][1]: |
|
res[i][0] += res[i + 1][0] |
|
res.pop(i + 1) |
|
else: |
|
i += 1 |
|
|
|
return res |
|
|
|
def prompt_attention_to_invoke_prompt(attention): |
|
tokens = [] |
|
for text, weight in attention: |
|
|
|
weight = round(weight, 2) |
|
if weight == 1.0: |
|
tokens.append(text) |
|
elif weight < 1.0: |
|
if weight < 0.8: |
|
tokens.append(f"({text}){weight}") |
|
else: |
|
tokens.append(f"({text})-" + "-" * int((1.0 - weight) * 10)) |
|
else: |
|
if weight < 1.3: |
|
tokens.append(f"({text})" + "+" * int((weight - 1.0) * 10)) |
|
else: |
|
tokens.append(f"({text}){weight}") |
|
return "".join(tokens) |
|
|
|
def concat_tensor(t): |
|
t_list = torch.split(t, 1, dim=0) |
|
t = torch.cat(t_list, dim=1) |
|
return t |
|
|
|
def merge_embeds(prompt_chanks, compel): |
|
num_chanks = len(prompt_chanks) |
|
if num_chanks != 0: |
|
power_prompt = 1/(num_chanks*(num_chanks+1)//2) |
|
prompt_embs = compel(prompt_chanks) |
|
t_list = list(torch.split(prompt_embs, 1, dim=0)) |
|
for i in range(num_chanks): |
|
t_list[-(i+1)] = t_list[-(i+1)] * ((i+1)*power_prompt) |
|
prompt_emb = torch.stack(t_list, dim=0).sum(dim=0) |
|
else: |
|
prompt_emb = compel('') |
|
return prompt_emb |
|
|
|
def detokenize(chunk, actual_prompt): |
|
chunk[-1] = chunk[-1].replace('</w>', '') |
|
chanked_prompt = ''.join(chunk).strip() |
|
while '</w>' in chanked_prompt: |
|
if actual_prompt[chanked_prompt.find('</w>')] == ' ': |
|
chanked_prompt = chanked_prompt.replace('</w>', ' ', 1) |
|
else: |
|
chanked_prompt = chanked_prompt.replace('</w>', '', 1) |
|
actual_prompt = actual_prompt.replace(chanked_prompt,'') |
|
return chanked_prompt.strip(), actual_prompt.strip() |
|
|
|
def tokenize_line(line, tokenizer): |
|
actual_prompt = line.lower().strip() |
|
actual_tokens = tokenizer.tokenize(actual_prompt) |
|
max_tokens = tokenizer.model_max_length - 2 |
|
comma_token = tokenizer.tokenize(',')[0] |
|
|
|
chunks = [] |
|
chunk = [] |
|
for item in actual_tokens: |
|
chunk.append(item) |
|
if len(chunk) == max_tokens: |
|
if chunk[-1] != comma_token: |
|
for i in range(max_tokens-1, -1, -1): |
|
if chunk[i] == comma_token: |
|
actual_chunk, actual_prompt = detokenize(chunk[:i+1], actual_prompt) |
|
chunks.append(actual_chunk) |
|
chunk = chunk[i+1:] |
|
break |
|
else: |
|
actual_chunk, actual_prompt = detokenize(chunk, actual_prompt) |
|
chunks.append(actual_chunk) |
|
chunk = [] |
|
else: |
|
actual_chunk, actual_prompt = detokenize(chunk, actual_prompt) |
|
chunks.append(actual_chunk) |
|
chunk = [] |
|
if chunk: |
|
actual_chunk, _ = detokenize(chunk, actual_prompt) |
|
chunks.append(actual_chunk) |
|
|
|
return chunks |
|
|
|
def get_embed_new(prompt, pipeline, compel, only_convert_string=False, compel_process_sd=False): |
|
|
|
if compel_process_sd: |
|
return merge_embeds(tokenize_line(prompt, pipeline.tokenizer), compel) |
|
else: |
|
|
|
prompt = prompt.replace("((", "(").replace("))", ")").replace("\\", "\\\\\\") |
|
|
|
|
|
attention = parse_prompt_attention(prompt) |
|
global_attention_chanks = [] |
|
|
|
for att in attention: |
|
for chank in att[0].split(','): |
|
temp_prompt_chanks = tokenize_line(chank, pipeline.tokenizer) |
|
for small_chank in temp_prompt_chanks: |
|
temp_dict = { |
|
"weight": round(att[1], 2), |
|
"lenght": len(pipeline.tokenizer.tokenize(f'{small_chank},')), |
|
"prompt": f'{small_chank},' |
|
} |
|
global_attention_chanks.append(temp_dict) |
|
|
|
max_tokens = pipeline.tokenizer.model_max_length - 2 |
|
global_prompt_chanks = [] |
|
current_list = [] |
|
current_length = 0 |
|
for item in global_attention_chanks: |
|
if current_length + item['lenght'] > max_tokens: |
|
global_prompt_chanks.append(current_list) |
|
current_list = [[item['prompt'], item['weight']]] |
|
current_length = item['lenght'] |
|
else: |
|
if not current_list: |
|
current_list.append([item['prompt'], item['weight']]) |
|
else: |
|
if item['weight'] != current_list[-1][1]: |
|
current_list.append([item['prompt'], item['weight']]) |
|
else: |
|
current_list[-1][0] += f" {item['prompt']}" |
|
current_length += item['lenght'] |
|
if current_list: |
|
global_prompt_chanks.append(current_list) |
|
|
|
if only_convert_string: |
|
return ' '.join([prompt_attention_to_invoke_prompt(i) for i in global_prompt_chanks]) |
|
|
|
return merge_embeds([prompt_attention_to_invoke_prompt(i) for i in global_prompt_chanks], compel) |
|
|
|
def add_comma_after_pattern_ti(text): |
|
pattern = re.compile(r'\b\w+_\d+\b') |
|
modified_text = pattern.sub(lambda x: x.group() + ',', text) |
|
return modified_text |
|
|
|
if not torch.cuda.is_available(): |
|
DESCRIPTION += "\n<p>你现在运行在CPU上 但是此项目只支持GPU.</p>" |
|
|
|
MAX_SEED = np.iinfo(np.int32).max |
|
MAX_IMAGE_SIZE = 4096 |
|
|
|
if torch.cuda.is_available(): |
|
vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16) |
|
pipe = AutoPipelineForText2Image.from_pretrained( |
|
"Menyu/noobaiXLNAIXL_vPred05Version", |
|
vae=vae, |
|
torch_dtype=torch.float16, |
|
use_safetensors=True, |
|
add_watermarker=False |
|
) |
|
pipe.scheduler = EulerDiscreteScheduler.from_config(pipe.scheduler.config) |
|
pipe.scheduler.register_to_config( |
|
prediction_type="v_prediction", |
|
rescale_betas_zero_snr=True, |
|
) |
|
pipe.to("cuda") |
|
|
|
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int: |
|
if randomize_seed: |
|
seed = random.randint(0, MAX_SEED) |
|
return seed |
|
|
|
@spaces.GPU |
|
def infer( |
|
prompt: str, |
|
negative_prompt: str = "lowres, {bad}, error, fewer, extra, missing, worst quality, jpeg artifacts, bad quality, watermark, unfinished, displeasing, chromatic aberration, signature, extra digits, artistic error, username, scan, [abstract]", |
|
use_negative_prompt: bool = True, |
|
seed: int = 7, |
|
width: int = 1024, |
|
height: int = 1536, |
|
guidance_scale: float = 3, |
|
num_inference_steps: int = 30, |
|
randomize_seed: bool = True, |
|
use_resolution_binning: bool = True, |
|
progress=gr.Progress(track_tqdm=True), |
|
): |
|
seed = int(randomize_seed_fn(seed, randomize_seed)) |
|
generator = torch.Generator().manual_seed(seed) |
|
|
|
compel = Compel( |
|
tokenizer=[pipe.tokenizer, pipe.tokenizer_2], |
|
text_encoder=[pipe.text_encoder, pipe.text_encoder_2], |
|
returned_embeddings_type=ReturnedEmbeddingsType.PENULTIMATE_HIDDEN_STATES_NON_NORMALIZED, |
|
requires_pooled=[False, True], |
|
truncate_long_prompts=False |
|
) |
|
|
|
if not use_negative_prompt: |
|
negative_prompt = "" |
|
prompt = get_embed_new(prompt, pipe, compel, only_convert_string=True) |
|
negative_prompt = get_embed_new(negative_prompt, pipe, compel, only_convert_string=True) |
|
conditioning, pooled = compel([prompt, negative_prompt]) |
|
|
|
|
|
image = pipe( |
|
prompt_embeds=conditioning[0:1], |
|
pooled_prompt_embeds=pooled[0:1], |
|
negative_prompt_embeds=conditioning[1:2], |
|
negative_pooled_prompt_embeds=pooled[1:2], |
|
width=width, |
|
height=height, |
|
guidance_scale=guidance_scale, |
|
num_inference_steps=num_inference_steps, |
|
generator=generator, |
|
use_resolution_binning=use_resolution_binning, |
|
).images[0] |
|
return image, seed |
|
|
|
examples = [ |
|
"nahida (genshin impact)", |
|
"klee (genshin impact)", |
|
] |
|
|
|
css = ''' |
|
.gradio-container{max-width: 560px !important} |
|
h1{text-align:center} |
|
footer { |
|
visibility: hidden |
|
} |
|
''' |
|
|
|
with gr.Blocks(css=css) as demo: |
|
gr.Markdown("""# 梦羽的模型生成器 |
|
### 快速生成NoobAIXL V预测版本的模型图片""") |
|
with gr.Group(): |
|
with gr.Row(): |
|
prompt = gr.Text( |
|
label="关键词", |
|
show_label=False, |
|
max_lines=5, |
|
placeholder="输入你要的图片关键词", |
|
container=False, |
|
) |
|
run_button = gr.Button("生成", scale=0, variant="primary") |
|
result = gr.Image(label="Result", show_label=False, format="png") |
|
with gr.Accordion("高级选项", open=False): |
|
with gr.Row(): |
|
use_negative_prompt = gr.Checkbox(label="使用反向词条", value=True) |
|
negative_prompt = gr.Text( |
|
label="反向词条", |
|
max_lines=5, |
|
lines=4, |
|
placeholder="输入你要排除的图片关键词", |
|
value="lowres, {bad}, error, fewer, extra, missing, worst quality, jpeg artifacts, bad quality, watermark, unfinished, displeasing, chromatic aberration, signature, extra digits, artistic error, username, scan, [abstract]", |
|
visible=True, |
|
) |
|
seed = gr.Slider( |
|
label="种子", |
|
minimum=0, |
|
maximum=MAX_SEED, |
|
step=1, |
|
value=0, |
|
) |
|
randomize_seed = gr.Checkbox(label="随机种子", value=True) |
|
with gr.Row(visible=True): |
|
width = gr.Slider( |
|
label="宽度", |
|
minimum=512, |
|
maximum=MAX_IMAGE_SIZE, |
|
step=64, |
|
value=1024, |
|
) |
|
height = gr.Slider( |
|
label="高度", |
|
minimum=512, |
|
maximum=MAX_IMAGE_SIZE, |
|
step=64, |
|
value=1536, |
|
) |
|
with gr.Row(): |
|
guidance_scale = gr.Slider( |
|
label="Guidance Scale", |
|
minimum=0.1, |
|
maximum=10, |
|
step=0.1, |
|
value=5.0, |
|
) |
|
num_inference_steps = gr.Slider( |
|
label="生成步数", |
|
minimum=1, |
|
maximum=50, |
|
step=1, |
|
value=28, |
|
) |
|
|
|
gr.Examples( |
|
examples=examples, |
|
inputs=prompt, |
|
outputs=[result, seed], |
|
fn=infer |
|
) |
|
|
|
use_negative_prompt.change( |
|
fn=lambda x: gr.update(visible=x), |
|
inputs=use_negative_prompt, |
|
outputs=negative_prompt, |
|
) |
|
|
|
gr.on( |
|
triggers=[prompt.submit, run_button.click], |
|
fn=infer, |
|
inputs=[ |
|
prompt, |
|
negative_prompt, |
|
use_negative_prompt, |
|
seed, |
|
width, |
|
height, |
|
guidance_scale, |
|
num_inference_steps, |
|
randomize_seed, |
|
], |
|
outputs=[result, seed], |
|
) |
|
|
|
if __name__ == "__main__": |
|
demo.launch() |