Spaces:
Menyu
/
Running on Zero

File size: 5,917 Bytes
f646433
40457bb
 
 
55575a2
a9fd8d2
 
 
 
55575a2
40457bb
a9fd8d2
f646433
 
e2138e2
40457bb
 
a9fd8d2
 
 
03b5f6a
2207e78
8c287bb
40457bb
 
a9fd8d2
40457bb
a9fd8d2
fcf5839
40457bb
 
 
f646433
 
40457bb
 
ea8e426
 
40457bb
 
 
 
22f8263
 
40457bb
 
 
 
 
 
 
a9fd8d2
 
37581eb
a9fd8d2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
edda1c8
fcf5839
 
 
 
625830f
 
 
 
 
 
fc967fc
 
f646433
 
40457bb
 
f646433
 
40457bb
a9fd8d2
 
 
 
 
40457bb
a9fd8d2
f646433
675f93f
 
40457bb
f646433
 
675f93f
f646433
 
675f93f
f646433
 
8df6565
edda1c8
675f93f
40457bb
675f93f
f646433
675f93f
40457bb
 
675f93f
7218a79
40457bb
f646433
40457bb
675f93f
40457bb
 
 
 
 
675f93f
40457bb
 
675f93f
40457bb
 
 
 
 
 
675f93f
40457bb
 
 
94a832d
40457bb
 
 
 
 
5a326e4
40457bb
5a326e4
40457bb
 
675f93f
40457bb
22f8263
f646433
22f8263
f646433
 
40457bb
 
 
 
 
 
f646433
a9fd8d2
ea8e426
f646433
 
 
40457bb
f646433
 
 
 
 
40457bb
f646433
 
55575a2
 
f646433
be0aa53
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
import random
import gradio as gr
import numpy as np
import spaces
import torch
from diffusers import AutoPipelineForText2Image, AutoencoderKL  # , EulerDiscreteScheduler

# 添加导入语句
from sd_embed.embedding_funcs import get_weighted_text_embeddings_sdxl

if not torch.cuda.is_available():
    DESCRIPTION += "\n<p>你现在运行在CPU上,但是该程序仅支持GPU。</p>"

MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 4096

if torch.cuda.is_available():
    vae = AutoencoderKL.from_pretrained(
        "madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16
    )
    pipe = AutoPipelineForText2Image.from_pretrained(
        "John6666/noobai-xl-nai-xl-epsilonpred075version-sdxl",
        vae=vae,
        torch_dtype=torch.float16,
        use_safetensors=True,
        add_watermarker=False,
    )
    # pipe.scheduler = EulerDiscreteScheduler.from_config(pipe.scheduler.config, timestep_spacing="trailing")
    # pipe.tokenizer.model_max_length = 512
    pipe.to("cuda")

def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
    if randomize_seed:
        seed = random.randint(0, MAX_SEED)
    return seed

@spaces.GPU
def infer(
    prompt: str,
    negative_prompt: str = "",
    use_negative_prompt: bool = False,
    seed: int = 1,
    width: int = 512,
    height: int = 768,
    guidance_scale: float = 3,
    num_inference_steps: int = 30,
    randomize_seed: bool = False,
    use_resolution_binning: bool = True,
    progress=gr.Progress(track_tqdm=True),
):
    seed = int(randomize_seed_fn(seed, randomize_seed))
    generator = torch.Generator("cuda").manual_seed(seed)

    # 使用 get_weighted_text_embeddings_sdxl 获取文本嵌入,不传递 device 参数
    if use_negative_prompt and negative_prompt:
        (
            prompt_embeds,
            prompt_neg_embeds,
            pooled_prompt_embeds,
            negative_pooled_prompt_embeds,
        ) = get_weighted_text_embeddings_sdxl(
            pipe,
            prompt=prompt,
            neg_prompt=negative_prompt,
        )
    else:
        (
            prompt_embeds,
            _,
            pooled_prompt_embeds,
            _,
        ) = get_weighted_text_embeddings_sdxl(
            pipe,
            prompt=prompt,
        )
        prompt_neg_embeds = None
        negative_pooled_prompt_embeds = None

    image = pipe(
        prompt=prompt_embeds,
        negative_prompt=prompt_neg_embeds,
        #pooled_prompt_embeds=pooled_prompt_embeds,
        #negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
        width=width,
        height=height,
        guidance_scale=guidance_scale,
        num_inference_steps=num_inference_steps,
        generator=generator,
        use_resolution_binning=use_resolution_binning,
    ).images[0]
    return image, seed

examples = [
    "a cat eating a piece of cheese",
    "a ROBOT riding a BLUE horse on Mars, photorealistic, 4k",
]

css = '''
    .gradio-container{max-width: 560px !important}
    h1{text-align:center}
    footer {
        visibility: hidden
    }
'''

with gr.Blocks(css=css) as demo:
    gr.Markdown("""# 梦羽的模型生成器
        ### 快速生成NoobXL的模型图片.""")
    with gr.Group():
        with gr.Row():
            prompt = gr.Text(
                label="关键词",
                show_label=False,
                max_lines=1,
                placeholder="输入你要的图片关键词",
                container=False,
            )
            run_button = gr.Button("生成", scale=0, variant="primary")
        result = gr.Image(label="Result", show_label=False)
    with gr.Accordion("高级选项", open=False):
        with gr.Row():
            use_negative_prompt = gr.Checkbox(label="使用反向词条", value=True)
            negative_prompt = gr.Text(
                label="反向词条",
                max_lines=5,
                lines=4,
                placeholder="输入你要排除的图片关键词",
                value="lowres, {bad}, error, fewer, extra, missing, worst quality, jpeg artifacts, bad quality, watermark, unfinished, displeasing, chromatic aberration, signature, extra digits, artistic error, username, scan, [abstract]",
                visible=True,
            )
        seed = gr.Slider(
            label="种子",
            minimum=0,
            maximum=MAX_SEED,
            step=1,
            value=0,
        )
        randomize_seed = gr.Checkbox(label="随机种子", value=True)
        with gr.Row(visible=True):
            width = gr.Slider(
                label="宽度",
                minimum=512,
                maximum=MAX_IMAGE_SIZE,
                step=64,
                value=1024,
            )
            height = gr.Slider(
                label="高度",
                minimum=512,
                maximum=MAX_IMAGE_SIZE,
                step=64,
                value=1536,
            )
        with gr.Row():
            guidance_scale = gr.Slider(
                label="Guidance Scale",
                minimum=0.1,
                maximum=10,
                step=0.1,
                value=7.0,
            )
            num_inference_steps = gr.Slider(
                label="生成步数",
                minimum=1,
                maximum=50,
                step=1,
                value=28,
            )

    use_negative_prompt.change(
        fn=lambda x: gr.update(visible=x),
        inputs=use_negative_prompt,
        outputs=negative_prompt,
    )

    gr.on(
        triggers=[prompt.submit, run_button.click],
        fn=infer,
        inputs=[
            prompt,
            negative_prompt,
            use_negative_prompt,
            seed,
            width,
            height,
            guidance_scale,
            num_inference_steps,
            randomize_seed,
        ],
        outputs=[result, seed],
    )

if __name__ == "__main__":
    demo.launch()