Spaces:
Menyu
/
Running on Zero

File size: 5,937 Bytes
40457bb
f646433
40457bb
 
f646433
40457bb
 
 
 
55575a2
40457bb
55575a2
40457bb
 
f646433
 
40457bb
 
 
 
 
 
 
 
 
27a4fd7
40457bb
 
 
 
 
 
 
 
 
 
 
 
 
 
f646433
 
40457bb
 
 
 
 
 
 
 
22f8263
 
40457bb
 
 
 
 
 
 
 
 
f646433
40457bb
 
 
 
 
 
 
 
 
 
f646433
40457bb
 
 
f646433
40457bb
 
f646433
 
 
40457bb
 
 
 
 
 
f646433
 
40457bb
 
 
 
 
f646433
40457bb
f646433
40457bb
 
 
f646433
 
 
 
 
 
 
 
40457bb
 
 
 
 
f646433
 
40457bb
 
f646433
7218a79
40457bb
f646433
40457bb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7218a79
40457bb
 
 
 
 
 
 
 
 
 
 
 
22f8263
f646433
22f8263
f646433
 
40457bb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f646433
40457bb
 
 
 
 
 
f646433
 
 
40457bb
f646433
 
 
 
 
40457bb
f646433
 
40457bb
55575a2
 
f646433
7218a79
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
import os
import random
import uuid
import json

import gradio as gr
import numpy as np
from PIL import Image
import spaces
import torch
from diffusers import StableDiffusionXLPipeline, EulerAncestralDiscreteScheduler

if not torch.cuda.is_available():
    DESCRIPTION += "\n<p>Running on CPU 🥶 This demo may not work on CPU.</p>"

MAX_SEED = np.iinfo(np.int32).max
CACHE_EXAMPLES = torch.cuda.is_available() and os.getenv("CACHE_EXAMPLES", "1") == "1"
MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "4096"))
USE_TORCH_COMPILE = os.getenv("USE_TORCH_COMPILE", "0") == "1"
ENABLE_CPU_OFFLOAD = os.getenv("ENABLE_CPU_OFFLOAD", "0") == "1"

device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

if torch.cuda.is_available():
    pipe = StableDiffusionXLPipeline.from_pretrained(
        "John6666/noobai-xl-nai-xl-epsilonpred075version-sdxl",
        torch_dtype=torch.float16,
        use_safetensors=True,
        add_watermarker=False
    )
    pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config)
    pipe.to("cuda")


def save_image(img):
    unique_name = str(uuid.uuid4()) + ".png"
    img.save(unique_name)
    return unique_name

def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
    if randomize_seed:
        seed = random.randint(0, MAX_SEED)
    return seed

@spaces.GPU(queue=False,duration=30)
def generate(
    prompt: str,
    negative_prompt: str = "",
    use_negative_prompt: bool = False,
    seed: int = 1,
    width: int = 512,
    height: int = 768,
    guidance_scale: float = 3,
    num_inference_steps: int = 30,
    randomize_seed: bool = False,
    use_resolution_binning: bool = True,
    progress=gr.Progress(track_tqdm=True),
):
    pipe.to(device)
    seed = int(randomize_seed_fn(seed, randomize_seed))
    generator = torch.Generator().manual_seed(seed)   

    options = {
        "prompt":prompt,
        "negative_prompt":negative_prompt,
        "width":width,
        "height":height,
        "guidance_scale":guidance_scale,
        "num_inference_steps":num_inference_steps,
        "generator":generator,
        "use_resolution_binning":use_resolution_binning,
        "output_type":"pil",

    }
    
    images = pipe(**options).images

    image_paths = [save_image(img) for img in images]
    return image_paths, seed


examples = [
    "a cat eating a piece of cheese",
    "a ROBOT riding a BLUE horse on Mars, photorealistic, 4k",
    "Ironman VS Hulk, ultrarealistic",
    "Astronaut in a jungle, cold color palette, oil pastel, detailed, 8k",
    "An alien holding sign board contain word 'Flash', futuristic, neonpunk",
    "Kids going to school, Anime style"
]

css = '''
.gradio-container{max-width: 560px !important}
h1{text-align:center}
footer {
    visibility: hidden
}
'''
with gr.Blocks(css=css) as demo:
    gr.Markdown("""# SDXL Flash
        ### First Image processing takes time then images generate faster.""")
    with gr.Group():
        with gr.Row():
            prompt = gr.Text(
                label="Prompt",
                show_label=False,
                max_lines=1,
                placeholder="Enter your prompt",
                container=False,
            )
            run_button = gr.Button("Run", scale=0)
        result = gr.Gallery(label="Result", columns=1)
    with gr.Accordion("Advanced options", open=False):
        with gr.Row():
            use_negative_prompt = gr.Checkbox(label="Use negative prompt", value=True)
            negative_prompt = gr.Text(
                label="Negative prompt",
                max_lines=5,
                lines=4,
                placeholder="Enter a negative prompt",
                value="lowres, {bad}, error, fewer, extra, missing, worst quality, jpeg artifacts, bad quality, watermark, unfinished, displeasing, chromatic aberration, signature, extra digits, artistic error, username, scan, [abstract]",
                visible=True,
            )
        seed = gr.Slider(
            label="Seed",
            minimum=0,
            maximum=MAX_SEED,
            step=1,
            value=0,
        )
        randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
        with gr.Row(visible=True):
            width = gr.Slider(
                label="Width",
                minimum=512,
                maximum=MAX_IMAGE_SIZE,
                step=64,
                value=1024,
            )
            height = gr.Slider(
                label="Height",
                minimum=512,
                maximum=MAX_IMAGE_SIZE,
                step=64,
                value=‌1536,
            )
        with gr.Row():
            guidance_scale = gr.Slider(
                label="Guidance Scale",
                minimum=0.1,
                maximum=6,
                step=0.1,
                value=3.0,
            )
            num_inference_steps = gr.Slider(
                label="Number of inference steps",
                minimum=1,
                maximum=50,
                step=1,
                value=28,
            )

    gr.Examples(
        examples=examples,
        inputs=prompt,
        outputs=[result, seed],
        fn=generate,
        cache_examples=CACHE_EXAMPLES,
    )

    use_negative_prompt.change(
        fn=lambda x: gr.update(visible=x),
        inputs=use_negative_prompt,
        outputs=negative_prompt,
        api_name=False,
    )

    gr.on(
        triggers=[
            prompt.submit,
            negative_prompt.submit,
            run_button.click,
        ],
        fn=generate,
        inputs=[
            prompt,
            negative_prompt,
            use_negative_prompt,
            seed,
            width,
            height,
            guidance_scale,
            num_inference_steps,
            randomize_seed,
        ],
        outputs=[result, seed],
        api_name="run",
    )

if __name__ == "__main__":
    demo.queue(max_size=30).launch()