Spaces:
Running
on
Zero
Running
on
Zero
task_stablepy = { | |
'txt2img': 'txt2img', | |
'img2img': 'img2img', | |
'inpaint': 'inpaint', | |
'sdxl_canny T2I Adapter': 'sdxl_canny', | |
'sdxl_sketch T2I Adapter': 'sdxl_sketch', | |
'sdxl_lineart T2I Adapter': 'sdxl_lineart', | |
'sdxl_depth-midas T2I Adapter': 'sdxl_depth-midas', | |
'sdxl_openpose T2I Adapter': 'sdxl_openpose', | |
'sd_openpose ControlNet': 'openpose', | |
'sd_canny ControlNet': 'canny', | |
'sd_mlsd ControlNet': 'mlsd', | |
'sd_scribble ControlNet': 'scribble', | |
'sd_softedge ControlNet': 'softedge', | |
'sd_segmentation ControlNet': 'segmentation', | |
'sd_depth ControlNet': 'depth', | |
'sd_normalbae ControlNet': 'normalbae', | |
'sd_lineart ControlNet': 'lineart', | |
'sd_lineart_anime ControlNet': 'lineart_anime', | |
'sd_shuffle ControlNet': 'shuffle', | |
'sd_ip2p ControlNet': 'ip2p', | |
} | |
task_model_list = list(task_stablepy.keys()) | |
####################### | |
# UTILS | |
####################### | |
import spaces | |
import os | |
from stablepy import Model_Diffusers | |
from stablepy.diffusers_vanilla.model import scheduler_names | |
from stablepy.diffusers_vanilla.style_prompt_config import STYLE_NAMES | |
import torch | |
import re | |
import shutil | |
preprocessor_controlnet = { | |
"openpose": [ | |
"Openpose", | |
"None", | |
], | |
"scribble": [ | |
"HED", | |
"Pidinet", | |
"None", | |
], | |
"softedge": [ | |
"Pidinet", | |
"HED", | |
"HED safe", | |
"Pidinet safe", | |
"None", | |
], | |
"segmentation": [ | |
"UPerNet", | |
"None", | |
], | |
"depth": [ | |
"DPT", | |
"Midas", | |
"None", | |
], | |
"normalbae": [ | |
"NormalBae", | |
"None", | |
], | |
"lineart": [ | |
"Lineart", | |
"Lineart coarse", | |
"LineartAnime", | |
"None", | |
"None (anime)", | |
], | |
"shuffle": [ | |
"ContentShuffle", | |
"None", | |
], | |
"canny": [ | |
"Canny" | |
], | |
"mlsd": [ | |
"MLSD" | |
], | |
"ip2p": [ | |
"ip2p" | |
] | |
} | |
def download_things(directory, url, hf_token="", civitai_api_key=""): | |
url = url.strip() | |
if "drive.google.com" in url: | |
original_dir = os.getcwd() | |
os.chdir(directory) | |
os.system(f"gdown --fuzzy {url}") | |
os.chdir(original_dir) | |
elif "huggingface.co" in url: | |
url = url.replace("?download=true", "") | |
if "/blob/" in url: | |
url = url.replace("/blob/", "/resolve/") | |
user_header = f'"Authorization: Bearer {hf_token}"' | |
if hf_token: | |
os.system(f"aria2c --console-log-level=error --summary-interval=10 --header={user_header} -c -x 16 -k 1M -s 16 {url} -d {directory} -o {url.split('/')[-1]}") | |
else: | |
os.system (f"aria2c --optimize-concurrent-downloads --console-log-level=error --summary-interval=10 -c -x 16 -k 1M -s 16 {url} -d {directory} -o {url.split('/')[-1]}") | |
elif "civitai.com" in url: | |
if "?" in url: | |
url = url.split("?")[0] | |
if civitai_api_key: | |
url = url + f"?token={civitai_api_key}" | |
os.system(f"aria2c --console-log-level=error --summary-interval=10 -c -x 16 -k 1M -s 16 -d {directory} {url}") | |
else: | |
print("\033[91mYou need an API key to download Civitai models.\033[0m") | |
else: | |
os.system(f"aria2c --console-log-level=error --summary-interval=10 -c -x 16 -k 1M -s 16 -d {directory} {url}") | |
def get_model_list(directory_path): | |
model_list = [] | |
valid_extensions = {'.ckpt' , '.pt', '.pth', '.safetensors', '.bin'} | |
for filename in os.listdir(directory_path): | |
if os.path.splitext(filename)[1] in valid_extensions: | |
name_without_extension = os.path.splitext(filename)[0] | |
file_path = os.path.join(directory_path, filename) | |
# model_list.append((name_without_extension, file_path)) | |
model_list.append(file_path) | |
print('\033[34mFILE: ' + file_path + '\033[0m') | |
return model_list | |
def process_string(input_string): | |
parts = input_string.split('/') | |
if len(parts) == 2: | |
first_element = parts[1] | |
complete_string = input_string | |
result = (first_element, complete_string) | |
return result | |
else: | |
return None | |
directory_models = 'models' | |
os.makedirs(directory_models, exist_ok=True) | |
directory_loras = 'loras' | |
os.makedirs(directory_loras, exist_ok=True) | |
directory_vaes = 'vaes' | |
os.makedirs(directory_vaes, exist_ok=True) | |
# - **Download SD 1.5 Models** | |
download_model = "https://huggingface.co/frankjoshua/toonyou_beta6/resolve/main/toonyou_beta6.safetensors" | |
# - **Download VAEs** | |
download_vae = "https://huggingface.co/nubby/blessed-sdxl-vae-fp16-fix/resolve/main/sdxl_vae-fp16fix-c-1.1-b-0.5.safetensors?download=true, https://huggingface.co/nubby/blessed-sdxl-vae-fp16-fix/resolve/main/sdxl_vae-fp16fix-blessed.safetensors?download=true, https://huggingface.co/digiplay/VAE/resolve/main/vividReal_v20.safetensors?download=true, https://huggingface.co/fp16-guy/anything_kl-f8-anime2_vae-ft-mse-840000-ema-pruned_blessed_clearvae_fp16_cleaned/resolve/main/kl-f8-anime2_fp16.safetensors?download=true, https://huggingface.co/fp16-guy/anything_kl-f8-anime2_vae-ft-mse-840000-ema-pruned_blessed_clearvae_fp16_cleaned/resolve/main/ClearVAE_V2.3_fp16.safetensors?download=true, https://huggingface.co/fp16-guy/anything_kl-f8-anime2_vae-ft-mse-840000-ema-pruned_blessed_clearvae_fp16_cleaned/resolve/main/vae-ft-mse-840000-ema-pruned_fp16.safetensors?download=true, https://huggingface.co/fp16-guy/anything_kl-f8-anime2_vae-ft-mse-840000-ema-pruned_blessed_clearvae_fp16_cleaned/resolve/main/blessed2_fp16.safetensors?download=true" | |
# - **Download LoRAs** | |
download_lora = "https://civitai.com/api/download/models/135867, https://civitai.com/api/download/models/135931, https://civitai.com/api/download/models/177492, https://civitai.com/api/download/models/145907, https://huggingface.co/Linaqruf/anime-detailer-xl-lora/resolve/main/anime-detailer-xl.safetensors?download=true, https://huggingface.co/Linaqruf/style-enhancer-xl-lora/resolve/main/style-enhancer-xl.safetensors?download=true, https://civitai.com/api/download/models/28609" | |
load_diffusers_format_model = [ | |
'stabilityai/stable-diffusion-xl-base-1.0', | |
'misri/epicrealismXL_v7FinalDestination', | |
'misri/juggernautXL_juggernautX', | |
'misri/anima_pencil-XL-v4.0.0', | |
'cagliostrolab/animagine-xl-3.1', | |
'misri/kohakuXLEpsilon_rev1', | |
'kitty7779/ponyDiffusionV6XL', | |
'runwayml/stable-diffusion-v1-5', | |
'digiplay/majicMIX_realistic_v6', | |
'digiplay/majicMIX_realistic_v7', | |
'digiplay/DreamShaper_8', | |
'digiplay/BeautifulArt_v1', | |
'digiplay/DarkSushi2.5D_v1', | |
] | |
CIVITAI_API_KEY = os.environ.get("CIVITAI_API_KEY") | |
hf_token = os.environ.get("HF_TOKEN") | |
# Download stuffs | |
for url in [url.strip() for url in download_model.split(',')]: | |
if not os.path.exists(f"./models/{url.split('/')[-1]}"): | |
download_things(directory_models, url, hf_token, CIVITAI_API_KEY) | |
for url in [url.strip() for url in download_vae.split(',')]: | |
if not os.path.exists(f"./vaes/{url.split('/')[-1]}"): | |
download_things(directory_vaes, url, hf_token, CIVITAI_API_KEY) | |
for url in [url.strip() for url in download_lora.split(',')]: | |
if not os.path.exists(f"./loras/{url.split('/')[-1]}"): | |
download_things(directory_loras, url, hf_token, CIVITAI_API_KEY) | |
# Download Embeddings | |
directory_embeds = 'embedings' | |
os.makedirs(directory_embeds, exist_ok=True) | |
download_embeds = [ | |
'https://huggingface.co/datasets/Nerfgun3/bad_prompt/resolve/main/bad_prompt.pt', | |
'https://huggingface.co/datasets/Nerfgun3/bad_prompt/blob/main/bad_prompt_version2.pt', | |
'https://huggingface.co/embed/EasyNegative/resolve/main/EasyNegative.safetensors', | |
'https://huggingface.co/embed/negative/resolve/main/EasyNegativeV2.safetensors', | |
'https://huggingface.co/embed/negative/resolve/main/bad-hands-5.pt', | |
'https://huggingface.co/embed/negative/resolve/main/bad-artist.pt', | |
'https://huggingface.co/embed/negative/resolve/main/ng_deepnegative_v1_75t.pt', | |
'https://huggingface.co/embed/negative/resolve/main/bad-artist-anime.pt', | |
'https://huggingface.co/embed/negative/resolve/main/bad-image-v2-39000.pt', | |
'https://huggingface.co/embed/negative/resolve/main/verybadimagenegative_v1.3.pt', | |
] | |
for url_embed in download_embeds: | |
if not os.path.exists(f"./embedings/{url_embed.split('/')[-1]}"): | |
download_things(directory_embeds, url_embed, hf_token, CIVITAI_API_KEY) | |
# Build list models | |
embed_list = get_model_list(directory_embeds) | |
model_list = get_model_list(directory_models) | |
model_list = load_diffusers_format_model + model_list | |
lora_model_list = get_model_list(directory_loras) | |
lora_model_list.insert(0, "None") | |
vae_model_list = get_model_list(directory_vaes) | |
vae_model_list.insert(0, "None") | |
print('\033[33m🏁 Download and listing of valid models completed.\033[0m') | |
upscaler_dict_gui = { | |
None : None, | |
"Lanczos" : "Lanczos", | |
"Nearest" : "Nearest", | |
"RealESRGAN_x4plus" : "https://github.com/xinntao/Real-ESRGAN/releases/download/v0.1.0/RealESRGAN_x4plus.pth", | |
"RealESRNet_x4plus" : "https://github.com/xinntao/Real-ESRGAN/releases/download/v0.1.1/RealESRNet_x4plus.pth", | |
"RealESRGAN_x4plus_anime_6B": "https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.2.4/RealESRGAN_x4plus_anime_6B.pth", | |
"RealESRGAN_x2plus": "https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.1/RealESRGAN_x2plus.pth", | |
"realesr-animevideov3": "https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesr-animevideov3.pth", | |
"realesr-general-x4v3": "https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesr-general-x4v3.pth", | |
"realesr-general-wdn-x4v3" : "https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesr-general-wdn-x4v3.pth", | |
"4x-UltraSharp" : "https://huggingface.co/Shandypur/ESRGAN-4x-UltraSharp/resolve/main/4x-UltraSharp.pth", | |
"4x_foolhardy_Remacri" : "https://huggingface.co/FacehugmanIII/4x_foolhardy_Remacri/resolve/main/4x_foolhardy_Remacri.pth", | |
"Remacri4xExtraSmoother" : "https://huggingface.co/hollowstrawberry/upscalers-backup/resolve/main/ESRGAN/Remacri%204x%20ExtraSmoother.pth", | |
"AnimeSharp4x" : "https://huggingface.co/hollowstrawberry/upscalers-backup/resolve/main/ESRGAN/AnimeSharp%204x.pth", | |
"lollypop" : "https://huggingface.co/hollowstrawberry/upscalers-backup/resolve/main/ESRGAN/lollypop.pth", | |
"RealisticRescaler4x" : "https://huggingface.co/hollowstrawberry/upscalers-backup/resolve/main/ESRGAN/RealisticRescaler%204x.pth", | |
"NickelbackFS4x" : "https://huggingface.co/hollowstrawberry/upscalers-backup/resolve/main/ESRGAN/NickelbackFS%204x.pth" | |
} | |
def extract_parameters(input_string): | |
parameters = {} | |
input_string = input_string.replace("\n", "") | |
if not "Negative prompt:" in input_string: | |
print("Negative prompt not detected") | |
parameters["prompt"] = input_string | |
return parameters | |
parm = input_string.split("Negative prompt:") | |
parameters["prompt"] = parm[0] | |
if not "Steps:" in parm[1]: | |
print("Steps not detected") | |
parameters["neg_prompt"] = parm[1] | |
return parameters | |
parm = parm[1].split("Steps:") | |
parameters["neg_prompt"] = parm[0] | |
input_string = "Steps:" + parm[1] | |
# Extracting Steps | |
steps_match = re.search(r'Steps: (\d+)', input_string) | |
if steps_match: | |
parameters['Steps'] = int(steps_match.group(1)) | |
# Extracting Size | |
size_match = re.search(r'Size: (\d+x\d+)', input_string) | |
if size_match: | |
parameters['Size'] = size_match.group(1) | |
width, height = map(int, parameters['Size'].split('x')) | |
parameters['width'] = width | |
parameters['height'] = height | |
# Extracting other parameters | |
other_parameters = re.findall(r'(\w+): (.*?)(?=, \w+|$)', input_string) | |
for param in other_parameters: | |
parameters[param[0]] = param[1].strip('"') | |
return parameters | |
####################### | |
# GUI | |
####################### | |
import spaces | |
import gradio as gr | |
from PIL import Image | |
import IPython.display | |
import time, json | |
from IPython.utils import capture | |
import logging | |
logging.getLogger("diffusers").setLevel(logging.ERROR) | |
import diffusers | |
diffusers.utils.logging.set_verbosity(40) | |
import warnings | |
warnings.filterwarnings(action="ignore", category=FutureWarning, module="diffusers") | |
warnings.filterwarnings(action="ignore", category=UserWarning, module="diffusers") | |
warnings.filterwarnings(action="ignore", category=FutureWarning, module="transformers") | |
from stablepy import logger | |
logger.setLevel(logging.DEBUG) | |
class GuiSD: | |
def __init__(self): | |
self.model = None | |
def infer_short(self, model, pipe_params): | |
images, image_list = model(**pipe_params) | |
return images | |
def infer(self, model, pipe_params): | |
images, image_list = model(**pipe_params) | |
return images | |
def generate_pipeline( | |
self, | |
prompt, | |
neg_prompt, | |
num_images, | |
steps, | |
cfg, | |
clip_skip, | |
seed, | |
lora1, | |
lora_scale1, | |
lora2, | |
lora_scale2, | |
lora3, | |
lora_scale3, | |
lora4, | |
lora_scale4, | |
lora5, | |
lora_scale5, | |
sampler, | |
img_height, | |
img_width, | |
model_name, | |
vae_model, | |
task, | |
image_control, | |
preprocessor_name, | |
preprocess_resolution, | |
image_resolution, | |
style_prompt, # list [] | |
style_json_file, | |
image_mask, | |
strength, | |
low_threshold, | |
high_threshold, | |
value_threshold, | |
distance_threshold, | |
controlnet_output_scaling_in_unet, | |
controlnet_start_threshold, | |
controlnet_stop_threshold, | |
textual_inversion, | |
syntax_weights, | |
upscaler_model_path, | |
upscaler_increases_size, | |
esrgan_tile, | |
esrgan_tile_overlap, | |
hires_steps, | |
hires_denoising_strength, | |
hires_sampler, | |
hires_prompt, | |
hires_negative_prompt, | |
hires_before_adetailer, | |
hires_after_adetailer, | |
loop_generation, | |
leave_progress_bar, | |
disable_progress_bar, | |
image_previews, | |
display_images, | |
save_generated_images, | |
image_storage_location, | |
retain_compel_previous_load, | |
retain_detailfix_model_previous_load, | |
retain_hires_model_previous_load, | |
t2i_adapter_preprocessor, | |
t2i_adapter_conditioning_scale, | |
t2i_adapter_conditioning_factor, | |
xformers_memory_efficient_attention, | |
freeu, | |
generator_in_cpu, | |
adetailer_inpaint_only, | |
adetailer_verbose, | |
adetailer_sampler, | |
adetailer_active_a, | |
prompt_ad_a, | |
negative_prompt_ad_a, | |
strength_ad_a, | |
face_detector_ad_a, | |
person_detector_ad_a, | |
hand_detector_ad_a, | |
mask_dilation_a, | |
mask_blur_a, | |
mask_padding_a, | |
adetailer_active_b, | |
prompt_ad_b, | |
negative_prompt_ad_b, | |
strength_ad_b, | |
face_detector_ad_b, | |
person_detector_ad_b, | |
hand_detector_ad_b, | |
mask_dilation_b, | |
mask_blur_b, | |
mask_padding_b, | |
): | |
loras_list = [lora1, lora2, lora3, lora4, lora5] | |
for la in loras_list: | |
if ( | |
la is not None | |
and "animetarot" in la.lower() | |
and "xl" in model_name.lower() | |
): | |
gr.Info(f"The LoRA {la} is for SD 1.5, but you are using SDXL.") | |
task = task_stablepy[task] | |
# First load | |
model_precision = torch.float16 | |
if not self.model: | |
from stablepy import Model_Diffusers | |
print("Loading model...") | |
self.model = Model_Diffusers( | |
base_model_id=model_name, | |
task_name=task, | |
vae_model=vae_model if vae_model != "None" else None, | |
type_model_precision=model_precision | |
) | |
if task != "txt2img" and not image_control: | |
raise ValueError("No control image found: To use this function, you have to upload an image in 'Image ControlNet/Inpaint/Img2img'") | |
if task == "inpaint" and not image_mask: | |
raise ValueError("No mask image found: Specify one in 'Image Mask'") | |
if upscaler_model_path in [None, "Lanczos", "Nearest"]: | |
upscaler_model = upscaler_model_path | |
else: | |
directory_upscalers = 'upscalers' | |
os.makedirs(directory_upscalers, exist_ok=True) | |
url_upscaler = upscaler_dict_gui[upscaler_model_path] | |
if not os.path.exists(f"./upscalers/{url_upscaler.split('/')[-1]}"): | |
download_things(directory_upscalers, url_upscaler, hf_token) | |
upscaler_model = f"./upscalers/{url_upscaler.split('/')[-1]}" | |
logging.getLogger("ultralytics").setLevel(logging.INFO if adetailer_verbose else logging.ERROR) | |
print(model_name, vae_model, loras_list) | |
self.model.load_pipe( | |
model_name, | |
task_name=task, | |
vae_model=vae_model if vae_model != "None" else None, | |
type_model_precision=model_precision | |
) | |
if textual_inversion and self.model.class_name == "StableDiffusionXLPipeline": | |
print("No Textual inversion for SDXL") | |
adetailer_params_A = { | |
"face_detector_ad" : face_detector_ad_a, | |
"person_detector_ad" : person_detector_ad_a, | |
"hand_detector_ad" : hand_detector_ad_a, | |
"prompt": prompt_ad_a, | |
"negative_prompt" : negative_prompt_ad_a, | |
"strength" : strength_ad_a, | |
# "image_list_task" : None, | |
"mask_dilation" : mask_dilation_a, | |
"mask_blur" : mask_blur_a, | |
"mask_padding" : mask_padding_a, | |
"inpaint_only" : adetailer_inpaint_only, | |
"sampler" : adetailer_sampler, | |
} | |
adetailer_params_B = { | |
"face_detector_ad" : face_detector_ad_b, | |
"person_detector_ad" : person_detector_ad_b, | |
"hand_detector_ad" : hand_detector_ad_b, | |
"prompt": prompt_ad_b, | |
"negative_prompt" : negative_prompt_ad_b, | |
"strength" : strength_ad_b, | |
# "image_list_task" : None, | |
"mask_dilation" : mask_dilation_b, | |
"mask_blur" : mask_blur_b, | |
"mask_padding" : mask_padding_b, | |
} | |
pipe_params = { | |
"prompt": prompt, | |
"negative_prompt": neg_prompt, | |
"img_height": img_height, | |
"img_width": img_width, | |
"num_images": num_images, | |
"num_steps": steps, | |
"guidance_scale": cfg, | |
"clip_skip": clip_skip, | |
"seed": seed, | |
"image": image_control, | |
"preprocessor_name": preprocessor_name, | |
"preprocess_resolution": preprocess_resolution, | |
"image_resolution": image_resolution, | |
"style_prompt": style_prompt if style_prompt else "", | |
"style_json_file": "", | |
"image_mask": image_mask, # only for Inpaint | |
"strength": strength, # only for Inpaint or ... | |
"low_threshold": low_threshold, | |
"high_threshold": high_threshold, | |
"value_threshold": value_threshold, | |
"distance_threshold": distance_threshold, | |
"lora_A": lora1 if lora1 != "None" else None, | |
"lora_scale_A": lora_scale1, | |
"lora_B": lora2 if lora2 != "None" else None, | |
"lora_scale_B": lora_scale2, | |
"lora_C": lora3 if lora3 != "None" else None, | |
"lora_scale_C": lora_scale3, | |
"lora_D": lora4 if lora4 != "None" else None, | |
"lora_scale_D": lora_scale4, | |
"lora_E": lora5 if lora5 != "None" else None, | |
"lora_scale_E": lora_scale5, | |
"textual_inversion": embed_list if textual_inversion and self.model.class_name != "StableDiffusionXLPipeline" else [], | |
"syntax_weights": syntax_weights, # "Classic" | |
"sampler": sampler, | |
"xformers_memory_efficient_attention": xformers_memory_efficient_attention, | |
"gui_active": True, | |
"loop_generation": loop_generation, | |
"controlnet_conditioning_scale": float(controlnet_output_scaling_in_unet), | |
"control_guidance_start": float(controlnet_start_threshold), | |
"control_guidance_end": float(controlnet_stop_threshold), | |
"generator_in_cpu": generator_in_cpu, | |
"FreeU": freeu, | |
"adetailer_A": adetailer_active_a, | |
"adetailer_A_params": adetailer_params_A, | |
"adetailer_B": adetailer_active_b, | |
"adetailer_B_params": adetailer_params_B, | |
"leave_progress_bar": leave_progress_bar, | |
"disable_progress_bar": disable_progress_bar, | |
"image_previews": image_previews, | |
"display_images": display_images, | |
"save_generated_images": save_generated_images, | |
"image_storage_location": image_storage_location, | |
"retain_compel_previous_load": retain_compel_previous_load, | |
"retain_detailfix_model_previous_load": retain_detailfix_model_previous_load, | |
"retain_hires_model_previous_load": retain_hires_model_previous_load, | |
"t2i_adapter_preprocessor": t2i_adapter_preprocessor, | |
"t2i_adapter_conditioning_scale": float(t2i_adapter_conditioning_scale), | |
"t2i_adapter_conditioning_factor": float(t2i_adapter_conditioning_factor), | |
"upscaler_model_path": upscaler_model, | |
"upscaler_increases_size": upscaler_increases_size, | |
"esrgan_tile": esrgan_tile, | |
"esrgan_tile_overlap": esrgan_tile_overlap, | |
"hires_steps": hires_steps, | |
"hires_denoising_strength": hires_denoising_strength, | |
"hires_prompt": hires_prompt, | |
"hires_negative_prompt": hires_negative_prompt, | |
"hires_sampler": hires_sampler, | |
"hires_before_adetailer": hires_before_adetailer, | |
"hires_after_adetailer": hires_after_adetailer | |
} | |
# print(pipe_params) | |
if ( | |
(img_height > 1700 and img_width > 1700) | |
or (num_images > 1 and img_height>1048 and img_width>1048) | |
or (num_images > 1 and upscaler_model) | |
or (num_images > 1 and adetailer_active_a or num_images > 1 and adetailer_active_b) | |
or (adetailer_active_a and adetailer_active_b) | |
or (upscaler_model and upscaler_increases_size > 1.7) | |
or (steps > 75) | |
or (image_resolution > 1048) | |
): | |
print("Inference 2") | |
return self.infer(self.model, pipe_params) | |
pribt("Inference 1") | |
return self.infer_short(self.model, pipe_params) | |
sd_gen = GuiSD() | |
CSS =""" | |
.contain { display: flex; flex-direction: column; } | |
#component-0 { height: 100%; } | |
#gallery { flex-grow: 1; } | |
""" | |
sdxl_task = task_model_list[:3] + task_model_list[3:8] | |
sd_task = task_model_list[:3] + task_model_list[8:] | |
def update_task_options(model_name, task_name): | |
if model_name in model_list: | |
if "xl" in model_name.lower(): | |
new_choices = sdxl_task | |
else: | |
new_choices = sd_task | |
if task_name not in new_choices: | |
task_name = "txt2img" | |
return gr.update(value=task_name, choices=new_choices) | |
else: | |
return gr.update(value=task_name, choices=task_model_list) | |
with gr.Blocks(theme="NoCrypt/miku", css=CSS) as app: | |
gr.Markdown("# 🧩 DiffuseCraft") | |
gr.Markdown( | |
f""" | |
### This demo uses [diffusers](https://github.com/huggingface/diffusers) to perform different tasks in image generation. | |
""" | |
) | |
with gr.Tab("Generation"): | |
with gr.Row(): | |
with gr.Column(scale=2): | |
task_gui = gr.Dropdown(label="Task", choices=sdxl_task, value=task_model_list[0]) | |
model_name_gui = gr.Dropdown(label="Model", choices=model_list, value=model_list[0], allow_custom_value=True) | |
prompt_gui = gr.Textbox(lines=5, placeholder="Enter prompt", label="Prompt") | |
neg_prompt_gui = gr.Textbox(lines=3, placeholder="Enter Neg prompt", label="Negative prompt") | |
generate_button = gr.Button(value="GENERATE", variant="primary") | |
model_name_gui.change( | |
update_task_options, | |
[model_name_gui, task_gui], | |
[task_gui], | |
) | |
result_images = gr.Gallery( | |
label="Generated images", | |
show_label=False, | |
elem_id="gallery", | |
columns=[2], | |
rows=[2], | |
object_fit="contain", | |
# height="auto", | |
interactive=False, | |
preview=False, | |
selected_index=50, | |
) | |
with gr.Column(scale=1): | |
steps_gui = gr.Slider(minimum=1, maximum=100, step=1, value=30, label="Steps") | |
cfg_gui = gr.Slider(minimum=0, maximum=30, step=0.5, value=7.5, label="CFG") | |
sampler_gui = gr.Dropdown(label="Sampler", choices=scheduler_names, value="Euler a") | |
img_width_gui = gr.Slider(minimum=64, maximum=4096, step=8, value=1024, label="Img Width") | |
img_height_gui = gr.Slider(minimum=64, maximum=4096, step=8, value=1024, label="Img Height") | |
clip_skip_gui = gr.Checkbox(value=True, label="Layer 2 Clip Skip") | |
free_u_gui = gr.Checkbox(value=True, label="FreeU") | |
seed_gui = gr.Number(minimum=-1, maximum=9999999999, value=-1, label="Seed") | |
num_images_gui = gr.Slider(minimum=1, maximum=4, step=1, value=1, label="Images") | |
prompt_s_options = [("Compel (default) format: (word)weight", "Compel"), ("Classic (sd1.5 long prompts) format: (word:weight)", "Classic")] | |
prompt_syntax_gui = gr.Dropdown(label="Prompt Syntax", choices=prompt_s_options, value=prompt_s_options[0][1]) | |
vae_model_gui = gr.Dropdown(label="VAE Model", choices=vae_model_list) | |
with gr.Accordion("ControlNet / Img2img / Inpaint", open=False, visible=True): | |
image_control = gr.Image(label="Image ControlNet/Inpaint/Img2img", type="filepath") | |
image_mask_gui = gr.Image(label="Image Mask", type="filepath") | |
strength_gui = gr.Slider( | |
minimum=0.01, maximum=1.0, step=0.01, value=0.55, label="Strength", | |
info="This option adjusts the level of changes for img2img and inpainting." | |
) | |
image_resolution_gui = gr.Slider(minimum=64, maximum=2048, step=64, value=1024, label="Image Resolution") | |
preprocessor_name_gui = gr.Dropdown(label="Preprocessor Name", choices=preprocessor_controlnet["canny"]) | |
def change_preprocessor_choices(task): | |
task = task_stablepy[task] | |
if task in preprocessor_controlnet.keys(): | |
choices_task = preprocessor_controlnet[task] | |
else: | |
choices_task = preprocessor_controlnet["canny"] | |
return gr.update(choices=choices_task, value=choices_task[0]) | |
task_gui.change( | |
change_preprocessor_choices, | |
[task_gui], | |
[preprocessor_name_gui], | |
) | |
preprocess_resolution_gui = gr.Slider(minimum=64, maximum=2048, step=64, value=512, label="Preprocess Resolution") | |
low_threshold_gui = gr.Slider(minimum=1, maximum=255, step=1, value=100, label="Canny low threshold") | |
high_threshold_gui = gr.Slider(minimum=1, maximum=255, step=1, value=200, label="Canny high threshold") | |
value_threshold_gui = gr.Slider(minimum=1, maximum=2.0, step=0.01, value=0.1, label="Hough value threshold (MLSD)") | |
distance_threshold_gui = gr.Slider(minimum=1, maximum=20.0, step=0.01, value=0.1, label="Hough distance threshold (MLSD)") | |
control_net_output_scaling_gui = gr.Slider(minimum=0, maximum=5.0, step=0.1, value=1, label="ControlNet Output Scaling in UNet") | |
control_net_start_threshold_gui = gr.Slider(minimum=0, maximum=1, step=0.01, value=0, label="ControlNet Start Threshold (%)") | |
control_net_stop_threshold_gui = gr.Slider(minimum=0, maximum=1, step=0.01, value=1, label="ControlNet Stop Threshold (%)") | |
with gr.Accordion("T2I adapter", open=False, visible=True): | |
t2i_adapter_preprocessor_gui = gr.Checkbox(value=True, label="T2i Adapter Preprocessor") | |
adapter_conditioning_scale_gui = gr.Slider(minimum=0, maximum=5., step=0.1, value=1, label="Adapter Conditioning Scale") | |
adapter_conditioning_factor_gui = gr.Slider(minimum=0, maximum=1., step=0.01, value=0.55, label="Adapter Conditioning Factor (%)") | |
with gr.Accordion("LoRA", open=False, visible=True): | |
lora1_gui = gr.Dropdown(label="Lora1", choices=lora_model_list) | |
lora_scale_1_gui = gr.Slider(minimum=-2, maximum=2, step=0.01, value=0.33, label="Lora Scale 1") | |
lora2_gui = gr.Dropdown(label="Lora2", choices=lora_model_list) | |
lora_scale_2_gui = gr.Slider(minimum=-2, maximum=2, step=0.01, value=0.33, label="Lora Scale 2") | |
lora3_gui = gr.Dropdown(label="Lora3", choices=lora_model_list) | |
lora_scale_3_gui = gr.Slider(minimum=-2, maximum=2, step=0.01, value=0.33, label="Lora Scale 3") | |
lora4_gui = gr.Dropdown(label="Lora4", choices=lora_model_list) | |
lora_scale_4_gui = gr.Slider(minimum=-2, maximum=2, step=0.01, value=0.33, label="Lora Scale 4") | |
lora5_gui = gr.Dropdown(label="Lora5", choices=lora_model_list) | |
lora_scale_5_gui = gr.Slider(minimum=-2, maximum=2, step=0.01, value=0.33, label="Lora Scale 5") | |
with gr.Accordion("Styles", open=False, visible=True): | |
try: | |
style_names_found = sd_gen.model.STYLE_NAMES | |
except: | |
style_names_found = STYLE_NAMES | |
style_prompt_gui = gr.Dropdown( | |
style_names_found, | |
multiselect=True, | |
value=None, | |
label="Style Prompt", | |
interactive=True, | |
) | |
style_json_gui = gr.File(label="Style JSON File") | |
style_button = gr.Button("Load styles") | |
def load_json_style_file(json): | |
if not sd_gen.model: | |
gr.Info("First load the model") | |
return gr.update(value=None, choices=STYLE_NAMES) | |
sd_gen.model.load_style_file(json) | |
gr.Info(f"{len(sd_gen.model.STYLE_NAMES)} styles loaded") | |
return gr.update(value=None, choices=sd_gen.model.STYLE_NAMES) | |
style_button.click(load_json_style_file, [style_json_gui], [style_prompt_gui]) | |
with gr.Accordion("Textual inversion", open=False, visible=False): | |
active_textual_inversion_gui = gr.Checkbox(value=False, label="Active Textual Inversion in prompt") | |
with gr.Accordion("Hires fix", open=False, visible=True): | |
upscaler_keys = list(upscaler_dict_gui.keys()) | |
upscaler_model_path_gui = gr.Dropdown(label="Upscaler", choices=upscaler_keys, value=upscaler_keys[0]) | |
upscaler_increases_size_gui = gr.Slider(minimum=1.1, maximum=6., step=0.1, value=1.5, label="Upscale by") | |
esrgan_tile_gui = gr.Slider(minimum=0, value=100, maximum=500, step=1, label="ESRGAN Tile") | |
esrgan_tile_overlap_gui = gr.Slider(minimum=1, maximum=200, step=1, value=10, label="ESRGAN Tile Overlap") | |
hires_steps_gui = gr.Slider(minimum=0, value=30, maximum=100, step=1, label="Hires Steps") | |
hires_denoising_strength_gui = gr.Slider(minimum=0.1, maximum=1.0, step=0.01, value=0.55, label="Hires Denoising Strength") | |
hires_sampler_gui = gr.Dropdown(label="Hires Sampler", choices=["Use same sampler"] + scheduler_names[:-1], value="Use same sampler") | |
hires_prompt_gui = gr.Textbox(label="Hires Prompt", placeholder="Main prompt will be use", lines=3) | |
hires_negative_prompt_gui = gr.Textbox(label="Hires Negative Prompt", placeholder="Main negative prompt will be use", lines=3) | |
with gr.Accordion("Detailfix", open=False, visible=True): | |
# Adetailer Inpaint Only | |
adetailer_inpaint_only_gui = gr.Checkbox(label="Inpaint only", value=True) | |
# Adetailer Verbose | |
adetailer_verbose_gui = gr.Checkbox(label="Verbose", value=False) | |
# Adetailer Sampler | |
adetailer_sampler_options = ["Use same sampler"] + scheduler_names[:-1] | |
adetailer_sampler_gui = gr.Dropdown(label="Adetailer sampler:", choices=adetailer_sampler_options, value="Use same sampler") | |
with gr.Accordion("Detailfix A", open=False, visible=True): | |
# Adetailer A | |
adetailer_active_a_gui = gr.Checkbox(label="Enable Adetailer A", value=False) | |
prompt_ad_a_gui = gr.Textbox(label="Main prompt", placeholder="Main prompt will be use", lines=3) | |
negative_prompt_ad_a_gui = gr.Textbox(label="Negative prompt", placeholder="Main negative prompt will be use", lines=3) | |
strength_ad_a_gui = gr.Number(label="Strength:", value=0.35, step=0.01, minimum=0.01, maximum=1.0) | |
face_detector_ad_a_gui = gr.Checkbox(label="Face detector", value=True) | |
person_detector_ad_a_gui = gr.Checkbox(label="Person detector", value=True) | |
hand_detector_ad_a_gui = gr.Checkbox(label="Hand detector", value=False) | |
mask_dilation_a_gui = gr.Number(label="Mask dilation:", value=4, minimum=1) | |
mask_blur_a_gui = gr.Number(label="Mask blur:", value=4, minimum=1) | |
mask_padding_a_gui = gr.Number(label="Mask padding:", value=32, minimum=1) | |
with gr.Accordion("Detailfix B", open=False, visible=True): | |
# Adetailer B | |
adetailer_active_b_gui = gr.Checkbox(label="Enable Adetailer B", value=False) | |
prompt_ad_b_gui = gr.Textbox(label="Main prompt", placeholder="Main prompt will be use", lines=3) | |
negative_prompt_ad_b_gui = gr.Textbox(label="Negative prompt", placeholder="Main negative prompt will be use", lines=3) | |
strength_ad_b_gui = gr.Number(label="Strength:", value=0.35, step=0.01, minimum=0.01, maximum=1.0) | |
face_detector_ad_b_gui = gr.Checkbox(label="Face detector", value=True) | |
person_detector_ad_b_gui = gr.Checkbox(label="Person detector", value=True) | |
hand_detector_ad_b_gui = gr.Checkbox(label="Hand detector", value=False) | |
mask_dilation_b_gui = gr.Number(label="Mask dilation:", value=4, minimum=1) | |
mask_blur_b_gui = gr.Number(label="Mask blur:", value=4, minimum=1) | |
mask_padding_b_gui = gr.Number(label="Mask padding:", value=32, minimum=1) | |
with gr.Accordion("Other settings", open=False, visible=True): | |
hires_before_adetailer_gui = gr.Checkbox(value=False, label="Hires Before Adetailer") | |
hires_after_adetailer_gui = gr.Checkbox(value=True, label="Hires After Adetailer") | |
generator_in_cpu_gui = gr.Checkbox(value=False, label="Generator in CPU") | |
with gr.Accordion("More settings", open=False, visible=False): | |
loop_generation_gui = gr.Slider(minimum=1, value=1, label="Loop Generation") | |
leave_progress_bar_gui = gr.Checkbox(value=True, label="Leave Progress Bar") | |
disable_progress_bar_gui = gr.Checkbox(value=False, label="Disable Progress Bar") | |
image_previews_gui = gr.Checkbox(value=False, label="Image Previews") | |
display_images_gui = gr.Checkbox(value=False, label="Display Images") | |
save_generated_images_gui = gr.Checkbox(value=False, label="Save Generated Images") | |
image_storage_location_gui = gr.Textbox(value="./images", label="Image Storage Location") | |
retain_compel_previous_load_gui = gr.Checkbox(value=False, label="Retain Compel Previous Load") | |
retain_detailfix_model_previous_load_gui = gr.Checkbox(value=False, label="Retain Detailfix Model Previous Load") | |
retain_hires_model_previous_load_gui = gr.Checkbox(value=False, label="Retain Hires Model Previous Load") | |
xformers_memory_efficient_attention_gui = gr.Checkbox(value=False, label="Xformers Memory Efficient Attention") | |
with gr.Accordion("Examples", open=False, visible=True): | |
gr.Examples( | |
examples=[ | |
[ | |
"1girl, souryuu asuka langley, neon genesis evangelion, plugsuit, pilot suit, red bodysuit, sitting, crossing legs, black eye patch, cat hat, throne, symmetrical, looking down, from bottom, looking at viewer, outdoors, masterpiece, best quality, very aesthetic, absurdres", | |
"nsfw, lowres, (bad), text, error, fewer, extra, missing, worst quality, jpeg artifacts, low quality, watermark, unfinished, displeasing, oldest, early, chromatic aberration, signature, extra digits, artistic error, username, scan, [abstract]", | |
1, | |
30, | |
7.5, | |
True, | |
-1, | |
None, | |
1.0, | |
None, | |
1.0, | |
None, | |
1.0, | |
None, | |
1.0, | |
None, | |
1.0, | |
"Euler a", | |
1152, | |
896, | |
"cagliostrolab/animagine-xl-3.1", | |
None, # vae | |
"txt2img", | |
None, # img conttol | |
"Canny", # preprocessor | |
512, # preproc resolution | |
1024, # img resolution | |
None, # Style prompt | |
None, # Style json | |
None, # img Mask | |
0.35, # strength | |
100, # low th canny | |
200, # high th canny | |
0.1, # value mstd | |
0.1, # distance mstd | |
1.0, # cn scale | |
0., # cn start | |
1., # cn end | |
False, # ti | |
"Classic", | |
"Nearest", | |
], | |
[ | |
"score_9, score_8_up, score_8, medium breasts, cute, eyelashes , princess Zelda OOT, cute small face, long hair, crown braid, hairclip, pointy ears, soft curvy body, solo, looking at viewer, smile, blush, white dress, medium body, (((holding the Master Sword))), standing, deep forest in the background", | |
"score_6, score_5, score_4, busty, ugly face, mutated hands, low res, blurry face, black and white,", | |
1, | |
30, | |
5., | |
True, | |
-1, | |
None, | |
1.0, | |
None, | |
1.0, | |
None, | |
1.0, | |
None, | |
1.0, | |
None, | |
1.0, | |
"DPM++ 2M Karras", | |
1024, | |
1024, | |
"kitty7779/ponyDiffusionV6XL", | |
None, # vae | |
"txt2img", | |
None, # img conttol | |
"Canny", # preprocessor | |
512, # preproc resolution | |
1024, # img resolution | |
None, # Style prompt | |
None, # Style json | |
None, # img Mask | |
0.35, # strength | |
100, # low th canny | |
200, # high th canny | |
0.1, # value mstd | |
0.1, # distance mstd | |
1.0, # cn scale | |
0., # cn start | |
1., # cn end | |
False, # ti | |
"Classic", | |
"Nearest", | |
], | |
[ | |
"((masterpiece)), best quality, blonde disco girl, detailed face, realistic face, realistic hair, dynamic pose, pink pvc, intergalactic disco background, pastel lights, dynamic contrast, airbrush, fine detail, 70s vibe, midriff ", | |
"(worst quality:1.2), (bad quality:1.2), (poor quality:1.2), (missing fingers:1.2), bad-artist-anime, bad-artist, bad-picture-chill-75v", | |
1, | |
48, | |
3.5, | |
True, | |
-1, | |
None, | |
1.0, | |
None, | |
1.0, | |
None, | |
1.0, | |
None, | |
1.0, | |
None, | |
1.0, | |
"DPM++ 2M SDE Lu", | |
1024, | |
1024, | |
"misri/epicrealismXL_v7FinalDestination", | |
None, # vae | |
"sdxl_canny T2I Adapter", | |
"image.webp", # img conttol | |
"Canny", # preprocessor | |
1024, # preproc resolution | |
1024, # img resolution | |
None, # Style prompt | |
None, # Style json | |
None, # img Mask | |
0.35, # strength | |
100, # low th canny | |
200, # high th canny | |
0.1, # value mstd | |
0.1, # distance mstd | |
1.0, # cn scale | |
0., # cn start | |
1., # cn end | |
False, # ti | |
"Classic", | |
None, | |
], | |
[ | |
"masterpiece,high resolution,japanese town street background,fantasy world,magical,mountains forest background,stairs,(torii:1.2),masterpiece,cinematic,visual key,best quality,by hayao miyazaki,by makoto shinkai,soft dim lighting,pastel colors,night,stars", | |
"(low quality, worst quality:1.4), (bad_prompt:0.8), (monochrome:1.1), (greyscale), painting, cartoon, comic, anime, manga, drawing, 2d, flat, crayon, sketch", | |
1, | |
50, | |
4., | |
True, | |
-1, | |
None, | |
1.0, | |
None, | |
1.0, | |
None, | |
1.0, | |
None, | |
1.0, | |
None, | |
1.0, | |
"DPM++ 2M Karras", | |
1024, | |
1024, | |
"misri/juggernautXL_juggernautX", | |
None, # vae | |
"txt2img", | |
None, # img conttol | |
"Canny", # preprocessor | |
512, # preproc resolution | |
1024, # img resolution | |
None, # Style prompt | |
None, # Style json | |
None, # img Mask | |
0.35, # strength | |
100, # low th canny | |
200, # high th canny | |
0.1, # value mstd | |
0.1, # distance mstd | |
1.0, # cn scale | |
0., # cn start | |
1., # cn end | |
False, # ti | |
"Classic", | |
None, | |
], | |
[ | |
"1girl, solo, black dress, black hair, black theme, dress, eyelashes, jewelry, makeup, parted lips, purple eyes, ring, short hair, silk, silver hair, snake, masterpiece, best quality", | |
"(low quality, worst quality:1.4), (bad_prompt:0.8), (monochrome:1.1), (greyscale), painting, cartoon, comic, anime, manga, drawing, 2d, flat, crayon, sketch", | |
1, | |
50, | |
4., | |
True, | |
-1, | |
None, | |
1.0, | |
None, | |
1.0, | |
None, | |
1.0, | |
None, | |
1.0, | |
None, | |
1.0, | |
"DPM++ 2M Karras", | |
1344, | |
896, | |
"misri/anima_pencil-XL-v4.0.0", | |
None, # vae | |
"txt2img", | |
None, # img conttol | |
"Canny", # preprocessor | |
512, # preproc resolution | |
1024, # img resolution | |
None, # Style prompt | |
None, # Style json | |
None, # img Mask | |
0.35, # strength | |
100, # low th canny | |
200, # high th canny | |
0.1, # value mstd | |
0.1, # distance mstd | |
1.0, # cn scale | |
0., # cn start | |
1., # cn end | |
False, # ti | |
"Classic", | |
None, | |
], | |
[ | |
"1girl,face,curly hair,red hair,white background,", | |
"(worst quality:2),(low quality:2),(normal quality:2),lowres,watermark,", | |
1, | |
38, | |
5., | |
True, | |
-1, | |
None, | |
1.0, | |
None, | |
1.0, | |
None, | |
1.0, | |
None, | |
1.0, | |
None, | |
1.0, | |
"DPM++ 2M SDE Karras", | |
512, | |
512, | |
"digiplay/majicMIX_realistic_v7", | |
None, # vae | |
"sd_canny ControlNet", | |
"image.webp", # img conttol | |
"Canny", # preprocessor | |
512, # preproc resolution | |
1024, # img resolution | |
None, # Style prompt | |
None, # Style json | |
None, # img Mask | |
0.35, # strength | |
100, # low th canny | |
200, # high th canny | |
0.1, # value mstd | |
0.1, # distance mstd | |
1.0, # cn scale | |
0., # cn start | |
1., # cn end | |
False, # ti | |
"Compel", | |
"Nearest", | |
], | |
], | |
fn=sd_gen.generate_pipeline, | |
inputs=[ | |
prompt_gui, | |
neg_prompt_gui, | |
num_images_gui, | |
steps_gui, | |
cfg_gui, | |
clip_skip_gui, | |
seed_gui, | |
lora1_gui, | |
lora_scale_1_gui, | |
lora2_gui, | |
lora_scale_2_gui, | |
lora3_gui, | |
lora_scale_3_gui, | |
lora4_gui, | |
lora_scale_4_gui, | |
lora5_gui, | |
lora_scale_5_gui, | |
sampler_gui, | |
img_height_gui, | |
img_width_gui, | |
model_name_gui, | |
vae_model_gui, | |
task_gui, | |
image_control, | |
preprocessor_name_gui, | |
preprocess_resolution_gui, | |
image_resolution_gui, | |
style_prompt_gui, | |
style_json_gui, | |
image_mask_gui, | |
strength_gui, | |
low_threshold_gui, | |
high_threshold_gui, | |
value_threshold_gui, | |
distance_threshold_gui, | |
control_net_output_scaling_gui, | |
control_net_start_threshold_gui, | |
control_net_stop_threshold_gui, | |
active_textual_inversion_gui, | |
prompt_syntax_gui, | |
upscaler_model_path_gui, | |
], | |
outputs=[result_images], | |
cache_examples=False, | |
) | |
with gr.Tab("Inpaint mask maker", render=True): | |
def create_mask_now(img, invert): | |
import numpy as np | |
import time | |
time.sleep(0.5) | |
transparent_image = img["layers"][0] | |
# Extract the alpha channel | |
alpha_channel = np.array(transparent_image)[:, :, 3] | |
# Create a binary mask by thresholding the alpha channel | |
binary_mask = alpha_channel > 1 | |
if invert: | |
print("Invert") | |
# Invert the binary mask so that the drawn shape is white and the rest is black | |
binary_mask = np.invert(binary_mask) | |
# Convert the binary mask to a 3-channel RGB mask | |
rgb_mask = np.stack((binary_mask,) * 3, axis=-1) | |
# Convert the mask to uint8 | |
rgb_mask = rgb_mask.astype(np.uint8) * 255 | |
return img["background"], rgb_mask | |
with gr.Row(): | |
with gr.Column(scale=2): | |
# image_base = gr.ImageEditor(label="Base image", show_label=True, brush=gr.Brush(colors=["#000000"])) | |
image_base = gr.ImageEditor( | |
sources=["upload", "clipboard"], | |
# crop_size="1:1", | |
# enable crop (or disable it) | |
# transforms=["crop"], | |
brush=gr.Brush( | |
default_size="16", # or leave it as 'auto' | |
color_mode="fixed", # 'fixed' hides the user swatches and colorpicker, 'defaults' shows it | |
#default_color="black", # html names are supported | |
colors=[ | |
"rgba(0, 0, 0, 1)", # rgb(a) | |
"rgba(0, 0, 0, 0.1)", | |
"rgba(255, 255, 255, 0.1)", | |
# "hsl(360, 120, 120)" # in fact any valid colorstring | |
] | |
), | |
eraser=gr.Eraser(default_size="16") | |
) | |
invert_mask = gr.Checkbox(value=False, label="Invert mask") | |
btn = gr.Button("Create mask") | |
with gr.Column(scale=1): | |
img_source = gr.Image(interactive=False) | |
img_result = gr.Image(label="Mask image", show_label=True, interactive=False) | |
btn_send = gr.Button("Send to the first tab") | |
btn.click(create_mask_now, [image_base, invert_mask], [img_source, img_result]) | |
def send_img(img_source, img_result): | |
return img_source, img_result | |
btn_send.click(send_img, [img_source, img_result], [image_control, image_mask_gui]) | |
generate_button.click( | |
fn=sd_gen.generate_pipeline, | |
inputs=[ | |
prompt_gui, | |
neg_prompt_gui, | |
num_images_gui, | |
steps_gui, | |
cfg_gui, | |
clip_skip_gui, | |
seed_gui, | |
lora1_gui, | |
lora_scale_1_gui, | |
lora2_gui, | |
lora_scale_2_gui, | |
lora3_gui, | |
lora_scale_3_gui, | |
lora4_gui, | |
lora_scale_4_gui, | |
lora5_gui, | |
lora_scale_5_gui, | |
sampler_gui, | |
img_height_gui, | |
img_width_gui, | |
model_name_gui, | |
vae_model_gui, | |
task_gui, | |
image_control, | |
preprocessor_name_gui, | |
preprocess_resolution_gui, | |
image_resolution_gui, | |
style_prompt_gui, | |
style_json_gui, | |
image_mask_gui, | |
strength_gui, | |
low_threshold_gui, | |
high_threshold_gui, | |
value_threshold_gui, | |
distance_threshold_gui, | |
control_net_output_scaling_gui, | |
control_net_start_threshold_gui, | |
control_net_stop_threshold_gui, | |
active_textual_inversion_gui, | |
prompt_syntax_gui, | |
upscaler_model_path_gui, | |
upscaler_increases_size_gui, | |
esrgan_tile_gui, | |
esrgan_tile_overlap_gui, | |
hires_steps_gui, | |
hires_denoising_strength_gui, | |
hires_sampler_gui, | |
hires_prompt_gui, | |
hires_negative_prompt_gui, | |
hires_before_adetailer_gui, | |
hires_after_adetailer_gui, | |
loop_generation_gui, | |
leave_progress_bar_gui, | |
disable_progress_bar_gui, | |
image_previews_gui, | |
display_images_gui, | |
save_generated_images_gui, | |
image_storage_location_gui, | |
retain_compel_previous_load_gui, | |
retain_detailfix_model_previous_load_gui, | |
retain_hires_model_previous_load_gui, | |
t2i_adapter_preprocessor_gui, | |
adapter_conditioning_scale_gui, | |
adapter_conditioning_factor_gui, | |
xformers_memory_efficient_attention_gui, | |
free_u_gui, | |
generator_in_cpu_gui, | |
adetailer_inpaint_only_gui, | |
adetailer_verbose_gui, | |
adetailer_sampler_gui, | |
adetailer_active_a_gui, | |
prompt_ad_a_gui, | |
negative_prompt_ad_a_gui, | |
strength_ad_a_gui, | |
face_detector_ad_a_gui, | |
person_detector_ad_a_gui, | |
hand_detector_ad_a_gui, | |
mask_dilation_a_gui, | |
mask_blur_a_gui, | |
mask_padding_a_gui, | |
adetailer_active_b_gui, | |
prompt_ad_b_gui, | |
negative_prompt_ad_b_gui, | |
strength_ad_b_gui, | |
face_detector_ad_b_gui, | |
person_detector_ad_b_gui, | |
hand_detector_ad_b_gui, | |
mask_dilation_b_gui, | |
mask_blur_b_gui, | |
mask_padding_b_gui, | |
], | |
outputs=[result_images], | |
queue=True, | |
) | |
app.queue() | |
app.launch( | |
show_error=True, | |
debug=True, | |
) | |