File size: 9,306 Bytes
1eb4ae4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271

import os
import re
import gradio as gr
from constants import (
    DIFFUSERS_FORMAT_LORAS,
    CIVITAI_API_KEY,
    HF_TOKEN,
    MODEL_TYPE_CLASS,
    DIRECTORY_LORAS,
)
from huggingface_hub import HfApi
from diffusers import DiffusionPipeline
from huggingface_hub import model_info as model_info_data
from diffusers.pipelines.pipeline_loading_utils import variant_compatible_siblings
from pathlib import PosixPath


def download_things(directory, url, hf_token="", civitai_api_key=""):
    url = url.strip()

    if "drive.google.com" in url:
        original_dir = os.getcwd()
        os.chdir(directory)
        os.system(f"gdown --fuzzy {url}")
        os.chdir(original_dir)
    elif "huggingface.co" in url:
        url = url.replace("?download=true", "")
        # url = urllib.parse.quote(url, safe=':/')  # fix encoding
        if "/blob/" in url:
            url = url.replace("/blob/", "/resolve/")
        user_header = f'"Authorization: Bearer {hf_token}"'
        if hf_token:
            os.system(f"aria2c --console-log-level=error --summary-interval=10 --header={user_header} -c -x 16 -k 1M -s 16 {url} -d {directory}  -o {url.split('/')[-1]}")
        else:
            os.system(f"aria2c --optimize-concurrent-downloads --console-log-level=error --summary-interval=10 -c -x 16 -k 1M -s 16 {url} -d {directory}  -o {url.split('/')[-1]}")
    elif "civitai.com" in url:
        if "?" in url:
            url = url.split("?")[0]
        if civitai_api_key:
            url = url + f"?token={civitai_api_key}"
            os.system(f"aria2c --console-log-level=error --summary-interval=10 -c -x 16 -k 1M -s 16 -d {directory} {url}")
        else:
            print("\033[91mYou need an API key to download Civitai models.\033[0m")
    else:
        os.system(f"aria2c --console-log-level=error --summary-interval=10 -c -x 16 -k 1M -s 16 -d {directory} {url}")


def get_model_list(directory_path):
    model_list = []
    valid_extensions = {'.ckpt', '.pt', '.pth', '.safetensors', '.bin'}

    for filename in os.listdir(directory_path):
        if os.path.splitext(filename)[1] in valid_extensions:
            # name_without_extension = os.path.splitext(filename)[0]
            file_path = os.path.join(directory_path, filename)
            # model_list.append((name_without_extension, file_path))
            model_list.append(file_path)
            print('\033[34mFILE: ' + file_path + '\033[0m')
    return model_list


def extract_parameters(input_string):
    parameters = {}
    input_string = input_string.replace("\n", "")

    if "Negative prompt:" not in input_string:
        if "Steps:" in input_string:
            input_string = input_string.replace("Steps:", "Negative prompt: Steps:")
        else:
            print("Invalid metadata")
            parameters["prompt"] = input_string
            return parameters

    parm = input_string.split("Negative prompt:")
    parameters["prompt"] = parm[0].strip()
    if "Steps:" not in parm[1]:
        print("Steps not detected")
        parameters["neg_prompt"] = parm[1].strip()
        return parameters
    parm = parm[1].split("Steps:")
    parameters["neg_prompt"] = parm[0].strip()
    input_string = "Steps:" + parm[1]

    # Extracting Steps
    steps_match = re.search(r'Steps: (\d+)', input_string)
    if steps_match:
        parameters['Steps'] = int(steps_match.group(1))

    # Extracting Size
    size_match = re.search(r'Size: (\d+x\d+)', input_string)
    if size_match:
        parameters['Size'] = size_match.group(1)
        width, height = map(int, parameters['Size'].split('x'))
        parameters['width'] = width
        parameters['height'] = height

    # Extracting other parameters
    other_parameters = re.findall(r'(\w+): (.*?)(?=, \w+|$)', input_string)
    for param in other_parameters:
        parameters[param[0]] = param[1].strip('"')

    return parameters


def get_my_lora(link_url):
    for url in [url.strip() for url in link_url.split(',')]:
        if not os.path.exists(f"./loras/{url.split('/')[-1]}"):
            download_things(DIRECTORY_LORAS, url, HF_TOKEN, CIVITAI_API_KEY)
    new_lora_model_list = get_model_list(DIRECTORY_LORAS)
    new_lora_model_list.insert(0, "None")
    new_lora_model_list = new_lora_model_list + DIFFUSERS_FORMAT_LORAS

    return gr.update(
        choices=new_lora_model_list
    ), gr.update(
        choices=new_lora_model_list
    ), gr.update(
        choices=new_lora_model_list
    ), gr.update(
        choices=new_lora_model_list
    ), gr.update(
        choices=new_lora_model_list
    ),


def info_html(json_data, title, subtitle):
    return f"""

        <div style='padding: 0; border-radius: 10px;'>

            <p style='margin: 0; font-weight: bold;'>{title}</p>

            <details>

                <summary>Details</summary>

                <p style='margin: 0; font-weight: bold;'>{subtitle}</p>

            </details>

        </div>

        """


def get_model_type(repo_id: str):
    api = HfApi(token=os.environ.get("HF_TOKEN"))  # if use private or gated model
    default = "SD 1.5"
    try:
        model = api.model_info(repo_id=repo_id, timeout=5.0)
        tags = model.tags
        for tag in tags:
            if tag in MODEL_TYPE_CLASS.keys(): return MODEL_TYPE_CLASS.get(tag, default)
    except Exception:
        return default
    return default


def restart_space(repo_id: str, factory_reboot: bool, token: str):
    api = HfApi(token=token)
    api.restart_space(repo_id=repo_id, factory_reboot=factory_reboot)


def extract_exif_data(image):
    if image is None: return ""

    try:
        metadata_keys = ['parameters', 'metadata', 'prompt', 'Comment']

        for key in metadata_keys:
            if key in image.info:
                return image.info[key]

        return str(image.info)

    except Exception as e:
        return f"Error extracting metadata: {str(e)}"


def create_mask_now(img, invert):
    import numpy as np
    import time

    time.sleep(0.5)

    transparent_image = img["layers"][0]

    # Extract the alpha channel
    alpha_channel = np.array(transparent_image)[:, :, 3]

    # Create a binary mask by thresholding the alpha channel
    binary_mask = alpha_channel > 1

    if invert:
        print("Invert")
        # Invert the binary mask so that the drawn shape is white and the rest is black
        binary_mask = np.invert(binary_mask)

    # Convert the binary mask to a 3-channel RGB mask
    rgb_mask = np.stack((binary_mask,) * 3, axis=-1)

    # Convert the mask to uint8
    rgb_mask = rgb_mask.astype(np.uint8) * 255

    return img["background"], rgb_mask


def download_diffuser_repo(repo_name: str, model_type: str, revision: str = "main", token=True):

    variant = None
    if token is True and not os.environ.get("HF_TOKEN"):
        token = None

    if model_type == "SDXL":
        info = model_info_data(
            repo_name,
            token=token,
            revision=revision,
            timeout=5.0,
        )

        filenames = {sibling.rfilename for sibling in info.siblings}
        model_filenames, variant_filenames = variant_compatible_siblings(
            filenames, variant="fp16"
        )

        if len(variant_filenames):
            variant = "fp16"

    cached_folder = DiffusionPipeline.download(
        pretrained_model_name=repo_name,
        force_download=False,
        token=token,
        revision=revision,
        # mirror="https://hf-mirror.com",
        variant=variant,
        use_safetensors=True,
        trust_remote_code=False,
        timeout=5.0,
    )

    if isinstance(cached_folder, PosixPath):
        cached_folder = cached_folder.as_posix()

    # Task model
    # from huggingface_hub import hf_hub_download
    # hf_hub_download(
    #     task_model,
    #     filename="diffusion_pytorch_model.safetensors",  # fix fp16 variant
    # )

    return cached_folder


def progress_step_bar(step, total):
    # Calculate the percentage for the progress bar width
    percentage = min(100, ((step / total) * 100))

    return f"""

        <div style="position: relative; width: 100%; background-color: gray; border-radius: 5px; overflow: hidden;">

            <div style="width: {percentage}%; height: 17px; background-color: #800080; transition: width 0.5s;"></div>

            <div style="position: absolute; width: 100%; text-align: center; color: white; top: 0; line-height: 19px; font-size: 13px;">

                {int(percentage)}%

            </div>

        </div>

        """


def html_template_message(msg):
    return f"""

        <div style="position: relative; width: 100%; background-color: gray; border-radius: 5px; overflow: hidden;">

            <div style="width: 0%; height: 17px; background-color: #800080; transition: width 0.5s;"></div>

            <div style="position: absolute; width: 100%; text-align: center; color: white; top: 0; line-height: 19px; font-size: 14px; font-weight: bold; text-shadow: 1px 1px 2px black;">

                {msg}

            </div>

        </div>

        """