Spaces:
Runtime error
Runtime error
Upload 4 files
Browse files
soni_translate/text_to_speech.py
CHANGED
@@ -3,28 +3,31 @@ import edge_tts
|
|
3 |
import asyncio
|
4 |
import nest_asyncio
|
5 |
|
6 |
-
def make_voice(tts_text, tts_voice, filename):
|
|
|
7 |
try:
|
8 |
nest_asyncio.apply()
|
9 |
asyncio.run(edge_tts.Communicate(tts_text, "-".join(tts_voice.split('-')[:-1])).save(filename))
|
10 |
-
except
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
|
|
18 |
|
19 |
-
def make_voice_gradio(tts_text, tts_voice, filename):
|
20 |
print(tts_text, filename)
|
21 |
try:
|
22 |
asyncio.run(edge_tts.Communicate(tts_text, "-".join(tts_voice.split('-')[:-1])).save(filename))
|
23 |
-
except
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
|
|
|
3 |
import asyncio
|
4 |
import nest_asyncio
|
5 |
|
6 |
+
def make_voice(tts_text, tts_voice, filename,language):
|
7 |
+
#print(tts_text, filename)
|
8 |
try:
|
9 |
nest_asyncio.apply()
|
10 |
asyncio.run(edge_tts.Communicate(tts_text, "-".join(tts_voice.split('-')[:-1])).save(filename))
|
11 |
+
except:
|
12 |
+
try:
|
13 |
+
tts = gTTS(tts_text, lang=language)
|
14 |
+
tts.save(filename)
|
15 |
+
print(f'No audio was received. Please change the tts voice for {tts_voice}. USING gTTS.')
|
16 |
+
except:
|
17 |
+
tts = gTTS('a', lang=language)
|
18 |
+
tts.save(filename)
|
19 |
+
print('Error: Audio will be replaced.')
|
20 |
|
21 |
+
def make_voice_gradio(tts_text, tts_voice, filename, language):
|
22 |
print(tts_text, filename)
|
23 |
try:
|
24 |
asyncio.run(edge_tts.Communicate(tts_text, "-".join(tts_voice.split('-')[:-1])).save(filename))
|
25 |
+
except:
|
26 |
+
try:
|
27 |
+
tts = gTTS(tts_text, lang=language)
|
28 |
+
tts.save(filename)
|
29 |
+
print(f'No audio was received. Please change the tts voice for {tts_voice}. USING gTTS.')
|
30 |
+
except:
|
31 |
+
tts = gTTS('a', lang=language)
|
32 |
+
tts.save(filename)
|
33 |
+
print('Error: Audio will be replaced.')
|
soni_translate/translate_segments.py
CHANGED
@@ -2,9 +2,15 @@ from tqdm import tqdm
|
|
2 |
from deep_translator import GoogleTranslator
|
3 |
|
4 |
def translate_text(segments, TRANSLATE_AUDIO_TO):
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
for line in tqdm(range(len(segments))):
|
6 |
text = segments[line]['text']
|
7 |
-
translator = GoogleTranslator(source='auto', target=TRANSLATE_AUDIO_TO)
|
8 |
translated_line = translator.translate(text.strip())
|
9 |
segments[line]['text'] = translated_line
|
|
|
10 |
return segments
|
|
|
2 |
from deep_translator import GoogleTranslator
|
3 |
|
4 |
def translate_text(segments, TRANSLATE_AUDIO_TO):
|
5 |
+
|
6 |
+
if TRANSLATE_AUDIO_TO == "zh":
|
7 |
+
TRANSLATE_AUDIO_TO = "zh-CN"
|
8 |
+
|
9 |
+
translator = GoogleTranslator(source='auto', target=TRANSLATE_AUDIO_TO)
|
10 |
+
|
11 |
for line in tqdm(range(len(segments))):
|
12 |
text = segments[line]['text']
|
|
|
13 |
translated_line = translator.translate(text.strip())
|
14 |
segments[line]['text'] = translated_line
|
15 |
+
|
16 |
return segments
|
soni_translate/video_dubbing.py
ADDED
@@ -0,0 +1,217 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import gradio as gr
|
3 |
+
import whisperx
|
4 |
+
import torch
|
5 |
+
from gtts import gTTS
|
6 |
+
import librosa
|
7 |
+
import edge_tts
|
8 |
+
import gc
|
9 |
+
from pydub import AudioSegment
|
10 |
+
from tqdm import tqdm
|
11 |
+
from deep_translator import GoogleTranslator
|
12 |
+
import os
|
13 |
+
from soni_translate.audio_segments import create_translated_audio
|
14 |
+
from soni_translate.text_to_speech import make_voice
|
15 |
+
from soni_translate.translate_segments import translate_text
|
16 |
+
import time
|
17 |
+
|
18 |
+
def translate_from_video(
|
19 |
+
video,
|
20 |
+
YOUR_HF_TOKEN,
|
21 |
+
preview=False,
|
22 |
+
WHISPER_MODEL_SIZE="large-v1",
|
23 |
+
batch_size=16,
|
24 |
+
compute_type="float16",
|
25 |
+
SOURCE_LANGUAGE= "Automatic detection",
|
26 |
+
TRANSLATE_AUDIO_TO="en",
|
27 |
+
min_speakers=1,
|
28 |
+
max_speakers=2,
|
29 |
+
tts_voice00="en-AU-WilliamNeural-Male",
|
30 |
+
tts_voice01="en-CA-ClaraNeural-Female",
|
31 |
+
tts_voice02="en-GB-ThomasNeural-Male",
|
32 |
+
tts_voice03="en-GB-SoniaNeural-Female",
|
33 |
+
tts_voice04="en-NZ-MitchellNeural-Male",
|
34 |
+
tts_voice05="en-GB-MaisieNeural-Female",
|
35 |
+
video_output="video_dub.mp4"
|
36 |
+
):
|
37 |
+
|
38 |
+
if YOUR_HF_TOKEN == "" or YOUR_HF_TOKEN == None:
|
39 |
+
YOUR_HF_TOKEN = os.getenv("YOUR_HF_TOKEN")
|
40 |
+
|
41 |
+
if not os.path.exists('audio'):
|
42 |
+
os.makedirs('audio')
|
43 |
+
|
44 |
+
if not os.path.exists('audio2/audio'):
|
45 |
+
os.makedirs('audio2/audio')
|
46 |
+
|
47 |
+
# Check GPU
|
48 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
49 |
+
compute_type = "float32" if device == "cpu" else compute_type
|
50 |
+
|
51 |
+
OutputFile = 'Video.mp4'
|
52 |
+
audio_wav = "audio.wav"
|
53 |
+
Output_name_file = "audio_dub_solo.ogg"
|
54 |
+
mix_audio = "audio_mix.mp3"
|
55 |
+
|
56 |
+
os.system("rm Video.mp4")
|
57 |
+
os.system("rm audio.webm")
|
58 |
+
os.system("rm audio.wav")
|
59 |
+
|
60 |
+
if os.path.exists(video):
|
61 |
+
if preview:
|
62 |
+
print('Creating preview video, 10 seconds')
|
63 |
+
os.system(f'ffmpeg -y -i "{video}" -ss 00:00:20 -t 00:00:10 -c:v libx264 -c:a aac -strict experimental Video.mp4')
|
64 |
+
else:
|
65 |
+
os.system(f'ffmpeg -y -i "{video}" -c:v libx264 -c:a aac -strict experimental Video.mp4')
|
66 |
+
|
67 |
+
os.system("ffmpeg -y -i Video.mp4 -vn -acodec pcm_s16le -ar 44100 -ac 2 audio.wav")
|
68 |
+
else:
|
69 |
+
if preview:
|
70 |
+
print('Creating preview from link, 10 seconds')
|
71 |
+
#https://github.com/yt-dlp/yt-dlp/issues/2220
|
72 |
+
mp4_ = f'yt-dlp -f "mp4" --downloader ffmpeg --downloader-args "ffmpeg_i: -ss 00:00:20 -t 00:00:10" --force-overwrites --max-downloads 1 --no-warnings --no-abort-on-error --ignore-no-formats-error --restrict-filenames -o {OutputFile} {video}'
|
73 |
+
wav_ = "ffmpeg -y -i Video.mp4 -vn -acodec pcm_s16le -ar 44100 -ac 2 audio.wav"
|
74 |
+
os.system(mp4_)
|
75 |
+
os.system(wav_)
|
76 |
+
else:
|
77 |
+
mp4_ = f'yt-dlp -f "mp4" --force-overwrites --max-downloads 1 --no-warnings --no-abort-on-error --ignore-no-formats-error --restrict-filenames -o {OutputFile} {video}'
|
78 |
+
wav_ = f'python -m yt_dlp --output {audio_wav} --force-overwrites --max-downloads 1 --no-warnings --no-abort-on-error --ignore-no-formats-error --extract-audio --audio-format wav {video}'
|
79 |
+
|
80 |
+
os.system(wav_)
|
81 |
+
|
82 |
+
for i in range (120):
|
83 |
+
time.sleep(1)
|
84 |
+
print('process audio')
|
85 |
+
if os.path.exists(audio_wav) and not os.path.exists('audio.webm'):
|
86 |
+
time.sleep(1)
|
87 |
+
os.system(mp4_)
|
88 |
+
break
|
89 |
+
if i == 119:
|
90 |
+
print('Error donwloading the audio')
|
91 |
+
return
|
92 |
+
|
93 |
+
print("Set file complete.")
|
94 |
+
|
95 |
+
SOURCE_LANGUAGE = None if SOURCE_LANGUAGE == 'Automatic detection' else SOURCE_LANGUAGE
|
96 |
+
|
97 |
+
# 1. Transcribe with original whisper (batched)
|
98 |
+
model = whisperx.load_model(
|
99 |
+
WHISPER_MODEL_SIZE,
|
100 |
+
device,
|
101 |
+
compute_type=compute_type,
|
102 |
+
language= SOURCE_LANGUAGE,
|
103 |
+
)
|
104 |
+
audio = whisperx.load_audio(audio_wav)
|
105 |
+
result = model.transcribe(audio, batch_size=batch_size)
|
106 |
+
gc.collect(); torch.cuda.empty_cache(); del model
|
107 |
+
print("Transcript complete")
|
108 |
+
|
109 |
+
# 2. Align whisper output
|
110 |
+
model_a, metadata = whisperx.load_align_model(
|
111 |
+
language_code=result["language"],
|
112 |
+
device=device
|
113 |
+
)
|
114 |
+
result = whisperx.align(
|
115 |
+
result["segments"],
|
116 |
+
model_a,
|
117 |
+
metadata,
|
118 |
+
audio,
|
119 |
+
device,
|
120 |
+
return_char_alignments=True,
|
121 |
+
)
|
122 |
+
gc.collect(); torch.cuda.empty_cache(); del model_a
|
123 |
+
print("Align complete")
|
124 |
+
|
125 |
+
if result['segments'] == []:
|
126 |
+
print('No active speech found in audio')
|
127 |
+
return
|
128 |
+
|
129 |
+
# 3. Assign speaker labels
|
130 |
+
diarize_model = whisperx.DiarizationPipeline(use_auth_token=YOUR_HF_TOKEN, device=device)
|
131 |
+
diarize_segments = diarize_model(
|
132 |
+
audio_wav,
|
133 |
+
min_speakers=min_speakers,
|
134 |
+
max_speakers=max_speakers)
|
135 |
+
result_diarize = whisperx.assign_word_speakers(diarize_segments, result)
|
136 |
+
gc.collect(); torch.cuda.empty_cache(); del diarize_model
|
137 |
+
print("Diarize complete")
|
138 |
+
|
139 |
+
result_diarize['segments'] = translate_text(result_diarize['segments'], TRANSLATE_AUDIO_TO)
|
140 |
+
print("Translation complete")
|
141 |
+
|
142 |
+
audio_files = []
|
143 |
+
|
144 |
+
# Mapping speakers to voice variables
|
145 |
+
speaker_to_voice = {
|
146 |
+
'SPEAKER_00': tts_voice00,
|
147 |
+
'SPEAKER_01': tts_voice01,
|
148 |
+
'SPEAKER_02': tts_voice02,
|
149 |
+
'SPEAKER_03': tts_voice03,
|
150 |
+
'SPEAKER_04': tts_voice04,
|
151 |
+
'SPEAKER_05': tts_voice05
|
152 |
+
}
|
153 |
+
|
154 |
+
for segment in tqdm(result_diarize['segments']):
|
155 |
+
|
156 |
+
text = segment['text']
|
157 |
+
start = segment['start']
|
158 |
+
end = segment['end']
|
159 |
+
|
160 |
+
try:
|
161 |
+
speaker = segment['speaker']
|
162 |
+
except KeyError:
|
163 |
+
segment['speaker'] = "SPEAKER_99"
|
164 |
+
speaker = segment['speaker']
|
165 |
+
print("NO SPEAKER DETECT IN SEGMENT")
|
166 |
+
|
167 |
+
# make the tts audio
|
168 |
+
filename = f"audio/{start}.ogg"
|
169 |
+
|
170 |
+
if speaker in speaker_to_voice and speaker_to_voice[speaker] != 'None':
|
171 |
+
make_voice(text, speaker_to_voice[speaker], filename, TRANSLATE_AUDIO_TO)
|
172 |
+
elif speaker == "SPEAKER_99":
|
173 |
+
try:
|
174 |
+
tts = gTTS(text, lang=TRANSLATE_AUDIO_TO)
|
175 |
+
tts.save(filename)
|
176 |
+
print('Using GTTS')
|
177 |
+
except:
|
178 |
+
tts = gTTS('a', lang=TRANSLATE_AUDIO_TO)
|
179 |
+
tts.save(filename)
|
180 |
+
print('Error: Audio will be replaced.')
|
181 |
+
|
182 |
+
# duration
|
183 |
+
duration_true = end - start
|
184 |
+
duration_tts = librosa.get_duration(filename=filename)
|
185 |
+
|
186 |
+
# porcentaje
|
187 |
+
porcentaje = duration_tts / duration_true
|
188 |
+
|
189 |
+
if porcentaje > 2.1:
|
190 |
+
porcentaje = 2.1
|
191 |
+
elif porcentaje <= 1.2 and porcentaje >= 0.8:
|
192 |
+
porcentaje = 1.0
|
193 |
+
elif porcentaje <= 0.79:
|
194 |
+
porcentaje = 0.8
|
195 |
+
|
196 |
+
# Smoth and round
|
197 |
+
porcentaje = round(porcentaje+0.0, 1)
|
198 |
+
|
199 |
+
# apply aceleration or opposite to the audio file in audio2 folder
|
200 |
+
os.system(f"ffmpeg -y -loglevel panic -i {filename} -filter:a atempo={porcentaje} audio2/{filename}")
|
201 |
+
|
202 |
+
duration_create = librosa.get_duration(filename=f"audio2/{filename}")
|
203 |
+
audio_files.append(filename)
|
204 |
+
|
205 |
+
# replace files with the accelerates
|
206 |
+
os.system("mv -f audio2/audio/*.ogg audio/")
|
207 |
+
|
208 |
+
os.system(f"rm {Output_name_file}")
|
209 |
+
create_translated_audio(result_diarize, audio_files, Output_name_file)
|
210 |
+
|
211 |
+
os.system(f"rm {mix_audio}")
|
212 |
+
os.system(f'ffmpeg -i {audio_wav} -i {Output_name_file} -filter_complex "[1:a]asplit=2[sc][mix];[0:a][sc]sidechaincompress=threshold=0.003:ratio=20[bg]; [bg][mix]amerge[final]" -map [final] {mix_audio}')
|
213 |
+
|
214 |
+
os.system(f"rm {video_output}")
|
215 |
+
os.system(f"ffmpeg -i {OutputFile} -i {mix_audio} -c:v copy -c:a copy -map 0:v -map 1:a -shortest {video_output}")
|
216 |
+
|
217 |
+
return video_output
|