|
import os |
|
import json |
|
import subprocess |
|
from threading import Thread |
|
|
|
import torch |
|
import spaces |
|
import gradio as gr |
|
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig, TextIteratorStreamer |
|
|
|
subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True) |
|
|
|
MODEL_ID = "infly/OpenCoder-8B-Instruct" |
|
CHAT_TEMPLATE = "ChatML" |
|
MODEL_NAME = MODEL_ID.split("/")[-1] |
|
CONTEXT_LENGTH = 1300 |
|
|
|
DESCRIPTION = "Infly OpenCoder-8B-Instruct" |
|
|
|
|
|
@spaces.GPU() |
|
def predict(message, history, system_prompt, temperature, max_new_tokens, top_k, repetition_penalty, top_p): |
|
|
|
if CHAT_TEMPLATE == "ChatML": |
|
stop_tokens = ["<|endoftext|>", "<|im_end|>", "<|end_of_text|>", "<|eot_id|>", "assistant"] |
|
instruction = '<|im_start|>system\n' + system_prompt + '\n<|im_end|>\n' |
|
for human, assistant in history: |
|
instruction += '<|im_start|>user\n' + human + '\n<|im_end|>\n<|im_start|>assistant\n' + assistant |
|
instruction += '\n<|im_start|>user\n' + message + '\n<|im_end|>\n<|im_start|>assistant\n' |
|
elif CHAT_TEMPLATE == "Mistral Instruct": |
|
stop_tokens = ["</s>", "[INST]", "[INST] ", "<s>", "[/INST]", "[/INST] "] |
|
instruction = '<s>[INST] ' + system_prompt |
|
for human, assistant in history: |
|
instruction += human + ' [/INST] ' + assistant + '</s>[INST]' |
|
instruction += ' ' + message + ' [/INST]' |
|
else: |
|
raise Exception("Incorrect chat template, select 'ChatML' or 'Mistral Instruct'") |
|
print(instruction) |
|
|
|
streamer = TextIteratorStreamer(tokenizer, timeout=90.0, skip_prompt=True, skip_special_tokens=True) |
|
enc = tokenizer([instruction], return_tensors="pt", padding=True, truncation=True, max_length=CONTEXT_LENGTH) |
|
input_ids, attention_mask = enc.input_ids, enc.attention_mask |
|
|
|
if input_ids.shape[1] > CONTEXT_LENGTH: |
|
input_ids = input_ids[:, -CONTEXT_LENGTH:] |
|
|
|
generate_kwargs = dict( |
|
{"input_ids": input_ids.to(device), "attention_mask": attention_mask.to(device)}, |
|
streamer=streamer, |
|
do_sample=True, |
|
temperature=temperature, |
|
max_new_tokens=max_new_tokens, |
|
top_k=top_k, |
|
repetition_penalty=repetition_penalty, |
|
top_p=top_p |
|
) |
|
t = Thread(target=model.generate, kwargs=generate_kwargs) |
|
t.start() |
|
outputs = [] |
|
for new_token in streamer: |
|
outputs.append(new_token) |
|
if new_token in stop_tokens: |
|
break |
|
yield "".join(outputs) |
|
|
|
|
|
|
|
|
|
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') |
|
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID, trust_remote_code=True) |
|
model = AutoModelForCausalLM.from_pretrained( |
|
MODEL_ID, |
|
device_map="auto", |
|
trust_remote_code=True |
|
) |
|
|
|
css = """ |
|
.message-row { |
|
justify-content: space-evenly !important; |
|
} |
|
.message-bubble-border { |
|
border-radius: 6px !important; |
|
} |
|
.message-buttons-bot, .message-buttons-user { |
|
right: 10px !important; |
|
left: auto !important; |
|
bottom: 2px !important; |
|
} |
|
.dark.message-bubble-border { |
|
border-color: #15172c !important; |
|
} |
|
.dark.user { |
|
background: #10132c !important; |
|
} |
|
.dark.assistant.dark, .dark.pending.dark { |
|
background: #020417 !important; |
|
} |
|
""" |
|
|
|
|
|
gr.ChatInterface( |
|
predict, |
|
title="Infly " + MODEL_NAME, |
|
description=DESCRIPTION, |
|
additional_inputs_accordion=gr.Accordion(label="⚙️ Parameters", open=False), |
|
additional_inputs=[ |
|
gr.Textbox("Perform the task to the best of your ability.", label="System prompt"), |
|
gr.Slider(0, 1, 0.8, label="Temperature"), |
|
gr.Slider(128, 4096, 512, label="Max new tokens"), |
|
gr.Slider(1, 80, 40, label="Top K sampling"), |
|
gr.Slider(0, 2, 1.1, label="Repetition penalty"), |
|
gr.Slider(0, 1, 0.95, label="Top P sampling"), |
|
], |
|
theme = gr.themes.Ocean( |
|
secondary_hue="emerald", |
|
), |
|
css=css, |
|
|
|
|
|
|
|
|
|
chatbot=gr.Chatbot( |
|
scale=1, |
|
show_copy_button=True |
|
) |
|
).queue().launch() |