Update app.py
Browse files
app.py
CHANGED
@@ -6,6 +6,9 @@ import gdown
|
|
6 |
from PIL import Image
|
7 |
import numpy as np
|
8 |
|
|
|
|
|
|
|
9 |
# Define the model URL and output path
|
10 |
model_url = "https://drive.google.com/file/d/18HYScsRJuRmfzL0E0BW35uaA542Vd5M5/view?usp=sharing"
|
11 |
model_path = os.path.join(os.getcwd(),"bone_age_model.onnx")
|
@@ -26,10 +29,15 @@ def inference(sample_name):
|
|
26 |
predicted_age = (outputs[0]*41.172)+127.329
|
27 |
# Get the image data from the MetaTensor and convert it to a format PIL can handle
|
28 |
image_data = sample['path'].numpy()
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
|
|
|
|
|
|
|
|
|
|
33 |
return age, predicted_age[0][0], image
|
34 |
|
35 |
# List of sample file names
|
|
|
6 |
from PIL import Image
|
7 |
import numpy as np
|
8 |
|
9 |
+
means = np.array([0.485, 0.456, 0.406])
|
10 |
+
stds = np.array([0.229, 0.224, 0.225])
|
11 |
+
|
12 |
# Define the model URL and output path
|
13 |
model_url = "https://drive.google.com/file/d/18HYScsRJuRmfzL0E0BW35uaA542Vd5M5/view?usp=sharing"
|
14 |
model_path = os.path.join(os.getcwd(),"bone_age_model.onnx")
|
|
|
29 |
predicted_age = (outputs[0]*41.172)+127.329
|
30 |
# Get the image data from the MetaTensor and convert it to a format PIL can handle
|
31 |
image_data = sample['path'].numpy()
|
32 |
+
# Denormalize the image data
|
33 |
+
for i in range(3): # Assuming the image has 3 channels
|
34 |
+
image_data[i,:,:] = image_data[i,:,:] * stds[i] + means[i]
|
35 |
+
# Rescale to [0, 1]
|
36 |
+
# Convert to [0, 255] and to uint8
|
37 |
+
image_data = (image_data * 255).astype(np.uint8)
|
38 |
+
# Remove any singleton dimensions if necessary
|
39 |
+
image_data = np.moveaxis(image_data,0,-1)
|
40 |
+
image = Image.fromarray(image_data)
|
41 |
return age, predicted_age[0][0], image
|
42 |
|
43 |
# List of sample file names
|