Spaces:
Sleeping
Sleeping
File size: 13,982 Bytes
d936db7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 |
import gradio as gr
import cv2
import os
import mediapipe as mp
import numpy as np
import tempfile
from maps import *
from functions import *
class CosmeticInjectionVisualizer:
def __init__(self, muscles_map, tasks_map):
self.mp_face_mesh = mp.solutions.face_mesh
self.mp_drawing = mp.solutions.drawing_utils
self.mp_drawing_styles = mp.solutions.drawing_styles
self.muscles_map = muscles_map
self.tasks_map = tasks_map
def process_image(self, image, task_name):
frame_shape = image.shape
with self.mp_face_mesh.FaceMesh(
static_image_mode=True,
refine_landmarks=True,
max_num_faces=1,
min_detection_confidence=0.5) as face_mesh:
results = face_mesh.process(cv2.cvtColor(image, cv2.COLOR_BGR2RGB))
if results.multi_face_landmarks:
for face_landmarks in results.multi_face_landmarks:
points = self.get_muscle_points(task_name, face_landmarks, frame_shape)
self.draw_muscle_points(image, points, face_landmarks, task_name)
return image
def draw_rounded_rectangle(self,image, start_point, end_point, color, thickness, radius):
top_left = start_point
bottom_right = end_point
if thickness < 0: # Filled rectangle
thickness = cv2.FILLED
# Draw filled rectangle with rounded corners
if thickness == cv2.FILLED:
# Top-left corner
cv2.ellipse(image, (top_left[0] + radius, top_left[1] + radius), (radius, radius), 180, 0, 90, color, -1)
# Top-right corner
cv2.ellipse(image, (bottom_right[0] - radius, top_left[1] + radius), (radius, radius), 270, 0, 90, color, -1)
# Bottom-left corner
cv2.ellipse(image, (top_left[0] + radius, bottom_right[1] - radius), (radius, radius), 90, 0, 90, color, -1)
# Bottom-right corner
cv2.ellipse(image, (bottom_right[0] - radius, bottom_right[1] - radius), (radius, radius), 0, 0, 90, color, -1)
# Top and bottom border
cv2.rectangle(image, (top_left[0] + radius, top_left[1]), (bottom_right[0] - radius, top_left[1] + radius), color, -1)
cv2.rectangle(image, (top_left[0] + radius, bottom_right[1] - radius), (bottom_right[0] - radius, bottom_right[1]), color, -1)
# Left and right border
cv2.rectangle(image, (top_left[0], top_left[1] + radius), (top_left[0] + radius, bottom_right[1] - radius), color, -1)
cv2.rectangle(image, (bottom_right[0] - radius, top_left[1] + radius), (bottom_right[0], bottom_right[1] - radius), color, -1)
# Center rectangle
cv2.rectangle(image, (top_left[0] + radius, top_left[1] + radius), (bottom_right[0] - radius, bottom_right[1] - radius), color, -1)
else:
# Top-left corner
cv2.ellipse(image, (top_left[0] + radius, top_left[1] + radius), (radius, radius), 180, 0, 90, color, thickness)
# Top-right corner
cv2.ellipse(image, (bottom_right[0] - radius, top_left[1] + radius), (radius, radius), 270, 0, 90, color, thickness)
# Bottom-left corner
cv2.ellipse(image, (top_left[0] + radius, bottom_right[1] - radius), (radius, radius), 90, 0, 90, color, thickness)
# Bottom-right corner
cv2.ellipse(image, (bottom_right[0] - radius, bottom_right[1] - radius), (radius, radius), 0, 0, 90, color, thickness)
# Top border
cv2.line(image, (top_left[0] + radius, top_left[1]), (bottom_right[0] - radius, top_left[1]), color, thickness)
# Bottom border
cv2.line(image, (top_left[0] + radius, bottom_right[1]), (bottom_right[0] - radius, bottom_right[1]), color, thickness)
# Left border
cv2.line(image, (top_left[0], top_left[1] + radius), (top_left[0], bottom_right[1] - radius), color, thickness)
# Right border
cv2.line(image, (bottom_right[0], top_left[1] + radius), (bottom_right[0], bottom_right[1] - radius), color, thickness)
def draw_muscle_points(self, image, points, face_landmarks, task, draw_background=False, verbose=False):
# Calculate bounding box of the face landmarks
x_min = min([landmark.x for landmark in face_landmarks.landmark]) * image.shape[1]
y_min = min([landmark.y for landmark in face_landmarks.landmark]) * image.shape[0]
x_max = max([landmark.x for landmark in face_landmarks.landmark]) * image.shape[1]
y_max = max([landmark.y for landmark in face_landmarks.landmark]) * image.shape[0]
face_width = x_max - x_min
face_height = y_max - y_min
# Determine text size and circle size based on face size relative to the image
scale_factor = 0.0005 * (face_width + face_height)
text_scale = scale_factor
thickness = int(2 * scale_factor)
margin = int(10 * scale_factor)
circle_radius = int(5 * scale_factor)
radius = int(10 * scale_factor) # For rounded corners
muscle_names = set()
for (x, y, muscle) in points:
# Draw the circle for the muscle point
cv2.circle(image, (x, y), circle_radius, (0, 0, 255), -1)
# Determine text size and background size
text = "3 U"
(text_width, text_height), baseline = cv2.getTextSize(text, cv2.FONT_HERSHEY_SIMPLEX, text_scale, thickness)
text_x = x
text_y = y - 10
text_x_end = text_x + text_width + 2 * margin
text_y_end = text_y - text_height - 2 * margin
if draw_background:
# Draw background rectangle with margins and rounded corners
self.draw_rounded_rectangle(image, (text_x - margin, text_y + margin), (text_x_end, text_y_end), (0, 0, 0), cv2.FILLED, radius)
if verbose:
# Draw the text on top of the rectangle
cv2.putText(image, text, (text_x, text_y), cv2.FONT_HERSHEY_SIMPLEX, text_scale, (0, 255, 0), thickness, cv2.LINE_AA)
muscle_names.add(muscle)
muscles = ','.join(muscle_names)
# Draw legend in the bottom-left corner with background
legend_texts = ['Total dose : 42','Name of patient: Julia Juila',f'Muscle : {muscles}', f'Task : {task}','Cosmetic App']
legend_x = 10
legend_y = image.shape[0] - 10
legend_margin = 5
legend_scale_factor = 1.5 * text_scale # Make legend text larger
legend_thickness = int(2 * legend_scale_factor)
legend_radius = int(10 * legend_scale_factor)
max_text_width = 0
total_text_height = 0
for text in legend_texts:
(text_width, text_height), _ = cv2.getTextSize(text, cv2.FONT_HERSHEY_SIMPLEX, legend_scale_factor, legend_thickness)
max_text_width = max(max_text_width, text_width)
total_text_height += text_height + 2 * legend_margin
legend_start_point = (legend_x - legend_margin, legend_y - total_text_height - legend_margin)
legend_end_point = (legend_x + max_text_width + legend_margin, legend_y + legend_margin)
if True:
self.draw_rounded_rectangle(image, legend_start_point, legend_end_point, (0, 0, 0), cv2.FILLED, legend_radius)
for text in legend_texts:
(text_width, text_height), _ = cv2.getTextSize(text, cv2.FONT_HERSHEY_SIMPLEX, legend_scale_factor, legend_thickness)
cv2.putText(image, text, (legend_x, legend_y), cv2.FONT_HERSHEY_SIMPLEX, legend_scale_factor, (255, 255, 255), legend_thickness, cv2.LINE_AA)
legend_y -= text_height + 2 * legend_margin
def get_muscle_points(self, task_name, face_landmarks, frame_shape):
if task_name not in self.tasks_map:
raise ValueError(f"Task '{task_name}' not found in tasks map.")
muscles_names = self.tasks_map[task_name]['muscles']
points = []
for muscle in muscles_names:
for region in self.muscles_map[muscle]:
if 'points' in self.muscles_map[muscle][region]:
for point_idx in self.muscles_map[muscle][region]['points']:
landmark = face_landmarks.landmark[point_idx]
x = int(landmark.x * frame_shape[1])
y = int(landmark.y * frame_shape[0])
points.append((x, y, muscle))
else:
for subregion in self.muscles_map[muscle][region]:
for point_idx in self.muscles_map[muscle][region][subregion]['points']:
landmark = face_landmarks.landmark[point_idx]
x = int(landmark.x * frame_shape[1])
y = int(landmark.y * frame_shape[0])
points.append((x, y, muscle))
return points
def process_video(self, video_path, task_name):
cap = cv2.VideoCapture(video_path)
temp_file = tempfile.NamedTemporaryFile(delete=False, suffix='.mp4')
output_path = temp_file.name
# Get the width and height of the frames
frame_width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
frame_height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
fps = int(cap.get(cv2.CAP_PROP_FPS))
# Define the codec and create VideoWriter object
fourcc = cv2.VideoWriter_fourcc(*'mp4v') # Use appropriate codec for .mp4 files
out = cv2.VideoWriter(output_path, fourcc, fps, (frame_width, frame_height))
with self.mp_face_mesh.FaceMesh(
static_image_mode=False,
refine_landmarks=True,
max_num_faces=1,
min_detection_confidence=0.5,
min_tracking_confidence=0.5) as face_mesh:
while cap.isOpened():
ret, frame = cap.read()
if not ret:
break
frame_shape = frame.shape
results = face_mesh.process(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB))
if results.multi_face_landmarks:
for face_landmarks in results.multi_face_landmarks:
points = self.get_muscle_points(task_name, face_landmarks, frame_shape)
self.draw_muscle_points(frame, points, face_landmarks, task_name)
# Write the processed frame to the output video file
out.write(frame)
cap.release()
out.release()
cv2.destroyAllWindows()
return output_path
def process_webcam(self, task_name):
cap = cv2.VideoCapture(0)
temp_file = tempfile.NamedTemporaryFile(delete=False, suffix='.mp4')
output_path = temp_file.name
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
out = cv2.VideoWriter(output_path, fourcc, 20.0, (640, 480))
with self.mp_face_mesh.FaceMesh(
static_image_mode=False,
refine_landmarks=True,
max_num_faces=1,
min_detection_confidence=0.5,
min_tracking_confidence=0.5) as face_mesh:
while cap.isOpened():
ret, frame = cap.read()
if not ret:
break
frame_shape = frame.shape
results = face_mesh.process(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB))
if results.multi_face_landmarks:
for face_landmarks in results.multi_face_landmarks:
points = self.get_muscle_points(task_name, face_landmarks, frame_shape)
self.draw_muscle_points(frame, points, face_landmarks, task_name)
out.write(frame)
cap.release()
out.release()
cv2.destroyAllWindows()
return output_path
visualizer = CosmeticInjectionVisualizer(muscles_map, tasks_map)
def inference_image(image, task_name):
result_image = visualizer.process_image(image, task_name)
return result_image
def inference_video(video_path, task_name):
result_video_path = visualizer.process_video(video_path, task_name)
return result_video_path
def inference_webcam(task_name):
result_video_path = visualizer.process_webcam(task_name)
return result_video_path
task_names = list(tasks_map.keys())
base_path=os.getcwd()
default_image_path = os.path.join(base_path,'image.jpg')
default_video_path = os.path.join(base_path,'video.mp4')
with gr.Blocks() as demo:
gr.Markdown("# Cosmetic Injection Visualizer")
with gr.Tabs():
with gr.TabItem("Image"):
image_input = gr.Image(type="numpy", label="Input Image", value=default_image_path)
task_input_image = gr.Dropdown(choices=task_names, label="Task Name")
image_output = gr.Image(type="numpy", label="Output Image")
gr.Button("Process Image").click(inference_image, inputs=[image_input, task_input_image], outputs=image_output)
with gr.TabItem("Video"):
video_input = gr.Video(label="Input Video", value=default_video_path)
task_input_video = gr.Dropdown(choices=task_names, label="Task Name")
video_output = gr.Video(label="Output Video")
gr.Button("Process Video").click(inference_video, inputs=[video_input, task_input_video], outputs=video_output)
with gr.TabItem("Webcam"):
task_input_webcam = gr.Dropdown(choices=task_names, label="Task Name")
webcam_output = gr.Video(label="Output Video")
gr.Button("Process Webcam").click(inference_webcam, inputs=[task_input_webcam], outputs=webcam_output)
demo.launch()
|