Mbilal755 commited on
Commit
7d0ea87
1 Parent(s): 8ec4fa1

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +36 -8
app.py CHANGED
@@ -1,16 +1,44 @@
1
  import gradio as gr
2
  from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
3
 
4
- model = AutoModelForSeq2SeqLM.from_pretrained("Mbilal755/Radiology_Bart")
5
- tokenizer = AutoTokenizer.from_pretrained("Mbilal755/Radiology_Bart")
 
6
 
7
- def summarize(input):
8
- inputs = tokenizer(input, return_tensors="pt")
9
- output = model.generate(inputs["input_ids"])
10
- summary = tokenizer.decode(output[0], skip_special_tokens=True)
11
- return summary
12
 
13
- iface = gr.Interface(fn=summarize, inputs="text", outputs="text")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
14
 
 
 
 
 
 
 
 
 
15
  if __name__ == "__main__":
16
  iface.launch(share=False)
 
1
  import gradio as gr
2
  from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
3
 
4
+ model_checkpoint = "Mbilal755/Radiology_Bart"
5
+ model = AutoModelForSeq2SeqLM.from_pretrained(model_checkpoint)
6
+ tokenizer = AutoTokenizer.from_pretrained(model_checkpoint)
7
 
8
+ from transformers import SummarizationPipeline
9
+ summarizer = SummarizationPipeline(model=model, tokenizer=tokenizer)
 
 
 
10
 
11
+ import gradio as gr
12
+
13
+ examples = [
14
+ "prevoid bladder volume cc postvoid bladder volume cc bladder grossly normal appearance",
15
+ "heart mediastinal contours normal left sided subclavian line position tip distal svc lungs remain clear active disease effusions",
16
+ """
17
+ heart size normal mediastinal hilar contours remain stable small right pneumothorax remains unchanged surgical lung staples overlying
18
+ left upper lobe seen linear pattern consistent prior upper lobe resection soft tissue osseous structures appear unremarkable nasogastric
19
+ endotracheal tubes remain satisfactory position atelectatic changes right lower lung field remain unchanged prior study
20
+ """
21
+ ]
22
+
23
+ description = """
24
+ We fine-tuned the BioBart 440M parameter model on a dataset of 52,000 radiology reports scraped from MIMIC-III specifically for the task of summarization.
25
+
26
+ The model is able to generate impressions summarizing key findings from the longer radiology reports.
27
+
28
+ Enter a radiology report to see the generated impression summary!
29
+ """
30
+
31
+ def summarize(radiology_report):
32
+ summary = summarizer(radiology_report)[0]['summary_text']
33
+ return summary
34
 
35
+ iface = gr.Interface(fn=summarize,
36
+ inputs=gr.inputs.Textbox(lines=5, label="Radiology Report"),
37
+ outputs=gr.outputs.Textbox(label="Summary"),
38
+ examples=examples,
39
+ title="Radiology Report Summarization",
40
+ description=description,
41
+ theme="huggingface")
42
+
43
  if __name__ == "__main__":
44
  iface.launch(share=False)