Upload 28 files
Browse files- vae (1)/model.py +711 -0
- vae (1)/put_vae_here +0 -0
- vae (2)/causal_conv3d.py +64 -0
- vae (2)/causal_video_autoencoder.py +907 -0
- vae (2)/conv_nd_factory.py +82 -0
- vae (2)/dual_conv3d.py +195 -0
- vae (2)/pixel_norm.py +12 -0
- vae (2)/put_vae_here +0 -0
- vae/causal_conv3d.py +64 -0
- vae/causal_video_autoencoder.py +907 -0
- vae/conv_nd_factory.py +82 -0
- vae/dual_conv3d.py +195 -0
- vae/model.py +711 -0
- vae/pixel_norm.py +12 -0
vae (1)/model.py
ADDED
@@ -0,0 +1,711 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#original code from https://github.com/genmoai/models under apache 2.0 license
|
2 |
+
#adapted to ComfyUI
|
3 |
+
|
4 |
+
from typing import List, Optional, Tuple, Union
|
5 |
+
from functools import partial
|
6 |
+
import math
|
7 |
+
|
8 |
+
import torch
|
9 |
+
import torch.nn as nn
|
10 |
+
import torch.nn.functional as F
|
11 |
+
from einops import rearrange
|
12 |
+
|
13 |
+
from comfy.ldm.modules.attention import optimized_attention
|
14 |
+
|
15 |
+
import comfy.ops
|
16 |
+
ops = comfy.ops.disable_weight_init
|
17 |
+
|
18 |
+
# import mochi_preview.dit.joint_model.context_parallel as cp
|
19 |
+
# from mochi_preview.vae.cp_conv import cp_pass_frames, gather_all_frames
|
20 |
+
|
21 |
+
|
22 |
+
def cast_tuple(t, length=1):
|
23 |
+
return t if isinstance(t, tuple) else ((t,) * length)
|
24 |
+
|
25 |
+
|
26 |
+
class GroupNormSpatial(ops.GroupNorm):
|
27 |
+
"""
|
28 |
+
GroupNorm applied per-frame.
|
29 |
+
"""
|
30 |
+
|
31 |
+
def forward(self, x: torch.Tensor, *, chunk_size: int = 8):
|
32 |
+
B, C, T, H, W = x.shape
|
33 |
+
x = rearrange(x, "B C T H W -> (B T) C H W")
|
34 |
+
# Run group norm in chunks.
|
35 |
+
output = torch.empty_like(x)
|
36 |
+
for b in range(0, B * T, chunk_size):
|
37 |
+
output[b : b + chunk_size] = super().forward(x[b : b + chunk_size])
|
38 |
+
return rearrange(output, "(B T) C H W -> B C T H W", B=B, T=T)
|
39 |
+
|
40 |
+
class PConv3d(ops.Conv3d):
|
41 |
+
def __init__(
|
42 |
+
self,
|
43 |
+
in_channels,
|
44 |
+
out_channels,
|
45 |
+
kernel_size: Union[int, Tuple[int, int, int]],
|
46 |
+
stride: Union[int, Tuple[int, int, int]],
|
47 |
+
causal: bool = True,
|
48 |
+
context_parallel: bool = True,
|
49 |
+
**kwargs,
|
50 |
+
):
|
51 |
+
self.causal = causal
|
52 |
+
self.context_parallel = context_parallel
|
53 |
+
kernel_size = cast_tuple(kernel_size, 3)
|
54 |
+
stride = cast_tuple(stride, 3)
|
55 |
+
height_pad = (kernel_size[1] - 1) // 2
|
56 |
+
width_pad = (kernel_size[2] - 1) // 2
|
57 |
+
|
58 |
+
super().__init__(
|
59 |
+
in_channels=in_channels,
|
60 |
+
out_channels=out_channels,
|
61 |
+
kernel_size=kernel_size,
|
62 |
+
stride=stride,
|
63 |
+
dilation=(1, 1, 1),
|
64 |
+
padding=(0, height_pad, width_pad),
|
65 |
+
**kwargs,
|
66 |
+
)
|
67 |
+
|
68 |
+
def forward(self, x: torch.Tensor):
|
69 |
+
# Compute padding amounts.
|
70 |
+
context_size = self.kernel_size[0] - 1
|
71 |
+
if self.causal:
|
72 |
+
pad_front = context_size
|
73 |
+
pad_back = 0
|
74 |
+
else:
|
75 |
+
pad_front = context_size // 2
|
76 |
+
pad_back = context_size - pad_front
|
77 |
+
|
78 |
+
# Apply padding.
|
79 |
+
assert self.padding_mode == "replicate" # DEBUG
|
80 |
+
mode = "constant" if self.padding_mode == "zeros" else self.padding_mode
|
81 |
+
x = F.pad(x, (0, 0, 0, 0, pad_front, pad_back), mode=mode)
|
82 |
+
return super().forward(x)
|
83 |
+
|
84 |
+
|
85 |
+
class Conv1x1(ops.Linear):
|
86 |
+
"""*1x1 Conv implemented with a linear layer."""
|
87 |
+
|
88 |
+
def __init__(self, in_features: int, out_features: int, *args, **kwargs):
|
89 |
+
super().__init__(in_features, out_features, *args, **kwargs)
|
90 |
+
|
91 |
+
def forward(self, x: torch.Tensor):
|
92 |
+
"""Forward pass.
|
93 |
+
|
94 |
+
Args:
|
95 |
+
x: Input tensor. Shape: [B, C, *] or [B, *, C].
|
96 |
+
|
97 |
+
Returns:
|
98 |
+
x: Output tensor. Shape: [B, C', *] or [B, *, C'].
|
99 |
+
"""
|
100 |
+
x = x.movedim(1, -1)
|
101 |
+
x = super().forward(x)
|
102 |
+
x = x.movedim(-1, 1)
|
103 |
+
return x
|
104 |
+
|
105 |
+
|
106 |
+
class DepthToSpaceTime(nn.Module):
|
107 |
+
def __init__(
|
108 |
+
self,
|
109 |
+
temporal_expansion: int,
|
110 |
+
spatial_expansion: int,
|
111 |
+
):
|
112 |
+
super().__init__()
|
113 |
+
self.temporal_expansion = temporal_expansion
|
114 |
+
self.spatial_expansion = spatial_expansion
|
115 |
+
|
116 |
+
# When printed, this module should show the temporal and spatial expansion factors.
|
117 |
+
def extra_repr(self):
|
118 |
+
return f"texp={self.temporal_expansion}, sexp={self.spatial_expansion}"
|
119 |
+
|
120 |
+
def forward(self, x: torch.Tensor):
|
121 |
+
"""Forward pass.
|
122 |
+
|
123 |
+
Args:
|
124 |
+
x: Input tensor. Shape: [B, C, T, H, W].
|
125 |
+
|
126 |
+
Returns:
|
127 |
+
x: Rearranged tensor. Shape: [B, C/(st*s*s), T*st, H*s, W*s].
|
128 |
+
"""
|
129 |
+
x = rearrange(
|
130 |
+
x,
|
131 |
+
"B (C st sh sw) T H W -> B C (T st) (H sh) (W sw)",
|
132 |
+
st=self.temporal_expansion,
|
133 |
+
sh=self.spatial_expansion,
|
134 |
+
sw=self.spatial_expansion,
|
135 |
+
)
|
136 |
+
|
137 |
+
# cp_rank, _ = cp.get_cp_rank_size()
|
138 |
+
if self.temporal_expansion > 1: # and cp_rank == 0:
|
139 |
+
# Drop the first self.temporal_expansion - 1 frames.
|
140 |
+
# This is because we always want the 3x3x3 conv filter to only apply
|
141 |
+
# to the first frame, and the first frame doesn't need to be repeated.
|
142 |
+
assert all(x.shape)
|
143 |
+
x = x[:, :, self.temporal_expansion - 1 :]
|
144 |
+
assert all(x.shape)
|
145 |
+
|
146 |
+
return x
|
147 |
+
|
148 |
+
|
149 |
+
def norm_fn(
|
150 |
+
in_channels: int,
|
151 |
+
affine: bool = True,
|
152 |
+
):
|
153 |
+
return GroupNormSpatial(affine=affine, num_groups=32, num_channels=in_channels)
|
154 |
+
|
155 |
+
|
156 |
+
class ResBlock(nn.Module):
|
157 |
+
"""Residual block that preserves the spatial dimensions."""
|
158 |
+
|
159 |
+
def __init__(
|
160 |
+
self,
|
161 |
+
channels: int,
|
162 |
+
*,
|
163 |
+
affine: bool = True,
|
164 |
+
attn_block: Optional[nn.Module] = None,
|
165 |
+
causal: bool = True,
|
166 |
+
prune_bottleneck: bool = False,
|
167 |
+
padding_mode: str,
|
168 |
+
bias: bool = True,
|
169 |
+
):
|
170 |
+
super().__init__()
|
171 |
+
self.channels = channels
|
172 |
+
|
173 |
+
assert causal
|
174 |
+
self.stack = nn.Sequential(
|
175 |
+
norm_fn(channels, affine=affine),
|
176 |
+
nn.SiLU(inplace=True),
|
177 |
+
PConv3d(
|
178 |
+
in_channels=channels,
|
179 |
+
out_channels=channels // 2 if prune_bottleneck else channels,
|
180 |
+
kernel_size=(3, 3, 3),
|
181 |
+
stride=(1, 1, 1),
|
182 |
+
padding_mode=padding_mode,
|
183 |
+
bias=bias,
|
184 |
+
causal=causal,
|
185 |
+
),
|
186 |
+
norm_fn(channels, affine=affine),
|
187 |
+
nn.SiLU(inplace=True),
|
188 |
+
PConv3d(
|
189 |
+
in_channels=channels // 2 if prune_bottleneck else channels,
|
190 |
+
out_channels=channels,
|
191 |
+
kernel_size=(3, 3, 3),
|
192 |
+
stride=(1, 1, 1),
|
193 |
+
padding_mode=padding_mode,
|
194 |
+
bias=bias,
|
195 |
+
causal=causal,
|
196 |
+
),
|
197 |
+
)
|
198 |
+
|
199 |
+
self.attn_block = attn_block if attn_block else nn.Identity()
|
200 |
+
|
201 |
+
def forward(self, x: torch.Tensor):
|
202 |
+
"""Forward pass.
|
203 |
+
|
204 |
+
Args:
|
205 |
+
x: Input tensor. Shape: [B, C, T, H, W].
|
206 |
+
"""
|
207 |
+
residual = x
|
208 |
+
x = self.stack(x)
|
209 |
+
x = x + residual
|
210 |
+
del residual
|
211 |
+
|
212 |
+
return self.attn_block(x)
|
213 |
+
|
214 |
+
|
215 |
+
class Attention(nn.Module):
|
216 |
+
def __init__(
|
217 |
+
self,
|
218 |
+
dim: int,
|
219 |
+
head_dim: int = 32,
|
220 |
+
qkv_bias: bool = False,
|
221 |
+
out_bias: bool = True,
|
222 |
+
qk_norm: bool = True,
|
223 |
+
) -> None:
|
224 |
+
super().__init__()
|
225 |
+
self.head_dim = head_dim
|
226 |
+
self.num_heads = dim // head_dim
|
227 |
+
self.qk_norm = qk_norm
|
228 |
+
|
229 |
+
self.qkv = nn.Linear(dim, 3 * dim, bias=qkv_bias)
|
230 |
+
self.out = nn.Linear(dim, dim, bias=out_bias)
|
231 |
+
|
232 |
+
def forward(
|
233 |
+
self,
|
234 |
+
x: torch.Tensor,
|
235 |
+
) -> torch.Tensor:
|
236 |
+
"""Compute temporal self-attention.
|
237 |
+
|
238 |
+
Args:
|
239 |
+
x: Input tensor. Shape: [B, C, T, H, W].
|
240 |
+
chunk_size: Chunk size for large tensors.
|
241 |
+
|
242 |
+
Returns:
|
243 |
+
x: Output tensor. Shape: [B, C, T, H, W].
|
244 |
+
"""
|
245 |
+
B, _, T, H, W = x.shape
|
246 |
+
|
247 |
+
if T == 1:
|
248 |
+
# No attention for single frame.
|
249 |
+
x = x.movedim(1, -1) # [B, C, T, H, W] -> [B, T, H, W, C]
|
250 |
+
qkv = self.qkv(x)
|
251 |
+
_, _, x = qkv.chunk(3, dim=-1) # Throw away queries and keys.
|
252 |
+
x = self.out(x)
|
253 |
+
return x.movedim(-1, 1) # [B, T, H, W, C] -> [B, C, T, H, W]
|
254 |
+
|
255 |
+
# 1D temporal attention.
|
256 |
+
x = rearrange(x, "B C t h w -> (B h w) t C")
|
257 |
+
qkv = self.qkv(x)
|
258 |
+
|
259 |
+
# Input: qkv with shape [B, t, 3 * num_heads * head_dim]
|
260 |
+
# Output: x with shape [B, num_heads, t, head_dim]
|
261 |
+
q, k, v = qkv.view(qkv.shape[0], qkv.shape[1], 3, self.num_heads, self.head_dim).transpose(1, 3).unbind(2)
|
262 |
+
|
263 |
+
if self.qk_norm:
|
264 |
+
q = F.normalize(q, p=2, dim=-1)
|
265 |
+
k = F.normalize(k, p=2, dim=-1)
|
266 |
+
|
267 |
+
x = optimized_attention(q, k, v, self.num_heads, skip_reshape=True)
|
268 |
+
|
269 |
+
assert x.size(0) == q.size(0)
|
270 |
+
|
271 |
+
x = self.out(x)
|
272 |
+
x = rearrange(x, "(B h w) t C -> B C t h w", B=B, h=H, w=W)
|
273 |
+
return x
|
274 |
+
|
275 |
+
|
276 |
+
class AttentionBlock(nn.Module):
|
277 |
+
def __init__(
|
278 |
+
self,
|
279 |
+
dim: int,
|
280 |
+
**attn_kwargs,
|
281 |
+
) -> None:
|
282 |
+
super().__init__()
|
283 |
+
self.norm = norm_fn(dim)
|
284 |
+
self.attn = Attention(dim, **attn_kwargs)
|
285 |
+
|
286 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
287 |
+
return x + self.attn(self.norm(x))
|
288 |
+
|
289 |
+
|
290 |
+
class CausalUpsampleBlock(nn.Module):
|
291 |
+
def __init__(
|
292 |
+
self,
|
293 |
+
in_channels: int,
|
294 |
+
out_channels: int,
|
295 |
+
num_res_blocks: int,
|
296 |
+
*,
|
297 |
+
temporal_expansion: int = 2,
|
298 |
+
spatial_expansion: int = 2,
|
299 |
+
**block_kwargs,
|
300 |
+
):
|
301 |
+
super().__init__()
|
302 |
+
|
303 |
+
blocks = []
|
304 |
+
for _ in range(num_res_blocks):
|
305 |
+
blocks.append(block_fn(in_channels, **block_kwargs))
|
306 |
+
self.blocks = nn.Sequential(*blocks)
|
307 |
+
|
308 |
+
self.temporal_expansion = temporal_expansion
|
309 |
+
self.spatial_expansion = spatial_expansion
|
310 |
+
|
311 |
+
# Change channels in the final convolution layer.
|
312 |
+
self.proj = Conv1x1(
|
313 |
+
in_channels,
|
314 |
+
out_channels * temporal_expansion * (spatial_expansion**2),
|
315 |
+
)
|
316 |
+
|
317 |
+
self.d2st = DepthToSpaceTime(
|
318 |
+
temporal_expansion=temporal_expansion, spatial_expansion=spatial_expansion
|
319 |
+
)
|
320 |
+
|
321 |
+
def forward(self, x):
|
322 |
+
x = self.blocks(x)
|
323 |
+
x = self.proj(x)
|
324 |
+
x = self.d2st(x)
|
325 |
+
return x
|
326 |
+
|
327 |
+
|
328 |
+
def block_fn(channels, *, affine: bool = True, has_attention: bool = False, **block_kwargs):
|
329 |
+
attn_block = AttentionBlock(channels) if has_attention else None
|
330 |
+
return ResBlock(channels, affine=affine, attn_block=attn_block, **block_kwargs)
|
331 |
+
|
332 |
+
|
333 |
+
class DownsampleBlock(nn.Module):
|
334 |
+
def __init__(
|
335 |
+
self,
|
336 |
+
in_channels: int,
|
337 |
+
out_channels: int,
|
338 |
+
num_res_blocks,
|
339 |
+
*,
|
340 |
+
temporal_reduction=2,
|
341 |
+
spatial_reduction=2,
|
342 |
+
**block_kwargs,
|
343 |
+
):
|
344 |
+
"""
|
345 |
+
Downsample block for the VAE encoder.
|
346 |
+
|
347 |
+
Args:
|
348 |
+
in_channels: Number of input channels.
|
349 |
+
out_channels: Number of output channels.
|
350 |
+
num_res_blocks: Number of residual blocks.
|
351 |
+
temporal_reduction: Temporal reduction factor.
|
352 |
+
spatial_reduction: Spatial reduction factor.
|
353 |
+
"""
|
354 |
+
super().__init__()
|
355 |
+
layers = []
|
356 |
+
|
357 |
+
# Change the channel count in the strided convolution.
|
358 |
+
# This lets the ResBlock have uniform channel count,
|
359 |
+
# as in ConvNeXt.
|
360 |
+
assert in_channels != out_channels
|
361 |
+
layers.append(
|
362 |
+
PConv3d(
|
363 |
+
in_channels=in_channels,
|
364 |
+
out_channels=out_channels,
|
365 |
+
kernel_size=(temporal_reduction, spatial_reduction, spatial_reduction),
|
366 |
+
stride=(temporal_reduction, spatial_reduction, spatial_reduction),
|
367 |
+
# First layer in each block always uses replicate padding
|
368 |
+
padding_mode="replicate",
|
369 |
+
bias=block_kwargs["bias"],
|
370 |
+
)
|
371 |
+
)
|
372 |
+
|
373 |
+
for _ in range(num_res_blocks):
|
374 |
+
layers.append(block_fn(out_channels, **block_kwargs))
|
375 |
+
|
376 |
+
self.layers = nn.Sequential(*layers)
|
377 |
+
|
378 |
+
def forward(self, x):
|
379 |
+
return self.layers(x)
|
380 |
+
|
381 |
+
|
382 |
+
def add_fourier_features(inputs: torch.Tensor, start=6, stop=8, step=1):
|
383 |
+
num_freqs = (stop - start) // step
|
384 |
+
assert inputs.ndim == 5
|
385 |
+
C = inputs.size(1)
|
386 |
+
|
387 |
+
# Create Base 2 Fourier features.
|
388 |
+
freqs = torch.arange(start, stop, step, dtype=inputs.dtype, device=inputs.device)
|
389 |
+
assert num_freqs == len(freqs)
|
390 |
+
w = torch.pow(2.0, freqs) * (2 * torch.pi) # [num_freqs]
|
391 |
+
C = inputs.shape[1]
|
392 |
+
w = w.repeat(C)[None, :, None, None, None] # [1, C * num_freqs, 1, 1, 1]
|
393 |
+
|
394 |
+
# Interleaved repeat of input channels to match w.
|
395 |
+
h = inputs.repeat_interleave(num_freqs, dim=1) # [B, C * num_freqs, T, H, W]
|
396 |
+
# Scale channels by frequency.
|
397 |
+
h = w * h
|
398 |
+
|
399 |
+
return torch.cat(
|
400 |
+
[
|
401 |
+
inputs,
|
402 |
+
torch.sin(h),
|
403 |
+
torch.cos(h),
|
404 |
+
],
|
405 |
+
dim=1,
|
406 |
+
)
|
407 |
+
|
408 |
+
|
409 |
+
class FourierFeatures(nn.Module):
|
410 |
+
def __init__(self, start: int = 6, stop: int = 8, step: int = 1):
|
411 |
+
super().__init__()
|
412 |
+
self.start = start
|
413 |
+
self.stop = stop
|
414 |
+
self.step = step
|
415 |
+
|
416 |
+
def forward(self, inputs):
|
417 |
+
"""Add Fourier features to inputs.
|
418 |
+
|
419 |
+
Args:
|
420 |
+
inputs: Input tensor. Shape: [B, C, T, H, W]
|
421 |
+
|
422 |
+
Returns:
|
423 |
+
h: Output tensor. Shape: [B, (1 + 2 * num_freqs) * C, T, H, W]
|
424 |
+
"""
|
425 |
+
return add_fourier_features(inputs, self.start, self.stop, self.step)
|
426 |
+
|
427 |
+
|
428 |
+
class Decoder(nn.Module):
|
429 |
+
def __init__(
|
430 |
+
self,
|
431 |
+
*,
|
432 |
+
out_channels: int = 3,
|
433 |
+
latent_dim: int,
|
434 |
+
base_channels: int,
|
435 |
+
channel_multipliers: List[int],
|
436 |
+
num_res_blocks: List[int],
|
437 |
+
temporal_expansions: Optional[List[int]] = None,
|
438 |
+
spatial_expansions: Optional[List[int]] = None,
|
439 |
+
has_attention: List[bool],
|
440 |
+
output_norm: bool = True,
|
441 |
+
nonlinearity: str = "silu",
|
442 |
+
output_nonlinearity: str = "silu",
|
443 |
+
causal: bool = True,
|
444 |
+
**block_kwargs,
|
445 |
+
):
|
446 |
+
super().__init__()
|
447 |
+
self.input_channels = latent_dim
|
448 |
+
self.base_channels = base_channels
|
449 |
+
self.channel_multipliers = channel_multipliers
|
450 |
+
self.num_res_blocks = num_res_blocks
|
451 |
+
self.output_nonlinearity = output_nonlinearity
|
452 |
+
assert nonlinearity == "silu"
|
453 |
+
assert causal
|
454 |
+
|
455 |
+
ch = [mult * base_channels for mult in channel_multipliers]
|
456 |
+
self.num_up_blocks = len(ch) - 1
|
457 |
+
assert len(num_res_blocks) == self.num_up_blocks + 2
|
458 |
+
|
459 |
+
blocks = []
|
460 |
+
|
461 |
+
first_block = [
|
462 |
+
ops.Conv3d(latent_dim, ch[-1], kernel_size=(1, 1, 1))
|
463 |
+
] # Input layer.
|
464 |
+
# First set of blocks preserve channel count.
|
465 |
+
for _ in range(num_res_blocks[-1]):
|
466 |
+
first_block.append(
|
467 |
+
block_fn(
|
468 |
+
ch[-1],
|
469 |
+
has_attention=has_attention[-1],
|
470 |
+
causal=causal,
|
471 |
+
**block_kwargs,
|
472 |
+
)
|
473 |
+
)
|
474 |
+
blocks.append(nn.Sequential(*first_block))
|
475 |
+
|
476 |
+
assert len(temporal_expansions) == len(spatial_expansions) == self.num_up_blocks
|
477 |
+
assert len(num_res_blocks) == len(has_attention) == self.num_up_blocks + 2
|
478 |
+
|
479 |
+
upsample_block_fn = CausalUpsampleBlock
|
480 |
+
|
481 |
+
for i in range(self.num_up_blocks):
|
482 |
+
block = upsample_block_fn(
|
483 |
+
ch[-i - 1],
|
484 |
+
ch[-i - 2],
|
485 |
+
num_res_blocks=num_res_blocks[-i - 2],
|
486 |
+
has_attention=has_attention[-i - 2],
|
487 |
+
temporal_expansion=temporal_expansions[-i - 1],
|
488 |
+
spatial_expansion=spatial_expansions[-i - 1],
|
489 |
+
causal=causal,
|
490 |
+
**block_kwargs,
|
491 |
+
)
|
492 |
+
blocks.append(block)
|
493 |
+
|
494 |
+
assert not output_norm
|
495 |
+
|
496 |
+
# Last block. Preserve channel count.
|
497 |
+
last_block = []
|
498 |
+
for _ in range(num_res_blocks[0]):
|
499 |
+
last_block.append(
|
500 |
+
block_fn(
|
501 |
+
ch[0], has_attention=has_attention[0], causal=causal, **block_kwargs
|
502 |
+
)
|
503 |
+
)
|
504 |
+
blocks.append(nn.Sequential(*last_block))
|
505 |
+
|
506 |
+
self.blocks = nn.ModuleList(blocks)
|
507 |
+
self.output_proj = Conv1x1(ch[0], out_channels)
|
508 |
+
|
509 |
+
def forward(self, x):
|
510 |
+
"""Forward pass.
|
511 |
+
|
512 |
+
Args:
|
513 |
+
x: Latent tensor. Shape: [B, input_channels, t, h, w]. Scaled [-1, 1].
|
514 |
+
|
515 |
+
Returns:
|
516 |
+
x: Reconstructed video tensor. Shape: [B, C, T, H, W]. Scaled to [-1, 1].
|
517 |
+
T + 1 = (t - 1) * 4.
|
518 |
+
H = h * 16, W = w * 16.
|
519 |
+
"""
|
520 |
+
for block in self.blocks:
|
521 |
+
x = block(x)
|
522 |
+
|
523 |
+
if self.output_nonlinearity == "silu":
|
524 |
+
x = F.silu(x, inplace=not self.training)
|
525 |
+
else:
|
526 |
+
assert (
|
527 |
+
not self.output_nonlinearity
|
528 |
+
) # StyleGAN3 omits the to-RGB nonlinearity.
|
529 |
+
|
530 |
+
return self.output_proj(x).contiguous()
|
531 |
+
|
532 |
+
class LatentDistribution:
|
533 |
+
def __init__(self, mean: torch.Tensor, logvar: torch.Tensor):
|
534 |
+
"""Initialize latent distribution.
|
535 |
+
|
536 |
+
Args:
|
537 |
+
mean: Mean of the distribution. Shape: [B, C, T, H, W].
|
538 |
+
logvar: Logarithm of variance of the distribution. Shape: [B, C, T, H, W].
|
539 |
+
"""
|
540 |
+
assert mean.shape == logvar.shape
|
541 |
+
self.mean = mean
|
542 |
+
self.logvar = logvar
|
543 |
+
|
544 |
+
def sample(self, temperature=1.0, generator: torch.Generator = None, noise=None):
|
545 |
+
if temperature == 0.0:
|
546 |
+
return self.mean
|
547 |
+
|
548 |
+
if noise is None:
|
549 |
+
noise = torch.randn(self.mean.shape, device=self.mean.device, dtype=self.mean.dtype, generator=generator)
|
550 |
+
else:
|
551 |
+
assert noise.device == self.mean.device
|
552 |
+
noise = noise.to(self.mean.dtype)
|
553 |
+
|
554 |
+
if temperature != 1.0:
|
555 |
+
raise NotImplementedError(f"Temperature {temperature} is not supported.")
|
556 |
+
|
557 |
+
# Just Gaussian sample with no scaling of variance.
|
558 |
+
return noise * torch.exp(self.logvar * 0.5) + self.mean
|
559 |
+
|
560 |
+
def mode(self):
|
561 |
+
return self.mean
|
562 |
+
|
563 |
+
class Encoder(nn.Module):
|
564 |
+
def __init__(
|
565 |
+
self,
|
566 |
+
*,
|
567 |
+
in_channels: int,
|
568 |
+
base_channels: int,
|
569 |
+
channel_multipliers: List[int],
|
570 |
+
num_res_blocks: List[int],
|
571 |
+
latent_dim: int,
|
572 |
+
temporal_reductions: List[int],
|
573 |
+
spatial_reductions: List[int],
|
574 |
+
prune_bottlenecks: List[bool],
|
575 |
+
has_attentions: List[bool],
|
576 |
+
affine: bool = True,
|
577 |
+
bias: bool = True,
|
578 |
+
input_is_conv_1x1: bool = False,
|
579 |
+
padding_mode: str,
|
580 |
+
):
|
581 |
+
super().__init__()
|
582 |
+
self.temporal_reductions = temporal_reductions
|
583 |
+
self.spatial_reductions = spatial_reductions
|
584 |
+
self.base_channels = base_channels
|
585 |
+
self.channel_multipliers = channel_multipliers
|
586 |
+
self.num_res_blocks = num_res_blocks
|
587 |
+
self.latent_dim = latent_dim
|
588 |
+
|
589 |
+
self.fourier_features = FourierFeatures()
|
590 |
+
ch = [mult * base_channels for mult in channel_multipliers]
|
591 |
+
num_down_blocks = len(ch) - 1
|
592 |
+
assert len(num_res_blocks) == num_down_blocks + 2
|
593 |
+
|
594 |
+
layers = (
|
595 |
+
[ops.Conv3d(in_channels, ch[0], kernel_size=(1, 1, 1), bias=True)]
|
596 |
+
if not input_is_conv_1x1
|
597 |
+
else [Conv1x1(in_channels, ch[0])]
|
598 |
+
)
|
599 |
+
|
600 |
+
assert len(prune_bottlenecks) == num_down_blocks + 2
|
601 |
+
assert len(has_attentions) == num_down_blocks + 2
|
602 |
+
block = partial(block_fn, padding_mode=padding_mode, affine=affine, bias=bias)
|
603 |
+
|
604 |
+
for _ in range(num_res_blocks[0]):
|
605 |
+
layers.append(block(ch[0], has_attention=has_attentions[0], prune_bottleneck=prune_bottlenecks[0]))
|
606 |
+
prune_bottlenecks = prune_bottlenecks[1:]
|
607 |
+
has_attentions = has_attentions[1:]
|
608 |
+
|
609 |
+
assert len(temporal_reductions) == len(spatial_reductions) == len(ch) - 1
|
610 |
+
for i in range(num_down_blocks):
|
611 |
+
layer = DownsampleBlock(
|
612 |
+
ch[i],
|
613 |
+
ch[i + 1],
|
614 |
+
num_res_blocks=num_res_blocks[i + 1],
|
615 |
+
temporal_reduction=temporal_reductions[i],
|
616 |
+
spatial_reduction=spatial_reductions[i],
|
617 |
+
prune_bottleneck=prune_bottlenecks[i],
|
618 |
+
has_attention=has_attentions[i],
|
619 |
+
affine=affine,
|
620 |
+
bias=bias,
|
621 |
+
padding_mode=padding_mode,
|
622 |
+
)
|
623 |
+
|
624 |
+
layers.append(layer)
|
625 |
+
|
626 |
+
# Additional blocks.
|
627 |
+
for _ in range(num_res_blocks[-1]):
|
628 |
+
layers.append(block(ch[-1], has_attention=has_attentions[-1], prune_bottleneck=prune_bottlenecks[-1]))
|
629 |
+
|
630 |
+
self.layers = nn.Sequential(*layers)
|
631 |
+
|
632 |
+
# Output layers.
|
633 |
+
self.output_norm = norm_fn(ch[-1])
|
634 |
+
self.output_proj = Conv1x1(ch[-1], 2 * latent_dim, bias=False)
|
635 |
+
|
636 |
+
@property
|
637 |
+
def temporal_downsample(self):
|
638 |
+
return math.prod(self.temporal_reductions)
|
639 |
+
|
640 |
+
@property
|
641 |
+
def spatial_downsample(self):
|
642 |
+
return math.prod(self.spatial_reductions)
|
643 |
+
|
644 |
+
def forward(self, x) -> LatentDistribution:
|
645 |
+
"""Forward pass.
|
646 |
+
|
647 |
+
Args:
|
648 |
+
x: Input video tensor. Shape: [B, C, T, H, W]. Scaled to [-1, 1]
|
649 |
+
|
650 |
+
Returns:
|
651 |
+
means: Latent tensor. Shape: [B, latent_dim, t, h, w]. Scaled [-1, 1].
|
652 |
+
h = H // 8, w = W // 8, t - 1 = (T - 1) // 6
|
653 |
+
logvar: Shape: [B, latent_dim, t, h, w].
|
654 |
+
"""
|
655 |
+
assert x.ndim == 5, f"Expected 5D input, got {x.shape}"
|
656 |
+
x = self.fourier_features(x)
|
657 |
+
|
658 |
+
x = self.layers(x)
|
659 |
+
|
660 |
+
x = self.output_norm(x)
|
661 |
+
x = F.silu(x, inplace=True)
|
662 |
+
x = self.output_proj(x)
|
663 |
+
|
664 |
+
means, logvar = torch.chunk(x, 2, dim=1)
|
665 |
+
|
666 |
+
assert means.ndim == 5
|
667 |
+
assert logvar.shape == means.shape
|
668 |
+
assert means.size(1) == self.latent_dim
|
669 |
+
|
670 |
+
return LatentDistribution(means, logvar)
|
671 |
+
|
672 |
+
|
673 |
+
class VideoVAE(nn.Module):
|
674 |
+
def __init__(self):
|
675 |
+
super().__init__()
|
676 |
+
self.encoder = Encoder(
|
677 |
+
in_channels=15,
|
678 |
+
base_channels=64,
|
679 |
+
channel_multipliers=[1, 2, 4, 6],
|
680 |
+
num_res_blocks=[3, 3, 4, 6, 3],
|
681 |
+
latent_dim=12,
|
682 |
+
temporal_reductions=[1, 2, 3],
|
683 |
+
spatial_reductions=[2, 2, 2],
|
684 |
+
prune_bottlenecks=[False, False, False, False, False],
|
685 |
+
has_attentions=[False, True, True, True, True],
|
686 |
+
affine=True,
|
687 |
+
bias=True,
|
688 |
+
input_is_conv_1x1=True,
|
689 |
+
padding_mode="replicate"
|
690 |
+
)
|
691 |
+
self.decoder = Decoder(
|
692 |
+
out_channels=3,
|
693 |
+
base_channels=128,
|
694 |
+
channel_multipliers=[1, 2, 4, 6],
|
695 |
+
temporal_expansions=[1, 2, 3],
|
696 |
+
spatial_expansions=[2, 2, 2],
|
697 |
+
num_res_blocks=[3, 3, 4, 6, 3],
|
698 |
+
latent_dim=12,
|
699 |
+
has_attention=[False, False, False, False, False],
|
700 |
+
padding_mode="replicate",
|
701 |
+
output_norm=False,
|
702 |
+
nonlinearity="silu",
|
703 |
+
output_nonlinearity="silu",
|
704 |
+
causal=True,
|
705 |
+
)
|
706 |
+
|
707 |
+
def encode(self, x):
|
708 |
+
return self.encoder(x).mode()
|
709 |
+
|
710 |
+
def decode(self, x):
|
711 |
+
return self.decoder(x)
|
vae (1)/put_vae_here
ADDED
File without changes
|
vae (2)/causal_conv3d.py
ADDED
@@ -0,0 +1,64 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Tuple, Union
|
2 |
+
|
3 |
+
import torch
|
4 |
+
import torch.nn as nn
|
5 |
+
import comfy.ops
|
6 |
+
ops = comfy.ops.disable_weight_init
|
7 |
+
|
8 |
+
|
9 |
+
class CausalConv3d(nn.Module):
|
10 |
+
def __init__(
|
11 |
+
self,
|
12 |
+
in_channels,
|
13 |
+
out_channels,
|
14 |
+
kernel_size: int = 3,
|
15 |
+
stride: Union[int, Tuple[int]] = 1,
|
16 |
+
dilation: int = 1,
|
17 |
+
groups: int = 1,
|
18 |
+
**kwargs,
|
19 |
+
):
|
20 |
+
super().__init__()
|
21 |
+
|
22 |
+
self.in_channels = in_channels
|
23 |
+
self.out_channels = out_channels
|
24 |
+
|
25 |
+
kernel_size = (kernel_size, kernel_size, kernel_size)
|
26 |
+
self.time_kernel_size = kernel_size[0]
|
27 |
+
|
28 |
+
dilation = (dilation, 1, 1)
|
29 |
+
|
30 |
+
height_pad = kernel_size[1] // 2
|
31 |
+
width_pad = kernel_size[2] // 2
|
32 |
+
padding = (0, height_pad, width_pad)
|
33 |
+
|
34 |
+
self.conv = ops.Conv3d(
|
35 |
+
in_channels,
|
36 |
+
out_channels,
|
37 |
+
kernel_size,
|
38 |
+
stride=stride,
|
39 |
+
dilation=dilation,
|
40 |
+
padding=padding,
|
41 |
+
padding_mode="zeros",
|
42 |
+
groups=groups,
|
43 |
+
)
|
44 |
+
|
45 |
+
def forward(self, x, causal: bool = True):
|
46 |
+
if causal:
|
47 |
+
first_frame_pad = x[:, :, :1, :, :].repeat(
|
48 |
+
(1, 1, self.time_kernel_size - 1, 1, 1)
|
49 |
+
)
|
50 |
+
x = torch.concatenate((first_frame_pad, x), dim=2)
|
51 |
+
else:
|
52 |
+
first_frame_pad = x[:, :, :1, :, :].repeat(
|
53 |
+
(1, 1, (self.time_kernel_size - 1) // 2, 1, 1)
|
54 |
+
)
|
55 |
+
last_frame_pad = x[:, :, -1:, :, :].repeat(
|
56 |
+
(1, 1, (self.time_kernel_size - 1) // 2, 1, 1)
|
57 |
+
)
|
58 |
+
x = torch.concatenate((first_frame_pad, x, last_frame_pad), dim=2)
|
59 |
+
x = self.conv(x)
|
60 |
+
return x
|
61 |
+
|
62 |
+
@property
|
63 |
+
def weight(self):
|
64 |
+
return self.conv.weight
|
vae (2)/causal_video_autoencoder.py
ADDED
@@ -0,0 +1,907 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from torch import nn
|
3 |
+
from functools import partial
|
4 |
+
import math
|
5 |
+
from einops import rearrange
|
6 |
+
from typing import Optional, Tuple, Union
|
7 |
+
from .conv_nd_factory import make_conv_nd, make_linear_nd
|
8 |
+
from .pixel_norm import PixelNorm
|
9 |
+
from ..model import PixArtAlphaCombinedTimestepSizeEmbeddings
|
10 |
+
import comfy.ops
|
11 |
+
ops = comfy.ops.disable_weight_init
|
12 |
+
|
13 |
+
class Encoder(nn.Module):
|
14 |
+
r"""
|
15 |
+
The `Encoder` layer of a variational autoencoder that encodes its input into a latent representation.
|
16 |
+
|
17 |
+
Args:
|
18 |
+
dims (`int` or `Tuple[int, int]`, *optional*, defaults to 3):
|
19 |
+
The number of dimensions to use in convolutions.
|
20 |
+
in_channels (`int`, *optional*, defaults to 3):
|
21 |
+
The number of input channels.
|
22 |
+
out_channels (`int`, *optional*, defaults to 3):
|
23 |
+
The number of output channels.
|
24 |
+
blocks (`List[Tuple[str, int]]`, *optional*, defaults to `[("res_x", 1)]`):
|
25 |
+
The blocks to use. Each block is a tuple of the block name and the number of layers.
|
26 |
+
base_channels (`int`, *optional*, defaults to 128):
|
27 |
+
The number of output channels for the first convolutional layer.
|
28 |
+
norm_num_groups (`int`, *optional*, defaults to 32):
|
29 |
+
The number of groups for normalization.
|
30 |
+
patch_size (`int`, *optional*, defaults to 1):
|
31 |
+
The patch size to use. Should be a power of 2.
|
32 |
+
norm_layer (`str`, *optional*, defaults to `group_norm`):
|
33 |
+
The normalization layer to use. Can be either `group_norm` or `pixel_norm`.
|
34 |
+
latent_log_var (`str`, *optional*, defaults to `per_channel`):
|
35 |
+
The number of channels for the log variance. Can be either `per_channel`, `uniform`, or `none`.
|
36 |
+
"""
|
37 |
+
|
38 |
+
def __init__(
|
39 |
+
self,
|
40 |
+
dims: Union[int, Tuple[int, int]] = 3,
|
41 |
+
in_channels: int = 3,
|
42 |
+
out_channels: int = 3,
|
43 |
+
blocks=[("res_x", 1)],
|
44 |
+
base_channels: int = 128,
|
45 |
+
norm_num_groups: int = 32,
|
46 |
+
patch_size: Union[int, Tuple[int]] = 1,
|
47 |
+
norm_layer: str = "group_norm", # group_norm, pixel_norm
|
48 |
+
latent_log_var: str = "per_channel",
|
49 |
+
):
|
50 |
+
super().__init__()
|
51 |
+
self.patch_size = patch_size
|
52 |
+
self.norm_layer = norm_layer
|
53 |
+
self.latent_channels = out_channels
|
54 |
+
self.latent_log_var = latent_log_var
|
55 |
+
self.blocks_desc = blocks
|
56 |
+
|
57 |
+
in_channels = in_channels * patch_size**2
|
58 |
+
output_channel = base_channels
|
59 |
+
|
60 |
+
self.conv_in = make_conv_nd(
|
61 |
+
dims=dims,
|
62 |
+
in_channels=in_channels,
|
63 |
+
out_channels=output_channel,
|
64 |
+
kernel_size=3,
|
65 |
+
stride=1,
|
66 |
+
padding=1,
|
67 |
+
causal=True,
|
68 |
+
)
|
69 |
+
|
70 |
+
self.down_blocks = nn.ModuleList([])
|
71 |
+
|
72 |
+
for block_name, block_params in blocks:
|
73 |
+
input_channel = output_channel
|
74 |
+
if isinstance(block_params, int):
|
75 |
+
block_params = {"num_layers": block_params}
|
76 |
+
|
77 |
+
if block_name == "res_x":
|
78 |
+
block = UNetMidBlock3D(
|
79 |
+
dims=dims,
|
80 |
+
in_channels=input_channel,
|
81 |
+
num_layers=block_params["num_layers"],
|
82 |
+
resnet_eps=1e-6,
|
83 |
+
resnet_groups=norm_num_groups,
|
84 |
+
norm_layer=norm_layer,
|
85 |
+
)
|
86 |
+
elif block_name == "res_x_y":
|
87 |
+
output_channel = block_params.get("multiplier", 2) * output_channel
|
88 |
+
block = ResnetBlock3D(
|
89 |
+
dims=dims,
|
90 |
+
in_channels=input_channel,
|
91 |
+
out_channels=output_channel,
|
92 |
+
eps=1e-6,
|
93 |
+
groups=norm_num_groups,
|
94 |
+
norm_layer=norm_layer,
|
95 |
+
)
|
96 |
+
elif block_name == "compress_time":
|
97 |
+
block = make_conv_nd(
|
98 |
+
dims=dims,
|
99 |
+
in_channels=input_channel,
|
100 |
+
out_channels=output_channel,
|
101 |
+
kernel_size=3,
|
102 |
+
stride=(2, 1, 1),
|
103 |
+
causal=True,
|
104 |
+
)
|
105 |
+
elif block_name == "compress_space":
|
106 |
+
block = make_conv_nd(
|
107 |
+
dims=dims,
|
108 |
+
in_channels=input_channel,
|
109 |
+
out_channels=output_channel,
|
110 |
+
kernel_size=3,
|
111 |
+
stride=(1, 2, 2),
|
112 |
+
causal=True,
|
113 |
+
)
|
114 |
+
elif block_name == "compress_all":
|
115 |
+
block = make_conv_nd(
|
116 |
+
dims=dims,
|
117 |
+
in_channels=input_channel,
|
118 |
+
out_channels=output_channel,
|
119 |
+
kernel_size=3,
|
120 |
+
stride=(2, 2, 2),
|
121 |
+
causal=True,
|
122 |
+
)
|
123 |
+
elif block_name == "compress_all_x_y":
|
124 |
+
output_channel = block_params.get("multiplier", 2) * output_channel
|
125 |
+
block = make_conv_nd(
|
126 |
+
dims=dims,
|
127 |
+
in_channels=input_channel,
|
128 |
+
out_channels=output_channel,
|
129 |
+
kernel_size=3,
|
130 |
+
stride=(2, 2, 2),
|
131 |
+
causal=True,
|
132 |
+
)
|
133 |
+
else:
|
134 |
+
raise ValueError(f"unknown block: {block_name}")
|
135 |
+
|
136 |
+
self.down_blocks.append(block)
|
137 |
+
|
138 |
+
# out
|
139 |
+
if norm_layer == "group_norm":
|
140 |
+
self.conv_norm_out = nn.GroupNorm(
|
141 |
+
num_channels=output_channel, num_groups=norm_num_groups, eps=1e-6
|
142 |
+
)
|
143 |
+
elif norm_layer == "pixel_norm":
|
144 |
+
self.conv_norm_out = PixelNorm()
|
145 |
+
elif norm_layer == "layer_norm":
|
146 |
+
self.conv_norm_out = LayerNorm(output_channel, eps=1e-6)
|
147 |
+
|
148 |
+
self.conv_act = nn.SiLU()
|
149 |
+
|
150 |
+
conv_out_channels = out_channels
|
151 |
+
if latent_log_var == "per_channel":
|
152 |
+
conv_out_channels *= 2
|
153 |
+
elif latent_log_var == "uniform":
|
154 |
+
conv_out_channels += 1
|
155 |
+
elif latent_log_var != "none":
|
156 |
+
raise ValueError(f"Invalid latent_log_var: {latent_log_var}")
|
157 |
+
self.conv_out = make_conv_nd(
|
158 |
+
dims, output_channel, conv_out_channels, 3, padding=1, causal=True
|
159 |
+
)
|
160 |
+
|
161 |
+
self.gradient_checkpointing = False
|
162 |
+
|
163 |
+
def forward(self, sample: torch.FloatTensor) -> torch.FloatTensor:
|
164 |
+
r"""The forward method of the `Encoder` class."""
|
165 |
+
|
166 |
+
sample = patchify(sample, patch_size_hw=self.patch_size, patch_size_t=1)
|
167 |
+
sample = self.conv_in(sample)
|
168 |
+
|
169 |
+
checkpoint_fn = (
|
170 |
+
partial(torch.utils.checkpoint.checkpoint, use_reentrant=False)
|
171 |
+
if self.gradient_checkpointing and self.training
|
172 |
+
else lambda x: x
|
173 |
+
)
|
174 |
+
|
175 |
+
for down_block in self.down_blocks:
|
176 |
+
sample = checkpoint_fn(down_block)(sample)
|
177 |
+
|
178 |
+
sample = self.conv_norm_out(sample)
|
179 |
+
sample = self.conv_act(sample)
|
180 |
+
sample = self.conv_out(sample)
|
181 |
+
|
182 |
+
if self.latent_log_var == "uniform":
|
183 |
+
last_channel = sample[:, -1:, ...]
|
184 |
+
num_dims = sample.dim()
|
185 |
+
|
186 |
+
if num_dims == 4:
|
187 |
+
# For shape (B, C, H, W)
|
188 |
+
repeated_last_channel = last_channel.repeat(
|
189 |
+
1, sample.shape[1] - 2, 1, 1
|
190 |
+
)
|
191 |
+
sample = torch.cat([sample, repeated_last_channel], dim=1)
|
192 |
+
elif num_dims == 5:
|
193 |
+
# For shape (B, C, F, H, W)
|
194 |
+
repeated_last_channel = last_channel.repeat(
|
195 |
+
1, sample.shape[1] - 2, 1, 1, 1
|
196 |
+
)
|
197 |
+
sample = torch.cat([sample, repeated_last_channel], dim=1)
|
198 |
+
else:
|
199 |
+
raise ValueError(f"Invalid input shape: {sample.shape}")
|
200 |
+
|
201 |
+
return sample
|
202 |
+
|
203 |
+
|
204 |
+
class Decoder(nn.Module):
|
205 |
+
r"""
|
206 |
+
The `Decoder` layer of a variational autoencoder that decodes its latent representation into an output sample.
|
207 |
+
|
208 |
+
Args:
|
209 |
+
dims (`int` or `Tuple[int, int]`, *optional*, defaults to 3):
|
210 |
+
The number of dimensions to use in convolutions.
|
211 |
+
in_channels (`int`, *optional*, defaults to 3):
|
212 |
+
The number of input channels.
|
213 |
+
out_channels (`int`, *optional*, defaults to 3):
|
214 |
+
The number of output channels.
|
215 |
+
blocks (`List[Tuple[str, int]]`, *optional*, defaults to `[("res_x", 1)]`):
|
216 |
+
The blocks to use. Each block is a tuple of the block name and the number of layers.
|
217 |
+
base_channels (`int`, *optional*, defaults to 128):
|
218 |
+
The number of output channels for the first convolutional layer.
|
219 |
+
norm_num_groups (`int`, *optional*, defaults to 32):
|
220 |
+
The number of groups for normalization.
|
221 |
+
patch_size (`int`, *optional*, defaults to 1):
|
222 |
+
The patch size to use. Should be a power of 2.
|
223 |
+
norm_layer (`str`, *optional*, defaults to `group_norm`):
|
224 |
+
The normalization layer to use. Can be either `group_norm` or `pixel_norm`.
|
225 |
+
causal (`bool`, *optional*, defaults to `True`):
|
226 |
+
Whether to use causal convolutions or not.
|
227 |
+
"""
|
228 |
+
|
229 |
+
def __init__(
|
230 |
+
self,
|
231 |
+
dims,
|
232 |
+
in_channels: int = 3,
|
233 |
+
out_channels: int = 3,
|
234 |
+
blocks=[("res_x", 1)],
|
235 |
+
base_channels: int = 128,
|
236 |
+
layers_per_block: int = 2,
|
237 |
+
norm_num_groups: int = 32,
|
238 |
+
patch_size: int = 1,
|
239 |
+
norm_layer: str = "group_norm",
|
240 |
+
causal: bool = True,
|
241 |
+
timestep_conditioning: bool = False,
|
242 |
+
):
|
243 |
+
super().__init__()
|
244 |
+
self.patch_size = patch_size
|
245 |
+
self.layers_per_block = layers_per_block
|
246 |
+
out_channels = out_channels * patch_size**2
|
247 |
+
self.causal = causal
|
248 |
+
self.blocks_desc = blocks
|
249 |
+
|
250 |
+
# Compute output channel to be product of all channel-multiplier blocks
|
251 |
+
output_channel = base_channels
|
252 |
+
for block_name, block_params in list(reversed(blocks)):
|
253 |
+
block_params = block_params if isinstance(block_params, dict) else {}
|
254 |
+
if block_name == "res_x_y":
|
255 |
+
output_channel = output_channel * block_params.get("multiplier", 2)
|
256 |
+
if block_name == "compress_all":
|
257 |
+
output_channel = output_channel * block_params.get("multiplier", 1)
|
258 |
+
|
259 |
+
self.conv_in = make_conv_nd(
|
260 |
+
dims,
|
261 |
+
in_channels,
|
262 |
+
output_channel,
|
263 |
+
kernel_size=3,
|
264 |
+
stride=1,
|
265 |
+
padding=1,
|
266 |
+
causal=True,
|
267 |
+
)
|
268 |
+
|
269 |
+
self.up_blocks = nn.ModuleList([])
|
270 |
+
|
271 |
+
for block_name, block_params in list(reversed(blocks)):
|
272 |
+
input_channel = output_channel
|
273 |
+
if isinstance(block_params, int):
|
274 |
+
block_params = {"num_layers": block_params}
|
275 |
+
|
276 |
+
if block_name == "res_x":
|
277 |
+
block = UNetMidBlock3D(
|
278 |
+
dims=dims,
|
279 |
+
in_channels=input_channel,
|
280 |
+
num_layers=block_params["num_layers"],
|
281 |
+
resnet_eps=1e-6,
|
282 |
+
resnet_groups=norm_num_groups,
|
283 |
+
norm_layer=norm_layer,
|
284 |
+
inject_noise=block_params.get("inject_noise", False),
|
285 |
+
timestep_conditioning=timestep_conditioning,
|
286 |
+
)
|
287 |
+
elif block_name == "attn_res_x":
|
288 |
+
block = UNetMidBlock3D(
|
289 |
+
dims=dims,
|
290 |
+
in_channels=input_channel,
|
291 |
+
num_layers=block_params["num_layers"],
|
292 |
+
resnet_groups=norm_num_groups,
|
293 |
+
norm_layer=norm_layer,
|
294 |
+
inject_noise=block_params.get("inject_noise", False),
|
295 |
+
timestep_conditioning=timestep_conditioning,
|
296 |
+
attention_head_dim=block_params["attention_head_dim"],
|
297 |
+
)
|
298 |
+
elif block_name == "res_x_y":
|
299 |
+
output_channel = output_channel // block_params.get("multiplier", 2)
|
300 |
+
block = ResnetBlock3D(
|
301 |
+
dims=dims,
|
302 |
+
in_channels=input_channel,
|
303 |
+
out_channels=output_channel,
|
304 |
+
eps=1e-6,
|
305 |
+
groups=norm_num_groups,
|
306 |
+
norm_layer=norm_layer,
|
307 |
+
inject_noise=block_params.get("inject_noise", False),
|
308 |
+
timestep_conditioning=False,
|
309 |
+
)
|
310 |
+
elif block_name == "compress_time":
|
311 |
+
block = DepthToSpaceUpsample(
|
312 |
+
dims=dims, in_channels=input_channel, stride=(2, 1, 1)
|
313 |
+
)
|
314 |
+
elif block_name == "compress_space":
|
315 |
+
block = DepthToSpaceUpsample(
|
316 |
+
dims=dims, in_channels=input_channel, stride=(1, 2, 2)
|
317 |
+
)
|
318 |
+
elif block_name == "compress_all":
|
319 |
+
output_channel = output_channel // block_params.get("multiplier", 1)
|
320 |
+
block = DepthToSpaceUpsample(
|
321 |
+
dims=dims,
|
322 |
+
in_channels=input_channel,
|
323 |
+
stride=(2, 2, 2),
|
324 |
+
residual=block_params.get("residual", False),
|
325 |
+
out_channels_reduction_factor=block_params.get("multiplier", 1),
|
326 |
+
)
|
327 |
+
else:
|
328 |
+
raise ValueError(f"unknown layer: {block_name}")
|
329 |
+
|
330 |
+
self.up_blocks.append(block)
|
331 |
+
|
332 |
+
if norm_layer == "group_norm":
|
333 |
+
self.conv_norm_out = nn.GroupNorm(
|
334 |
+
num_channels=output_channel, num_groups=norm_num_groups, eps=1e-6
|
335 |
+
)
|
336 |
+
elif norm_layer == "pixel_norm":
|
337 |
+
self.conv_norm_out = PixelNorm()
|
338 |
+
elif norm_layer == "layer_norm":
|
339 |
+
self.conv_norm_out = LayerNorm(output_channel, eps=1e-6)
|
340 |
+
|
341 |
+
self.conv_act = nn.SiLU()
|
342 |
+
self.conv_out = make_conv_nd(
|
343 |
+
dims, output_channel, out_channels, 3, padding=1, causal=True
|
344 |
+
)
|
345 |
+
|
346 |
+
self.gradient_checkpointing = False
|
347 |
+
|
348 |
+
self.timestep_conditioning = timestep_conditioning
|
349 |
+
|
350 |
+
if timestep_conditioning:
|
351 |
+
self.timestep_scale_multiplier = nn.Parameter(
|
352 |
+
torch.tensor(1000.0, dtype=torch.float32)
|
353 |
+
)
|
354 |
+
self.last_time_embedder = PixArtAlphaCombinedTimestepSizeEmbeddings(
|
355 |
+
output_channel * 2, 0, operations=ops,
|
356 |
+
)
|
357 |
+
self.last_scale_shift_table = nn.Parameter(torch.empty(2, output_channel))
|
358 |
+
|
359 |
+
# def forward(self, sample: torch.FloatTensor, target_shape) -> torch.FloatTensor:
|
360 |
+
def forward(
|
361 |
+
self,
|
362 |
+
sample: torch.FloatTensor,
|
363 |
+
timestep: Optional[torch.Tensor] = None,
|
364 |
+
) -> torch.FloatTensor:
|
365 |
+
r"""The forward method of the `Decoder` class."""
|
366 |
+
batch_size = sample.shape[0]
|
367 |
+
|
368 |
+
sample = self.conv_in(sample, causal=self.causal)
|
369 |
+
|
370 |
+
checkpoint_fn = (
|
371 |
+
partial(torch.utils.checkpoint.checkpoint, use_reentrant=False)
|
372 |
+
if self.gradient_checkpointing and self.training
|
373 |
+
else lambda x: x
|
374 |
+
)
|
375 |
+
|
376 |
+
scaled_timestep = None
|
377 |
+
if self.timestep_conditioning:
|
378 |
+
assert (
|
379 |
+
timestep is not None
|
380 |
+
), "should pass timestep with timestep_conditioning=True"
|
381 |
+
scaled_timestep = timestep * self.timestep_scale_multiplier.to(dtype=sample.dtype, device=sample.device)
|
382 |
+
|
383 |
+
for up_block in self.up_blocks:
|
384 |
+
if self.timestep_conditioning and isinstance(up_block, UNetMidBlock3D):
|
385 |
+
sample = checkpoint_fn(up_block)(
|
386 |
+
sample, causal=self.causal, timestep=scaled_timestep
|
387 |
+
)
|
388 |
+
else:
|
389 |
+
sample = checkpoint_fn(up_block)(sample, causal=self.causal)
|
390 |
+
|
391 |
+
sample = self.conv_norm_out(sample)
|
392 |
+
|
393 |
+
if self.timestep_conditioning:
|
394 |
+
embedded_timestep = self.last_time_embedder(
|
395 |
+
timestep=scaled_timestep.flatten(),
|
396 |
+
resolution=None,
|
397 |
+
aspect_ratio=None,
|
398 |
+
batch_size=sample.shape[0],
|
399 |
+
hidden_dtype=sample.dtype,
|
400 |
+
)
|
401 |
+
embedded_timestep = embedded_timestep.view(
|
402 |
+
batch_size, embedded_timestep.shape[-1], 1, 1, 1
|
403 |
+
)
|
404 |
+
ada_values = self.last_scale_shift_table[
|
405 |
+
None, ..., None, None, None
|
406 |
+
].to(device=sample.device, dtype=sample.dtype) + embedded_timestep.reshape(
|
407 |
+
batch_size,
|
408 |
+
2,
|
409 |
+
-1,
|
410 |
+
embedded_timestep.shape[-3],
|
411 |
+
embedded_timestep.shape[-2],
|
412 |
+
embedded_timestep.shape[-1],
|
413 |
+
)
|
414 |
+
shift, scale = ada_values.unbind(dim=1)
|
415 |
+
sample = sample * (1 + scale) + shift
|
416 |
+
|
417 |
+
sample = self.conv_act(sample)
|
418 |
+
sample = self.conv_out(sample, causal=self.causal)
|
419 |
+
|
420 |
+
sample = unpatchify(sample, patch_size_hw=self.patch_size, patch_size_t=1)
|
421 |
+
|
422 |
+
return sample
|
423 |
+
|
424 |
+
|
425 |
+
class UNetMidBlock3D(nn.Module):
|
426 |
+
"""
|
427 |
+
A 3D UNet mid-block [`UNetMidBlock3D`] with multiple residual blocks.
|
428 |
+
|
429 |
+
Args:
|
430 |
+
in_channels (`int`): The number of input channels.
|
431 |
+
dropout (`float`, *optional*, defaults to 0.0): The dropout rate.
|
432 |
+
num_layers (`int`, *optional*, defaults to 1): The number of residual blocks.
|
433 |
+
resnet_eps (`float`, *optional*, 1e-6 ): The epsilon value for the resnet blocks.
|
434 |
+
resnet_groups (`int`, *optional*, defaults to 32):
|
435 |
+
The number of groups to use in the group normalization layers of the resnet blocks.
|
436 |
+
|
437 |
+
Returns:
|
438 |
+
`torch.FloatTensor`: The output of the last residual block, which is a tensor of shape `(batch_size,
|
439 |
+
in_channels, height, width)`.
|
440 |
+
|
441 |
+
"""
|
442 |
+
|
443 |
+
def __init__(
|
444 |
+
self,
|
445 |
+
dims: Union[int, Tuple[int, int]],
|
446 |
+
in_channels: int,
|
447 |
+
dropout: float = 0.0,
|
448 |
+
num_layers: int = 1,
|
449 |
+
resnet_eps: float = 1e-6,
|
450 |
+
resnet_groups: int = 32,
|
451 |
+
norm_layer: str = "group_norm",
|
452 |
+
inject_noise: bool = False,
|
453 |
+
timestep_conditioning: bool = False,
|
454 |
+
):
|
455 |
+
super().__init__()
|
456 |
+
resnet_groups = (
|
457 |
+
resnet_groups if resnet_groups is not None else min(in_channels // 4, 32)
|
458 |
+
)
|
459 |
+
|
460 |
+
self.timestep_conditioning = timestep_conditioning
|
461 |
+
|
462 |
+
if timestep_conditioning:
|
463 |
+
self.time_embedder = PixArtAlphaCombinedTimestepSizeEmbeddings(
|
464 |
+
in_channels * 4, 0, operations=ops,
|
465 |
+
)
|
466 |
+
|
467 |
+
self.res_blocks = nn.ModuleList(
|
468 |
+
[
|
469 |
+
ResnetBlock3D(
|
470 |
+
dims=dims,
|
471 |
+
in_channels=in_channels,
|
472 |
+
out_channels=in_channels,
|
473 |
+
eps=resnet_eps,
|
474 |
+
groups=resnet_groups,
|
475 |
+
dropout=dropout,
|
476 |
+
norm_layer=norm_layer,
|
477 |
+
inject_noise=inject_noise,
|
478 |
+
timestep_conditioning=timestep_conditioning,
|
479 |
+
)
|
480 |
+
for _ in range(num_layers)
|
481 |
+
]
|
482 |
+
)
|
483 |
+
|
484 |
+
def forward(
|
485 |
+
self, hidden_states: torch.FloatTensor, causal: bool = True, timestep: Optional[torch.Tensor] = None
|
486 |
+
) -> torch.FloatTensor:
|
487 |
+
timestep_embed = None
|
488 |
+
if self.timestep_conditioning:
|
489 |
+
assert (
|
490 |
+
timestep is not None
|
491 |
+
), "should pass timestep with timestep_conditioning=True"
|
492 |
+
batch_size = hidden_states.shape[0]
|
493 |
+
timestep_embed = self.time_embedder(
|
494 |
+
timestep=timestep.flatten(),
|
495 |
+
resolution=None,
|
496 |
+
aspect_ratio=None,
|
497 |
+
batch_size=batch_size,
|
498 |
+
hidden_dtype=hidden_states.dtype,
|
499 |
+
)
|
500 |
+
timestep_embed = timestep_embed.view(
|
501 |
+
batch_size, timestep_embed.shape[-1], 1, 1, 1
|
502 |
+
)
|
503 |
+
|
504 |
+
for resnet in self.res_blocks:
|
505 |
+
hidden_states = resnet(hidden_states, causal=causal, timestep=timestep_embed)
|
506 |
+
|
507 |
+
return hidden_states
|
508 |
+
|
509 |
+
|
510 |
+
class DepthToSpaceUpsample(nn.Module):
|
511 |
+
def __init__(
|
512 |
+
self, dims, in_channels, stride, residual=False, out_channels_reduction_factor=1
|
513 |
+
):
|
514 |
+
super().__init__()
|
515 |
+
self.stride = stride
|
516 |
+
self.out_channels = (
|
517 |
+
math.prod(stride) * in_channels // out_channels_reduction_factor
|
518 |
+
)
|
519 |
+
self.conv = make_conv_nd(
|
520 |
+
dims=dims,
|
521 |
+
in_channels=in_channels,
|
522 |
+
out_channels=self.out_channels,
|
523 |
+
kernel_size=3,
|
524 |
+
stride=1,
|
525 |
+
causal=True,
|
526 |
+
)
|
527 |
+
self.residual = residual
|
528 |
+
self.out_channels_reduction_factor = out_channels_reduction_factor
|
529 |
+
|
530 |
+
def forward(self, x, causal: bool = True, timestep: Optional[torch.Tensor] = None):
|
531 |
+
if self.residual:
|
532 |
+
# Reshape and duplicate the input to match the output shape
|
533 |
+
x_in = rearrange(
|
534 |
+
x,
|
535 |
+
"b (c p1 p2 p3) d h w -> b c (d p1) (h p2) (w p3)",
|
536 |
+
p1=self.stride[0],
|
537 |
+
p2=self.stride[1],
|
538 |
+
p3=self.stride[2],
|
539 |
+
)
|
540 |
+
num_repeat = math.prod(self.stride) // self.out_channels_reduction_factor
|
541 |
+
x_in = x_in.repeat(1, num_repeat, 1, 1, 1)
|
542 |
+
if self.stride[0] == 2:
|
543 |
+
x_in = x_in[:, :, 1:, :, :]
|
544 |
+
x = self.conv(x, causal=causal)
|
545 |
+
x = rearrange(
|
546 |
+
x,
|
547 |
+
"b (c p1 p2 p3) d h w -> b c (d p1) (h p2) (w p3)",
|
548 |
+
p1=self.stride[0],
|
549 |
+
p2=self.stride[1],
|
550 |
+
p3=self.stride[2],
|
551 |
+
)
|
552 |
+
if self.stride[0] == 2:
|
553 |
+
x = x[:, :, 1:, :, :]
|
554 |
+
if self.residual:
|
555 |
+
x = x + x_in
|
556 |
+
return x
|
557 |
+
|
558 |
+
class LayerNorm(nn.Module):
|
559 |
+
def __init__(self, dim, eps, elementwise_affine=True) -> None:
|
560 |
+
super().__init__()
|
561 |
+
self.norm = nn.LayerNorm(dim, eps=eps, elementwise_affine=elementwise_affine)
|
562 |
+
|
563 |
+
def forward(self, x):
|
564 |
+
x = rearrange(x, "b c d h w -> b d h w c")
|
565 |
+
x = self.norm(x)
|
566 |
+
x = rearrange(x, "b d h w c -> b c d h w")
|
567 |
+
return x
|
568 |
+
|
569 |
+
|
570 |
+
class ResnetBlock3D(nn.Module):
|
571 |
+
r"""
|
572 |
+
A Resnet block.
|
573 |
+
|
574 |
+
Parameters:
|
575 |
+
in_channels (`int`): The number of channels in the input.
|
576 |
+
out_channels (`int`, *optional*, default to be `None`):
|
577 |
+
The number of output channels for the first conv layer. If None, same as `in_channels`.
|
578 |
+
dropout (`float`, *optional*, defaults to `0.0`): The dropout probability to use.
|
579 |
+
groups (`int`, *optional*, default to `32`): The number of groups to use for the first normalization layer.
|
580 |
+
eps (`float`, *optional*, defaults to `1e-6`): The epsilon to use for the normalization.
|
581 |
+
"""
|
582 |
+
|
583 |
+
def __init__(
|
584 |
+
self,
|
585 |
+
dims: Union[int, Tuple[int, int]],
|
586 |
+
in_channels: int,
|
587 |
+
out_channels: Optional[int] = None,
|
588 |
+
dropout: float = 0.0,
|
589 |
+
groups: int = 32,
|
590 |
+
eps: float = 1e-6,
|
591 |
+
norm_layer: str = "group_norm",
|
592 |
+
inject_noise: bool = False,
|
593 |
+
timestep_conditioning: bool = False,
|
594 |
+
):
|
595 |
+
super().__init__()
|
596 |
+
self.in_channels = in_channels
|
597 |
+
out_channels = in_channels if out_channels is None else out_channels
|
598 |
+
self.out_channels = out_channels
|
599 |
+
self.inject_noise = inject_noise
|
600 |
+
|
601 |
+
if norm_layer == "group_norm":
|
602 |
+
self.norm1 = nn.GroupNorm(
|
603 |
+
num_groups=groups, num_channels=in_channels, eps=eps, affine=True
|
604 |
+
)
|
605 |
+
elif norm_layer == "pixel_norm":
|
606 |
+
self.norm1 = PixelNorm()
|
607 |
+
elif norm_layer == "layer_norm":
|
608 |
+
self.norm1 = LayerNorm(in_channels, eps=eps, elementwise_affine=True)
|
609 |
+
|
610 |
+
self.non_linearity = nn.SiLU()
|
611 |
+
|
612 |
+
self.conv1 = make_conv_nd(
|
613 |
+
dims,
|
614 |
+
in_channels,
|
615 |
+
out_channels,
|
616 |
+
kernel_size=3,
|
617 |
+
stride=1,
|
618 |
+
padding=1,
|
619 |
+
causal=True,
|
620 |
+
)
|
621 |
+
|
622 |
+
if inject_noise:
|
623 |
+
self.per_channel_scale1 = nn.Parameter(torch.zeros((in_channels, 1, 1)))
|
624 |
+
|
625 |
+
if norm_layer == "group_norm":
|
626 |
+
self.norm2 = nn.GroupNorm(
|
627 |
+
num_groups=groups, num_channels=out_channels, eps=eps, affine=True
|
628 |
+
)
|
629 |
+
elif norm_layer == "pixel_norm":
|
630 |
+
self.norm2 = PixelNorm()
|
631 |
+
elif norm_layer == "layer_norm":
|
632 |
+
self.norm2 = LayerNorm(out_channels, eps=eps, elementwise_affine=True)
|
633 |
+
|
634 |
+
self.dropout = torch.nn.Dropout(dropout)
|
635 |
+
|
636 |
+
self.conv2 = make_conv_nd(
|
637 |
+
dims,
|
638 |
+
out_channels,
|
639 |
+
out_channels,
|
640 |
+
kernel_size=3,
|
641 |
+
stride=1,
|
642 |
+
padding=1,
|
643 |
+
causal=True,
|
644 |
+
)
|
645 |
+
|
646 |
+
if inject_noise:
|
647 |
+
self.per_channel_scale2 = nn.Parameter(torch.zeros((in_channels, 1, 1)))
|
648 |
+
|
649 |
+
self.conv_shortcut = (
|
650 |
+
make_linear_nd(
|
651 |
+
dims=dims, in_channels=in_channels, out_channels=out_channels
|
652 |
+
)
|
653 |
+
if in_channels != out_channels
|
654 |
+
else nn.Identity()
|
655 |
+
)
|
656 |
+
|
657 |
+
self.norm3 = (
|
658 |
+
LayerNorm(in_channels, eps=eps, elementwise_affine=True)
|
659 |
+
if in_channels != out_channels
|
660 |
+
else nn.Identity()
|
661 |
+
)
|
662 |
+
|
663 |
+
self.timestep_conditioning = timestep_conditioning
|
664 |
+
|
665 |
+
if timestep_conditioning:
|
666 |
+
self.scale_shift_table = nn.Parameter(
|
667 |
+
torch.randn(4, in_channels) / in_channels**0.5
|
668 |
+
)
|
669 |
+
|
670 |
+
def _feed_spatial_noise(
|
671 |
+
self, hidden_states: torch.FloatTensor, per_channel_scale: torch.FloatTensor
|
672 |
+
) -> torch.FloatTensor:
|
673 |
+
spatial_shape = hidden_states.shape[-2:]
|
674 |
+
device = hidden_states.device
|
675 |
+
dtype = hidden_states.dtype
|
676 |
+
|
677 |
+
# similar to the "explicit noise inputs" method in style-gan
|
678 |
+
spatial_noise = torch.randn(spatial_shape, device=device, dtype=dtype)[None]
|
679 |
+
scaled_noise = (spatial_noise * per_channel_scale)[None, :, None, ...]
|
680 |
+
hidden_states = hidden_states + scaled_noise
|
681 |
+
|
682 |
+
return hidden_states
|
683 |
+
|
684 |
+
def forward(
|
685 |
+
self,
|
686 |
+
input_tensor: torch.FloatTensor,
|
687 |
+
causal: bool = True,
|
688 |
+
timestep: Optional[torch.Tensor] = None,
|
689 |
+
) -> torch.FloatTensor:
|
690 |
+
hidden_states = input_tensor
|
691 |
+
batch_size = hidden_states.shape[0]
|
692 |
+
|
693 |
+
hidden_states = self.norm1(hidden_states)
|
694 |
+
if self.timestep_conditioning:
|
695 |
+
assert (
|
696 |
+
timestep is not None
|
697 |
+
), "should pass timestep with timestep_conditioning=True"
|
698 |
+
ada_values = self.scale_shift_table[
|
699 |
+
None, ..., None, None, None
|
700 |
+
].to(device=hidden_states.device, dtype=hidden_states.dtype) + timestep.reshape(
|
701 |
+
batch_size,
|
702 |
+
4,
|
703 |
+
-1,
|
704 |
+
timestep.shape[-3],
|
705 |
+
timestep.shape[-2],
|
706 |
+
timestep.shape[-1],
|
707 |
+
)
|
708 |
+
shift1, scale1, shift2, scale2 = ada_values.unbind(dim=1)
|
709 |
+
|
710 |
+
hidden_states = hidden_states * (1 + scale1) + shift1
|
711 |
+
|
712 |
+
hidden_states = self.non_linearity(hidden_states)
|
713 |
+
|
714 |
+
hidden_states = self.conv1(hidden_states, causal=causal)
|
715 |
+
|
716 |
+
if self.inject_noise:
|
717 |
+
hidden_states = self._feed_spatial_noise(
|
718 |
+
hidden_states, self.per_channel_scale1.to(device=hidden_states.device, dtype=hidden_states.dtype)
|
719 |
+
)
|
720 |
+
|
721 |
+
hidden_states = self.norm2(hidden_states)
|
722 |
+
|
723 |
+
if self.timestep_conditioning:
|
724 |
+
hidden_states = hidden_states * (1 + scale2) + shift2
|
725 |
+
|
726 |
+
hidden_states = self.non_linearity(hidden_states)
|
727 |
+
|
728 |
+
hidden_states = self.dropout(hidden_states)
|
729 |
+
|
730 |
+
hidden_states = self.conv2(hidden_states, causal=causal)
|
731 |
+
|
732 |
+
if self.inject_noise:
|
733 |
+
hidden_states = self._feed_spatial_noise(
|
734 |
+
hidden_states, self.per_channel_scale2.to(device=hidden_states.device, dtype=hidden_states.dtype)
|
735 |
+
)
|
736 |
+
|
737 |
+
input_tensor = self.norm3(input_tensor)
|
738 |
+
|
739 |
+
batch_size = input_tensor.shape[0]
|
740 |
+
|
741 |
+
input_tensor = self.conv_shortcut(input_tensor)
|
742 |
+
|
743 |
+
output_tensor = input_tensor + hidden_states
|
744 |
+
|
745 |
+
return output_tensor
|
746 |
+
|
747 |
+
|
748 |
+
def patchify(x, patch_size_hw, patch_size_t=1):
|
749 |
+
if patch_size_hw == 1 and patch_size_t == 1:
|
750 |
+
return x
|
751 |
+
if x.dim() == 4:
|
752 |
+
x = rearrange(
|
753 |
+
x, "b c (h q) (w r) -> b (c r q) h w", q=patch_size_hw, r=patch_size_hw
|
754 |
+
)
|
755 |
+
elif x.dim() == 5:
|
756 |
+
x = rearrange(
|
757 |
+
x,
|
758 |
+
"b c (f p) (h q) (w r) -> b (c p r q) f h w",
|
759 |
+
p=patch_size_t,
|
760 |
+
q=patch_size_hw,
|
761 |
+
r=patch_size_hw,
|
762 |
+
)
|
763 |
+
else:
|
764 |
+
raise ValueError(f"Invalid input shape: {x.shape}")
|
765 |
+
|
766 |
+
return x
|
767 |
+
|
768 |
+
|
769 |
+
def unpatchify(x, patch_size_hw, patch_size_t=1):
|
770 |
+
if patch_size_hw == 1 and patch_size_t == 1:
|
771 |
+
return x
|
772 |
+
|
773 |
+
if x.dim() == 4:
|
774 |
+
x = rearrange(
|
775 |
+
x, "b (c r q) h w -> b c (h q) (w r)", q=patch_size_hw, r=patch_size_hw
|
776 |
+
)
|
777 |
+
elif x.dim() == 5:
|
778 |
+
x = rearrange(
|
779 |
+
x,
|
780 |
+
"b (c p r q) f h w -> b c (f p) (h q) (w r)",
|
781 |
+
p=patch_size_t,
|
782 |
+
q=patch_size_hw,
|
783 |
+
r=patch_size_hw,
|
784 |
+
)
|
785 |
+
|
786 |
+
return x
|
787 |
+
|
788 |
+
class processor(nn.Module):
|
789 |
+
def __init__(self):
|
790 |
+
super().__init__()
|
791 |
+
self.register_buffer("std-of-means", torch.empty(128))
|
792 |
+
self.register_buffer("mean-of-means", torch.empty(128))
|
793 |
+
self.register_buffer("mean-of-stds", torch.empty(128))
|
794 |
+
self.register_buffer("mean-of-stds_over_std-of-means", torch.empty(128))
|
795 |
+
self.register_buffer("channel", torch.empty(128))
|
796 |
+
|
797 |
+
def un_normalize(self, x):
|
798 |
+
return (x * self.get_buffer("std-of-means").view(1, -1, 1, 1, 1).to(x)) + self.get_buffer("mean-of-means").view(1, -1, 1, 1, 1).to(x)
|
799 |
+
|
800 |
+
def normalize(self, x):
|
801 |
+
return (x - self.get_buffer("mean-of-means").view(1, -1, 1, 1, 1).to(x)) / self.get_buffer("std-of-means").view(1, -1, 1, 1, 1).to(x)
|
802 |
+
|
803 |
+
class VideoVAE(nn.Module):
|
804 |
+
def __init__(self, version=0):
|
805 |
+
super().__init__()
|
806 |
+
|
807 |
+
if version == 0:
|
808 |
+
config = {
|
809 |
+
"_class_name": "CausalVideoAutoencoder",
|
810 |
+
"dims": 3,
|
811 |
+
"in_channels": 3,
|
812 |
+
"out_channels": 3,
|
813 |
+
"latent_channels": 128,
|
814 |
+
"blocks": [
|
815 |
+
["res_x", 4],
|
816 |
+
["compress_all", 1],
|
817 |
+
["res_x_y", 1],
|
818 |
+
["res_x", 3],
|
819 |
+
["compress_all", 1],
|
820 |
+
["res_x_y", 1],
|
821 |
+
["res_x", 3],
|
822 |
+
["compress_all", 1],
|
823 |
+
["res_x", 3],
|
824 |
+
["res_x", 4],
|
825 |
+
],
|
826 |
+
"scaling_factor": 1.0,
|
827 |
+
"norm_layer": "pixel_norm",
|
828 |
+
"patch_size": 4,
|
829 |
+
"latent_log_var": "uniform",
|
830 |
+
"use_quant_conv": False,
|
831 |
+
"causal_decoder": False,
|
832 |
+
}
|
833 |
+
else:
|
834 |
+
config = {
|
835 |
+
"_class_name": "CausalVideoAutoencoder",
|
836 |
+
"dims": 3,
|
837 |
+
"in_channels": 3,
|
838 |
+
"out_channels": 3,
|
839 |
+
"latent_channels": 128,
|
840 |
+
"decoder_blocks": [
|
841 |
+
["res_x", {"num_layers": 5, "inject_noise": True}],
|
842 |
+
["compress_all", {"residual": True, "multiplier": 2}],
|
843 |
+
["res_x", {"num_layers": 6, "inject_noise": True}],
|
844 |
+
["compress_all", {"residual": True, "multiplier": 2}],
|
845 |
+
["res_x", {"num_layers": 7, "inject_noise": True}],
|
846 |
+
["compress_all", {"residual": True, "multiplier": 2}],
|
847 |
+
["res_x", {"num_layers": 8, "inject_noise": False}]
|
848 |
+
],
|
849 |
+
"encoder_blocks": [
|
850 |
+
["res_x", {"num_layers": 4}],
|
851 |
+
["compress_all", {}],
|
852 |
+
["res_x_y", 1],
|
853 |
+
["res_x", {"num_layers": 3}],
|
854 |
+
["compress_all", {}],
|
855 |
+
["res_x_y", 1],
|
856 |
+
["res_x", {"num_layers": 3}],
|
857 |
+
["compress_all", {}],
|
858 |
+
["res_x", {"num_layers": 3}],
|
859 |
+
["res_x", {"num_layers": 4}]
|
860 |
+
],
|
861 |
+
"scaling_factor": 1.0,
|
862 |
+
"norm_layer": "pixel_norm",
|
863 |
+
"patch_size": 4,
|
864 |
+
"latent_log_var": "uniform",
|
865 |
+
"use_quant_conv": False,
|
866 |
+
"causal_decoder": False,
|
867 |
+
"timestep_conditioning": True,
|
868 |
+
}
|
869 |
+
|
870 |
+
double_z = config.get("double_z", True)
|
871 |
+
latent_log_var = config.get(
|
872 |
+
"latent_log_var", "per_channel" if double_z else "none"
|
873 |
+
)
|
874 |
+
|
875 |
+
self.encoder = Encoder(
|
876 |
+
dims=config["dims"],
|
877 |
+
in_channels=config.get("in_channels", 3),
|
878 |
+
out_channels=config["latent_channels"],
|
879 |
+
blocks=config.get("encoder_blocks", config.get("encoder_blocks", config.get("blocks"))),
|
880 |
+
patch_size=config.get("patch_size", 1),
|
881 |
+
latent_log_var=latent_log_var,
|
882 |
+
norm_layer=config.get("norm_layer", "group_norm"),
|
883 |
+
)
|
884 |
+
|
885 |
+
self.decoder = Decoder(
|
886 |
+
dims=config["dims"],
|
887 |
+
in_channels=config["latent_channels"],
|
888 |
+
out_channels=config.get("out_channels", 3),
|
889 |
+
blocks=config.get("decoder_blocks", config.get("decoder_blocks", config.get("blocks"))),
|
890 |
+
patch_size=config.get("patch_size", 1),
|
891 |
+
norm_layer=config.get("norm_layer", "group_norm"),
|
892 |
+
causal=config.get("causal_decoder", False),
|
893 |
+
timestep_conditioning=config.get("timestep_conditioning", False),
|
894 |
+
)
|
895 |
+
|
896 |
+
self.timestep_conditioning = config.get("timestep_conditioning", False)
|
897 |
+
self.per_channel_statistics = processor()
|
898 |
+
|
899 |
+
def encode(self, x):
|
900 |
+
means, logvar = torch.chunk(self.encoder(x), 2, dim=1)
|
901 |
+
return self.per_channel_statistics.normalize(means)
|
902 |
+
|
903 |
+
def decode(self, x, timestep=0.05, noise_scale=0.025):
|
904 |
+
if self.timestep_conditioning: #TODO: seed
|
905 |
+
x = torch.randn_like(x) * noise_scale + (1.0 - noise_scale) * x
|
906 |
+
return self.decoder(self.per_channel_statistics.un_normalize(x), timestep=timestep)
|
907 |
+
|
vae (2)/conv_nd_factory.py
ADDED
@@ -0,0 +1,82 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Tuple, Union
|
2 |
+
|
3 |
+
|
4 |
+
from .dual_conv3d import DualConv3d
|
5 |
+
from .causal_conv3d import CausalConv3d
|
6 |
+
import comfy.ops
|
7 |
+
ops = comfy.ops.disable_weight_init
|
8 |
+
|
9 |
+
def make_conv_nd(
|
10 |
+
dims: Union[int, Tuple[int, int]],
|
11 |
+
in_channels: int,
|
12 |
+
out_channels: int,
|
13 |
+
kernel_size: int,
|
14 |
+
stride=1,
|
15 |
+
padding=0,
|
16 |
+
dilation=1,
|
17 |
+
groups=1,
|
18 |
+
bias=True,
|
19 |
+
causal=False,
|
20 |
+
):
|
21 |
+
if dims == 2:
|
22 |
+
return ops.Conv2d(
|
23 |
+
in_channels=in_channels,
|
24 |
+
out_channels=out_channels,
|
25 |
+
kernel_size=kernel_size,
|
26 |
+
stride=stride,
|
27 |
+
padding=padding,
|
28 |
+
dilation=dilation,
|
29 |
+
groups=groups,
|
30 |
+
bias=bias,
|
31 |
+
)
|
32 |
+
elif dims == 3:
|
33 |
+
if causal:
|
34 |
+
return CausalConv3d(
|
35 |
+
in_channels=in_channels,
|
36 |
+
out_channels=out_channels,
|
37 |
+
kernel_size=kernel_size,
|
38 |
+
stride=stride,
|
39 |
+
padding=padding,
|
40 |
+
dilation=dilation,
|
41 |
+
groups=groups,
|
42 |
+
bias=bias,
|
43 |
+
)
|
44 |
+
return ops.Conv3d(
|
45 |
+
in_channels=in_channels,
|
46 |
+
out_channels=out_channels,
|
47 |
+
kernel_size=kernel_size,
|
48 |
+
stride=stride,
|
49 |
+
padding=padding,
|
50 |
+
dilation=dilation,
|
51 |
+
groups=groups,
|
52 |
+
bias=bias,
|
53 |
+
)
|
54 |
+
elif dims == (2, 1):
|
55 |
+
return DualConv3d(
|
56 |
+
in_channels=in_channels,
|
57 |
+
out_channels=out_channels,
|
58 |
+
kernel_size=kernel_size,
|
59 |
+
stride=stride,
|
60 |
+
padding=padding,
|
61 |
+
bias=bias,
|
62 |
+
)
|
63 |
+
else:
|
64 |
+
raise ValueError(f"unsupported dimensions: {dims}")
|
65 |
+
|
66 |
+
|
67 |
+
def make_linear_nd(
|
68 |
+
dims: int,
|
69 |
+
in_channels: int,
|
70 |
+
out_channels: int,
|
71 |
+
bias=True,
|
72 |
+
):
|
73 |
+
if dims == 2:
|
74 |
+
return ops.Conv2d(
|
75 |
+
in_channels=in_channels, out_channels=out_channels, kernel_size=1, bias=bias
|
76 |
+
)
|
77 |
+
elif dims == 3 or dims == (2, 1):
|
78 |
+
return ops.Conv3d(
|
79 |
+
in_channels=in_channels, out_channels=out_channels, kernel_size=1, bias=bias
|
80 |
+
)
|
81 |
+
else:
|
82 |
+
raise ValueError(f"unsupported dimensions: {dims}")
|
vae (2)/dual_conv3d.py
ADDED
@@ -0,0 +1,195 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
from typing import Tuple, Union
|
3 |
+
|
4 |
+
import torch
|
5 |
+
import torch.nn as nn
|
6 |
+
import torch.nn.functional as F
|
7 |
+
from einops import rearrange
|
8 |
+
|
9 |
+
|
10 |
+
class DualConv3d(nn.Module):
|
11 |
+
def __init__(
|
12 |
+
self,
|
13 |
+
in_channels,
|
14 |
+
out_channels,
|
15 |
+
kernel_size,
|
16 |
+
stride: Union[int, Tuple[int, int, int]] = 1,
|
17 |
+
padding: Union[int, Tuple[int, int, int]] = 0,
|
18 |
+
dilation: Union[int, Tuple[int, int, int]] = 1,
|
19 |
+
groups=1,
|
20 |
+
bias=True,
|
21 |
+
):
|
22 |
+
super(DualConv3d, self).__init__()
|
23 |
+
|
24 |
+
self.in_channels = in_channels
|
25 |
+
self.out_channels = out_channels
|
26 |
+
# Ensure kernel_size, stride, padding, and dilation are tuples of length 3
|
27 |
+
if isinstance(kernel_size, int):
|
28 |
+
kernel_size = (kernel_size, kernel_size, kernel_size)
|
29 |
+
if kernel_size == (1, 1, 1):
|
30 |
+
raise ValueError(
|
31 |
+
"kernel_size must be greater than 1. Use make_linear_nd instead."
|
32 |
+
)
|
33 |
+
if isinstance(stride, int):
|
34 |
+
stride = (stride, stride, stride)
|
35 |
+
if isinstance(padding, int):
|
36 |
+
padding = (padding, padding, padding)
|
37 |
+
if isinstance(dilation, int):
|
38 |
+
dilation = (dilation, dilation, dilation)
|
39 |
+
|
40 |
+
# Set parameters for convolutions
|
41 |
+
self.groups = groups
|
42 |
+
self.bias = bias
|
43 |
+
|
44 |
+
# Define the size of the channels after the first convolution
|
45 |
+
intermediate_channels = (
|
46 |
+
out_channels if in_channels < out_channels else in_channels
|
47 |
+
)
|
48 |
+
|
49 |
+
# Define parameters for the first convolution
|
50 |
+
self.weight1 = nn.Parameter(
|
51 |
+
torch.Tensor(
|
52 |
+
intermediate_channels,
|
53 |
+
in_channels // groups,
|
54 |
+
1,
|
55 |
+
kernel_size[1],
|
56 |
+
kernel_size[2],
|
57 |
+
)
|
58 |
+
)
|
59 |
+
self.stride1 = (1, stride[1], stride[2])
|
60 |
+
self.padding1 = (0, padding[1], padding[2])
|
61 |
+
self.dilation1 = (1, dilation[1], dilation[2])
|
62 |
+
if bias:
|
63 |
+
self.bias1 = nn.Parameter(torch.Tensor(intermediate_channels))
|
64 |
+
else:
|
65 |
+
self.register_parameter("bias1", None)
|
66 |
+
|
67 |
+
# Define parameters for the second convolution
|
68 |
+
self.weight2 = nn.Parameter(
|
69 |
+
torch.Tensor(
|
70 |
+
out_channels, intermediate_channels // groups, kernel_size[0], 1, 1
|
71 |
+
)
|
72 |
+
)
|
73 |
+
self.stride2 = (stride[0], 1, 1)
|
74 |
+
self.padding2 = (padding[0], 0, 0)
|
75 |
+
self.dilation2 = (dilation[0], 1, 1)
|
76 |
+
if bias:
|
77 |
+
self.bias2 = nn.Parameter(torch.Tensor(out_channels))
|
78 |
+
else:
|
79 |
+
self.register_parameter("bias2", None)
|
80 |
+
|
81 |
+
# Initialize weights and biases
|
82 |
+
self.reset_parameters()
|
83 |
+
|
84 |
+
def reset_parameters(self):
|
85 |
+
nn.init.kaiming_uniform_(self.weight1, a=math.sqrt(5))
|
86 |
+
nn.init.kaiming_uniform_(self.weight2, a=math.sqrt(5))
|
87 |
+
if self.bias:
|
88 |
+
fan_in1, _ = nn.init._calculate_fan_in_and_fan_out(self.weight1)
|
89 |
+
bound1 = 1 / math.sqrt(fan_in1)
|
90 |
+
nn.init.uniform_(self.bias1, -bound1, bound1)
|
91 |
+
fan_in2, _ = nn.init._calculate_fan_in_and_fan_out(self.weight2)
|
92 |
+
bound2 = 1 / math.sqrt(fan_in2)
|
93 |
+
nn.init.uniform_(self.bias2, -bound2, bound2)
|
94 |
+
|
95 |
+
def forward(self, x, use_conv3d=False, skip_time_conv=False):
|
96 |
+
if use_conv3d:
|
97 |
+
return self.forward_with_3d(x=x, skip_time_conv=skip_time_conv)
|
98 |
+
else:
|
99 |
+
return self.forward_with_2d(x=x, skip_time_conv=skip_time_conv)
|
100 |
+
|
101 |
+
def forward_with_3d(self, x, skip_time_conv):
|
102 |
+
# First convolution
|
103 |
+
x = F.conv3d(
|
104 |
+
x,
|
105 |
+
self.weight1,
|
106 |
+
self.bias1,
|
107 |
+
self.stride1,
|
108 |
+
self.padding1,
|
109 |
+
self.dilation1,
|
110 |
+
self.groups,
|
111 |
+
)
|
112 |
+
|
113 |
+
if skip_time_conv:
|
114 |
+
return x
|
115 |
+
|
116 |
+
# Second convolution
|
117 |
+
x = F.conv3d(
|
118 |
+
x,
|
119 |
+
self.weight2,
|
120 |
+
self.bias2,
|
121 |
+
self.stride2,
|
122 |
+
self.padding2,
|
123 |
+
self.dilation2,
|
124 |
+
self.groups,
|
125 |
+
)
|
126 |
+
|
127 |
+
return x
|
128 |
+
|
129 |
+
def forward_with_2d(self, x, skip_time_conv):
|
130 |
+
b, c, d, h, w = x.shape
|
131 |
+
|
132 |
+
# First 2D convolution
|
133 |
+
x = rearrange(x, "b c d h w -> (b d) c h w")
|
134 |
+
# Squeeze the depth dimension out of weight1 since it's 1
|
135 |
+
weight1 = self.weight1.squeeze(2)
|
136 |
+
# Select stride, padding, and dilation for the 2D convolution
|
137 |
+
stride1 = (self.stride1[1], self.stride1[2])
|
138 |
+
padding1 = (self.padding1[1], self.padding1[2])
|
139 |
+
dilation1 = (self.dilation1[1], self.dilation1[2])
|
140 |
+
x = F.conv2d(x, weight1, self.bias1, stride1, padding1, dilation1, self.groups)
|
141 |
+
|
142 |
+
_, _, h, w = x.shape
|
143 |
+
|
144 |
+
if skip_time_conv:
|
145 |
+
x = rearrange(x, "(b d) c h w -> b c d h w", b=b)
|
146 |
+
return x
|
147 |
+
|
148 |
+
# Second convolution which is essentially treated as a 1D convolution across the 'd' dimension
|
149 |
+
x = rearrange(x, "(b d) c h w -> (b h w) c d", b=b)
|
150 |
+
|
151 |
+
# Reshape weight2 to match the expected dimensions for conv1d
|
152 |
+
weight2 = self.weight2.squeeze(-1).squeeze(-1)
|
153 |
+
# Use only the relevant dimension for stride, padding, and dilation for the 1D convolution
|
154 |
+
stride2 = self.stride2[0]
|
155 |
+
padding2 = self.padding2[0]
|
156 |
+
dilation2 = self.dilation2[0]
|
157 |
+
x = F.conv1d(x, weight2, self.bias2, stride2, padding2, dilation2, self.groups)
|
158 |
+
x = rearrange(x, "(b h w) c d -> b c d h w", b=b, h=h, w=w)
|
159 |
+
|
160 |
+
return x
|
161 |
+
|
162 |
+
@property
|
163 |
+
def weight(self):
|
164 |
+
return self.weight2
|
165 |
+
|
166 |
+
|
167 |
+
def test_dual_conv3d_consistency():
|
168 |
+
# Initialize parameters
|
169 |
+
in_channels = 3
|
170 |
+
out_channels = 5
|
171 |
+
kernel_size = (3, 3, 3)
|
172 |
+
stride = (2, 2, 2)
|
173 |
+
padding = (1, 1, 1)
|
174 |
+
|
175 |
+
# Create an instance of the DualConv3d class
|
176 |
+
dual_conv3d = DualConv3d(
|
177 |
+
in_channels=in_channels,
|
178 |
+
out_channels=out_channels,
|
179 |
+
kernel_size=kernel_size,
|
180 |
+
stride=stride,
|
181 |
+
padding=padding,
|
182 |
+
bias=True,
|
183 |
+
)
|
184 |
+
|
185 |
+
# Example input tensor
|
186 |
+
test_input = torch.randn(1, 3, 10, 10, 10)
|
187 |
+
|
188 |
+
# Perform forward passes with both 3D and 2D settings
|
189 |
+
output_conv3d = dual_conv3d(test_input, use_conv3d=True)
|
190 |
+
output_2d = dual_conv3d(test_input, use_conv3d=False)
|
191 |
+
|
192 |
+
# Assert that the outputs from both methods are sufficiently close
|
193 |
+
assert torch.allclose(
|
194 |
+
output_conv3d, output_2d, atol=1e-6
|
195 |
+
), "Outputs are not consistent between 3D and 2D convolutions."
|
vae (2)/pixel_norm.py
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from torch import nn
|
3 |
+
|
4 |
+
|
5 |
+
class PixelNorm(nn.Module):
|
6 |
+
def __init__(self, dim=1, eps=1e-8):
|
7 |
+
super(PixelNorm, self).__init__()
|
8 |
+
self.dim = dim
|
9 |
+
self.eps = eps
|
10 |
+
|
11 |
+
def forward(self, x):
|
12 |
+
return x / torch.sqrt(torch.mean(x**2, dim=self.dim, keepdim=True) + self.eps)
|
vae (2)/put_vae_here
ADDED
File without changes
|
vae/causal_conv3d.py
ADDED
@@ -0,0 +1,64 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Tuple, Union
|
2 |
+
|
3 |
+
import torch
|
4 |
+
import torch.nn as nn
|
5 |
+
import comfy.ops
|
6 |
+
ops = comfy.ops.disable_weight_init
|
7 |
+
|
8 |
+
|
9 |
+
class CausalConv3d(nn.Module):
|
10 |
+
def __init__(
|
11 |
+
self,
|
12 |
+
in_channels,
|
13 |
+
out_channels,
|
14 |
+
kernel_size: int = 3,
|
15 |
+
stride: Union[int, Tuple[int]] = 1,
|
16 |
+
dilation: int = 1,
|
17 |
+
groups: int = 1,
|
18 |
+
**kwargs,
|
19 |
+
):
|
20 |
+
super().__init__()
|
21 |
+
|
22 |
+
self.in_channels = in_channels
|
23 |
+
self.out_channels = out_channels
|
24 |
+
|
25 |
+
kernel_size = (kernel_size, kernel_size, kernel_size)
|
26 |
+
self.time_kernel_size = kernel_size[0]
|
27 |
+
|
28 |
+
dilation = (dilation, 1, 1)
|
29 |
+
|
30 |
+
height_pad = kernel_size[1] // 2
|
31 |
+
width_pad = kernel_size[2] // 2
|
32 |
+
padding = (0, height_pad, width_pad)
|
33 |
+
|
34 |
+
self.conv = ops.Conv3d(
|
35 |
+
in_channels,
|
36 |
+
out_channels,
|
37 |
+
kernel_size,
|
38 |
+
stride=stride,
|
39 |
+
dilation=dilation,
|
40 |
+
padding=padding,
|
41 |
+
padding_mode="zeros",
|
42 |
+
groups=groups,
|
43 |
+
)
|
44 |
+
|
45 |
+
def forward(self, x, causal: bool = True):
|
46 |
+
if causal:
|
47 |
+
first_frame_pad = x[:, :, :1, :, :].repeat(
|
48 |
+
(1, 1, self.time_kernel_size - 1, 1, 1)
|
49 |
+
)
|
50 |
+
x = torch.concatenate((first_frame_pad, x), dim=2)
|
51 |
+
else:
|
52 |
+
first_frame_pad = x[:, :, :1, :, :].repeat(
|
53 |
+
(1, 1, (self.time_kernel_size - 1) // 2, 1, 1)
|
54 |
+
)
|
55 |
+
last_frame_pad = x[:, :, -1:, :, :].repeat(
|
56 |
+
(1, 1, (self.time_kernel_size - 1) // 2, 1, 1)
|
57 |
+
)
|
58 |
+
x = torch.concatenate((first_frame_pad, x, last_frame_pad), dim=2)
|
59 |
+
x = self.conv(x)
|
60 |
+
return x
|
61 |
+
|
62 |
+
@property
|
63 |
+
def weight(self):
|
64 |
+
return self.conv.weight
|
vae/causal_video_autoencoder.py
ADDED
@@ -0,0 +1,907 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from torch import nn
|
3 |
+
from functools import partial
|
4 |
+
import math
|
5 |
+
from einops import rearrange
|
6 |
+
from typing import Optional, Tuple, Union
|
7 |
+
from .conv_nd_factory import make_conv_nd, make_linear_nd
|
8 |
+
from .pixel_norm import PixelNorm
|
9 |
+
from ..model import PixArtAlphaCombinedTimestepSizeEmbeddings
|
10 |
+
import comfy.ops
|
11 |
+
ops = comfy.ops.disable_weight_init
|
12 |
+
|
13 |
+
class Encoder(nn.Module):
|
14 |
+
r"""
|
15 |
+
The `Encoder` layer of a variational autoencoder that encodes its input into a latent representation.
|
16 |
+
|
17 |
+
Args:
|
18 |
+
dims (`int` or `Tuple[int, int]`, *optional*, defaults to 3):
|
19 |
+
The number of dimensions to use in convolutions.
|
20 |
+
in_channels (`int`, *optional*, defaults to 3):
|
21 |
+
The number of input channels.
|
22 |
+
out_channels (`int`, *optional*, defaults to 3):
|
23 |
+
The number of output channels.
|
24 |
+
blocks (`List[Tuple[str, int]]`, *optional*, defaults to `[("res_x", 1)]`):
|
25 |
+
The blocks to use. Each block is a tuple of the block name and the number of layers.
|
26 |
+
base_channels (`int`, *optional*, defaults to 128):
|
27 |
+
The number of output channels for the first convolutional layer.
|
28 |
+
norm_num_groups (`int`, *optional*, defaults to 32):
|
29 |
+
The number of groups for normalization.
|
30 |
+
patch_size (`int`, *optional*, defaults to 1):
|
31 |
+
The patch size to use. Should be a power of 2.
|
32 |
+
norm_layer (`str`, *optional*, defaults to `group_norm`):
|
33 |
+
The normalization layer to use. Can be either `group_norm` or `pixel_norm`.
|
34 |
+
latent_log_var (`str`, *optional*, defaults to `per_channel`):
|
35 |
+
The number of channels for the log variance. Can be either `per_channel`, `uniform`, or `none`.
|
36 |
+
"""
|
37 |
+
|
38 |
+
def __init__(
|
39 |
+
self,
|
40 |
+
dims: Union[int, Tuple[int, int]] = 3,
|
41 |
+
in_channels: int = 3,
|
42 |
+
out_channels: int = 3,
|
43 |
+
blocks=[("res_x", 1)],
|
44 |
+
base_channels: int = 128,
|
45 |
+
norm_num_groups: int = 32,
|
46 |
+
patch_size: Union[int, Tuple[int]] = 1,
|
47 |
+
norm_layer: str = "group_norm", # group_norm, pixel_norm
|
48 |
+
latent_log_var: str = "per_channel",
|
49 |
+
):
|
50 |
+
super().__init__()
|
51 |
+
self.patch_size = patch_size
|
52 |
+
self.norm_layer = norm_layer
|
53 |
+
self.latent_channels = out_channels
|
54 |
+
self.latent_log_var = latent_log_var
|
55 |
+
self.blocks_desc = blocks
|
56 |
+
|
57 |
+
in_channels = in_channels * patch_size**2
|
58 |
+
output_channel = base_channels
|
59 |
+
|
60 |
+
self.conv_in = make_conv_nd(
|
61 |
+
dims=dims,
|
62 |
+
in_channels=in_channels,
|
63 |
+
out_channels=output_channel,
|
64 |
+
kernel_size=3,
|
65 |
+
stride=1,
|
66 |
+
padding=1,
|
67 |
+
causal=True,
|
68 |
+
)
|
69 |
+
|
70 |
+
self.down_blocks = nn.ModuleList([])
|
71 |
+
|
72 |
+
for block_name, block_params in blocks:
|
73 |
+
input_channel = output_channel
|
74 |
+
if isinstance(block_params, int):
|
75 |
+
block_params = {"num_layers": block_params}
|
76 |
+
|
77 |
+
if block_name == "res_x":
|
78 |
+
block = UNetMidBlock3D(
|
79 |
+
dims=dims,
|
80 |
+
in_channels=input_channel,
|
81 |
+
num_layers=block_params["num_layers"],
|
82 |
+
resnet_eps=1e-6,
|
83 |
+
resnet_groups=norm_num_groups,
|
84 |
+
norm_layer=norm_layer,
|
85 |
+
)
|
86 |
+
elif block_name == "res_x_y":
|
87 |
+
output_channel = block_params.get("multiplier", 2) * output_channel
|
88 |
+
block = ResnetBlock3D(
|
89 |
+
dims=dims,
|
90 |
+
in_channels=input_channel,
|
91 |
+
out_channels=output_channel,
|
92 |
+
eps=1e-6,
|
93 |
+
groups=norm_num_groups,
|
94 |
+
norm_layer=norm_layer,
|
95 |
+
)
|
96 |
+
elif block_name == "compress_time":
|
97 |
+
block = make_conv_nd(
|
98 |
+
dims=dims,
|
99 |
+
in_channels=input_channel,
|
100 |
+
out_channels=output_channel,
|
101 |
+
kernel_size=3,
|
102 |
+
stride=(2, 1, 1),
|
103 |
+
causal=True,
|
104 |
+
)
|
105 |
+
elif block_name == "compress_space":
|
106 |
+
block = make_conv_nd(
|
107 |
+
dims=dims,
|
108 |
+
in_channels=input_channel,
|
109 |
+
out_channels=output_channel,
|
110 |
+
kernel_size=3,
|
111 |
+
stride=(1, 2, 2),
|
112 |
+
causal=True,
|
113 |
+
)
|
114 |
+
elif block_name == "compress_all":
|
115 |
+
block = make_conv_nd(
|
116 |
+
dims=dims,
|
117 |
+
in_channels=input_channel,
|
118 |
+
out_channels=output_channel,
|
119 |
+
kernel_size=3,
|
120 |
+
stride=(2, 2, 2),
|
121 |
+
causal=True,
|
122 |
+
)
|
123 |
+
elif block_name == "compress_all_x_y":
|
124 |
+
output_channel = block_params.get("multiplier", 2) * output_channel
|
125 |
+
block = make_conv_nd(
|
126 |
+
dims=dims,
|
127 |
+
in_channels=input_channel,
|
128 |
+
out_channels=output_channel,
|
129 |
+
kernel_size=3,
|
130 |
+
stride=(2, 2, 2),
|
131 |
+
causal=True,
|
132 |
+
)
|
133 |
+
else:
|
134 |
+
raise ValueError(f"unknown block: {block_name}")
|
135 |
+
|
136 |
+
self.down_blocks.append(block)
|
137 |
+
|
138 |
+
# out
|
139 |
+
if norm_layer == "group_norm":
|
140 |
+
self.conv_norm_out = nn.GroupNorm(
|
141 |
+
num_channels=output_channel, num_groups=norm_num_groups, eps=1e-6
|
142 |
+
)
|
143 |
+
elif norm_layer == "pixel_norm":
|
144 |
+
self.conv_norm_out = PixelNorm()
|
145 |
+
elif norm_layer == "layer_norm":
|
146 |
+
self.conv_norm_out = LayerNorm(output_channel, eps=1e-6)
|
147 |
+
|
148 |
+
self.conv_act = nn.SiLU()
|
149 |
+
|
150 |
+
conv_out_channels = out_channels
|
151 |
+
if latent_log_var == "per_channel":
|
152 |
+
conv_out_channels *= 2
|
153 |
+
elif latent_log_var == "uniform":
|
154 |
+
conv_out_channels += 1
|
155 |
+
elif latent_log_var != "none":
|
156 |
+
raise ValueError(f"Invalid latent_log_var: {latent_log_var}")
|
157 |
+
self.conv_out = make_conv_nd(
|
158 |
+
dims, output_channel, conv_out_channels, 3, padding=1, causal=True
|
159 |
+
)
|
160 |
+
|
161 |
+
self.gradient_checkpointing = False
|
162 |
+
|
163 |
+
def forward(self, sample: torch.FloatTensor) -> torch.FloatTensor:
|
164 |
+
r"""The forward method of the `Encoder` class."""
|
165 |
+
|
166 |
+
sample = patchify(sample, patch_size_hw=self.patch_size, patch_size_t=1)
|
167 |
+
sample = self.conv_in(sample)
|
168 |
+
|
169 |
+
checkpoint_fn = (
|
170 |
+
partial(torch.utils.checkpoint.checkpoint, use_reentrant=False)
|
171 |
+
if self.gradient_checkpointing and self.training
|
172 |
+
else lambda x: x
|
173 |
+
)
|
174 |
+
|
175 |
+
for down_block in self.down_blocks:
|
176 |
+
sample = checkpoint_fn(down_block)(sample)
|
177 |
+
|
178 |
+
sample = self.conv_norm_out(sample)
|
179 |
+
sample = self.conv_act(sample)
|
180 |
+
sample = self.conv_out(sample)
|
181 |
+
|
182 |
+
if self.latent_log_var == "uniform":
|
183 |
+
last_channel = sample[:, -1:, ...]
|
184 |
+
num_dims = sample.dim()
|
185 |
+
|
186 |
+
if num_dims == 4:
|
187 |
+
# For shape (B, C, H, W)
|
188 |
+
repeated_last_channel = last_channel.repeat(
|
189 |
+
1, sample.shape[1] - 2, 1, 1
|
190 |
+
)
|
191 |
+
sample = torch.cat([sample, repeated_last_channel], dim=1)
|
192 |
+
elif num_dims == 5:
|
193 |
+
# For shape (B, C, F, H, W)
|
194 |
+
repeated_last_channel = last_channel.repeat(
|
195 |
+
1, sample.shape[1] - 2, 1, 1, 1
|
196 |
+
)
|
197 |
+
sample = torch.cat([sample, repeated_last_channel], dim=1)
|
198 |
+
else:
|
199 |
+
raise ValueError(f"Invalid input shape: {sample.shape}")
|
200 |
+
|
201 |
+
return sample
|
202 |
+
|
203 |
+
|
204 |
+
class Decoder(nn.Module):
|
205 |
+
r"""
|
206 |
+
The `Decoder` layer of a variational autoencoder that decodes its latent representation into an output sample.
|
207 |
+
|
208 |
+
Args:
|
209 |
+
dims (`int` or `Tuple[int, int]`, *optional*, defaults to 3):
|
210 |
+
The number of dimensions to use in convolutions.
|
211 |
+
in_channels (`int`, *optional*, defaults to 3):
|
212 |
+
The number of input channels.
|
213 |
+
out_channels (`int`, *optional*, defaults to 3):
|
214 |
+
The number of output channels.
|
215 |
+
blocks (`List[Tuple[str, int]]`, *optional*, defaults to `[("res_x", 1)]`):
|
216 |
+
The blocks to use. Each block is a tuple of the block name and the number of layers.
|
217 |
+
base_channels (`int`, *optional*, defaults to 128):
|
218 |
+
The number of output channels for the first convolutional layer.
|
219 |
+
norm_num_groups (`int`, *optional*, defaults to 32):
|
220 |
+
The number of groups for normalization.
|
221 |
+
patch_size (`int`, *optional*, defaults to 1):
|
222 |
+
The patch size to use. Should be a power of 2.
|
223 |
+
norm_layer (`str`, *optional*, defaults to `group_norm`):
|
224 |
+
The normalization layer to use. Can be either `group_norm` or `pixel_norm`.
|
225 |
+
causal (`bool`, *optional*, defaults to `True`):
|
226 |
+
Whether to use causal convolutions or not.
|
227 |
+
"""
|
228 |
+
|
229 |
+
def __init__(
|
230 |
+
self,
|
231 |
+
dims,
|
232 |
+
in_channels: int = 3,
|
233 |
+
out_channels: int = 3,
|
234 |
+
blocks=[("res_x", 1)],
|
235 |
+
base_channels: int = 128,
|
236 |
+
layers_per_block: int = 2,
|
237 |
+
norm_num_groups: int = 32,
|
238 |
+
patch_size: int = 1,
|
239 |
+
norm_layer: str = "group_norm",
|
240 |
+
causal: bool = True,
|
241 |
+
timestep_conditioning: bool = False,
|
242 |
+
):
|
243 |
+
super().__init__()
|
244 |
+
self.patch_size = patch_size
|
245 |
+
self.layers_per_block = layers_per_block
|
246 |
+
out_channels = out_channels * patch_size**2
|
247 |
+
self.causal = causal
|
248 |
+
self.blocks_desc = blocks
|
249 |
+
|
250 |
+
# Compute output channel to be product of all channel-multiplier blocks
|
251 |
+
output_channel = base_channels
|
252 |
+
for block_name, block_params in list(reversed(blocks)):
|
253 |
+
block_params = block_params if isinstance(block_params, dict) else {}
|
254 |
+
if block_name == "res_x_y":
|
255 |
+
output_channel = output_channel * block_params.get("multiplier", 2)
|
256 |
+
if block_name == "compress_all":
|
257 |
+
output_channel = output_channel * block_params.get("multiplier", 1)
|
258 |
+
|
259 |
+
self.conv_in = make_conv_nd(
|
260 |
+
dims,
|
261 |
+
in_channels,
|
262 |
+
output_channel,
|
263 |
+
kernel_size=3,
|
264 |
+
stride=1,
|
265 |
+
padding=1,
|
266 |
+
causal=True,
|
267 |
+
)
|
268 |
+
|
269 |
+
self.up_blocks = nn.ModuleList([])
|
270 |
+
|
271 |
+
for block_name, block_params in list(reversed(blocks)):
|
272 |
+
input_channel = output_channel
|
273 |
+
if isinstance(block_params, int):
|
274 |
+
block_params = {"num_layers": block_params}
|
275 |
+
|
276 |
+
if block_name == "res_x":
|
277 |
+
block = UNetMidBlock3D(
|
278 |
+
dims=dims,
|
279 |
+
in_channels=input_channel,
|
280 |
+
num_layers=block_params["num_layers"],
|
281 |
+
resnet_eps=1e-6,
|
282 |
+
resnet_groups=norm_num_groups,
|
283 |
+
norm_layer=norm_layer,
|
284 |
+
inject_noise=block_params.get("inject_noise", False),
|
285 |
+
timestep_conditioning=timestep_conditioning,
|
286 |
+
)
|
287 |
+
elif block_name == "attn_res_x":
|
288 |
+
block = UNetMidBlock3D(
|
289 |
+
dims=dims,
|
290 |
+
in_channels=input_channel,
|
291 |
+
num_layers=block_params["num_layers"],
|
292 |
+
resnet_groups=norm_num_groups,
|
293 |
+
norm_layer=norm_layer,
|
294 |
+
inject_noise=block_params.get("inject_noise", False),
|
295 |
+
timestep_conditioning=timestep_conditioning,
|
296 |
+
attention_head_dim=block_params["attention_head_dim"],
|
297 |
+
)
|
298 |
+
elif block_name == "res_x_y":
|
299 |
+
output_channel = output_channel // block_params.get("multiplier", 2)
|
300 |
+
block = ResnetBlock3D(
|
301 |
+
dims=dims,
|
302 |
+
in_channels=input_channel,
|
303 |
+
out_channels=output_channel,
|
304 |
+
eps=1e-6,
|
305 |
+
groups=norm_num_groups,
|
306 |
+
norm_layer=norm_layer,
|
307 |
+
inject_noise=block_params.get("inject_noise", False),
|
308 |
+
timestep_conditioning=False,
|
309 |
+
)
|
310 |
+
elif block_name == "compress_time":
|
311 |
+
block = DepthToSpaceUpsample(
|
312 |
+
dims=dims, in_channels=input_channel, stride=(2, 1, 1)
|
313 |
+
)
|
314 |
+
elif block_name == "compress_space":
|
315 |
+
block = DepthToSpaceUpsample(
|
316 |
+
dims=dims, in_channels=input_channel, stride=(1, 2, 2)
|
317 |
+
)
|
318 |
+
elif block_name == "compress_all":
|
319 |
+
output_channel = output_channel // block_params.get("multiplier", 1)
|
320 |
+
block = DepthToSpaceUpsample(
|
321 |
+
dims=dims,
|
322 |
+
in_channels=input_channel,
|
323 |
+
stride=(2, 2, 2),
|
324 |
+
residual=block_params.get("residual", False),
|
325 |
+
out_channels_reduction_factor=block_params.get("multiplier", 1),
|
326 |
+
)
|
327 |
+
else:
|
328 |
+
raise ValueError(f"unknown layer: {block_name}")
|
329 |
+
|
330 |
+
self.up_blocks.append(block)
|
331 |
+
|
332 |
+
if norm_layer == "group_norm":
|
333 |
+
self.conv_norm_out = nn.GroupNorm(
|
334 |
+
num_channels=output_channel, num_groups=norm_num_groups, eps=1e-6
|
335 |
+
)
|
336 |
+
elif norm_layer == "pixel_norm":
|
337 |
+
self.conv_norm_out = PixelNorm()
|
338 |
+
elif norm_layer == "layer_norm":
|
339 |
+
self.conv_norm_out = LayerNorm(output_channel, eps=1e-6)
|
340 |
+
|
341 |
+
self.conv_act = nn.SiLU()
|
342 |
+
self.conv_out = make_conv_nd(
|
343 |
+
dims, output_channel, out_channels, 3, padding=1, causal=True
|
344 |
+
)
|
345 |
+
|
346 |
+
self.gradient_checkpointing = False
|
347 |
+
|
348 |
+
self.timestep_conditioning = timestep_conditioning
|
349 |
+
|
350 |
+
if timestep_conditioning:
|
351 |
+
self.timestep_scale_multiplier = nn.Parameter(
|
352 |
+
torch.tensor(1000.0, dtype=torch.float32)
|
353 |
+
)
|
354 |
+
self.last_time_embedder = PixArtAlphaCombinedTimestepSizeEmbeddings(
|
355 |
+
output_channel * 2, 0, operations=ops,
|
356 |
+
)
|
357 |
+
self.last_scale_shift_table = nn.Parameter(torch.empty(2, output_channel))
|
358 |
+
|
359 |
+
# def forward(self, sample: torch.FloatTensor, target_shape) -> torch.FloatTensor:
|
360 |
+
def forward(
|
361 |
+
self,
|
362 |
+
sample: torch.FloatTensor,
|
363 |
+
timestep: Optional[torch.Tensor] = None,
|
364 |
+
) -> torch.FloatTensor:
|
365 |
+
r"""The forward method of the `Decoder` class."""
|
366 |
+
batch_size = sample.shape[0]
|
367 |
+
|
368 |
+
sample = self.conv_in(sample, causal=self.causal)
|
369 |
+
|
370 |
+
checkpoint_fn = (
|
371 |
+
partial(torch.utils.checkpoint.checkpoint, use_reentrant=False)
|
372 |
+
if self.gradient_checkpointing and self.training
|
373 |
+
else lambda x: x
|
374 |
+
)
|
375 |
+
|
376 |
+
scaled_timestep = None
|
377 |
+
if self.timestep_conditioning:
|
378 |
+
assert (
|
379 |
+
timestep is not None
|
380 |
+
), "should pass timestep with timestep_conditioning=True"
|
381 |
+
scaled_timestep = timestep * self.timestep_scale_multiplier.to(dtype=sample.dtype, device=sample.device)
|
382 |
+
|
383 |
+
for up_block in self.up_blocks:
|
384 |
+
if self.timestep_conditioning and isinstance(up_block, UNetMidBlock3D):
|
385 |
+
sample = checkpoint_fn(up_block)(
|
386 |
+
sample, causal=self.causal, timestep=scaled_timestep
|
387 |
+
)
|
388 |
+
else:
|
389 |
+
sample = checkpoint_fn(up_block)(sample, causal=self.causal)
|
390 |
+
|
391 |
+
sample = self.conv_norm_out(sample)
|
392 |
+
|
393 |
+
if self.timestep_conditioning:
|
394 |
+
embedded_timestep = self.last_time_embedder(
|
395 |
+
timestep=scaled_timestep.flatten(),
|
396 |
+
resolution=None,
|
397 |
+
aspect_ratio=None,
|
398 |
+
batch_size=sample.shape[0],
|
399 |
+
hidden_dtype=sample.dtype,
|
400 |
+
)
|
401 |
+
embedded_timestep = embedded_timestep.view(
|
402 |
+
batch_size, embedded_timestep.shape[-1], 1, 1, 1
|
403 |
+
)
|
404 |
+
ada_values = self.last_scale_shift_table[
|
405 |
+
None, ..., None, None, None
|
406 |
+
].to(device=sample.device, dtype=sample.dtype) + embedded_timestep.reshape(
|
407 |
+
batch_size,
|
408 |
+
2,
|
409 |
+
-1,
|
410 |
+
embedded_timestep.shape[-3],
|
411 |
+
embedded_timestep.shape[-2],
|
412 |
+
embedded_timestep.shape[-1],
|
413 |
+
)
|
414 |
+
shift, scale = ada_values.unbind(dim=1)
|
415 |
+
sample = sample * (1 + scale) + shift
|
416 |
+
|
417 |
+
sample = self.conv_act(sample)
|
418 |
+
sample = self.conv_out(sample, causal=self.causal)
|
419 |
+
|
420 |
+
sample = unpatchify(sample, patch_size_hw=self.patch_size, patch_size_t=1)
|
421 |
+
|
422 |
+
return sample
|
423 |
+
|
424 |
+
|
425 |
+
class UNetMidBlock3D(nn.Module):
|
426 |
+
"""
|
427 |
+
A 3D UNet mid-block [`UNetMidBlock3D`] with multiple residual blocks.
|
428 |
+
|
429 |
+
Args:
|
430 |
+
in_channels (`int`): The number of input channels.
|
431 |
+
dropout (`float`, *optional*, defaults to 0.0): The dropout rate.
|
432 |
+
num_layers (`int`, *optional*, defaults to 1): The number of residual blocks.
|
433 |
+
resnet_eps (`float`, *optional*, 1e-6 ): The epsilon value for the resnet blocks.
|
434 |
+
resnet_groups (`int`, *optional*, defaults to 32):
|
435 |
+
The number of groups to use in the group normalization layers of the resnet blocks.
|
436 |
+
|
437 |
+
Returns:
|
438 |
+
`torch.FloatTensor`: The output of the last residual block, which is a tensor of shape `(batch_size,
|
439 |
+
in_channels, height, width)`.
|
440 |
+
|
441 |
+
"""
|
442 |
+
|
443 |
+
def __init__(
|
444 |
+
self,
|
445 |
+
dims: Union[int, Tuple[int, int]],
|
446 |
+
in_channels: int,
|
447 |
+
dropout: float = 0.0,
|
448 |
+
num_layers: int = 1,
|
449 |
+
resnet_eps: float = 1e-6,
|
450 |
+
resnet_groups: int = 32,
|
451 |
+
norm_layer: str = "group_norm",
|
452 |
+
inject_noise: bool = False,
|
453 |
+
timestep_conditioning: bool = False,
|
454 |
+
):
|
455 |
+
super().__init__()
|
456 |
+
resnet_groups = (
|
457 |
+
resnet_groups if resnet_groups is not None else min(in_channels // 4, 32)
|
458 |
+
)
|
459 |
+
|
460 |
+
self.timestep_conditioning = timestep_conditioning
|
461 |
+
|
462 |
+
if timestep_conditioning:
|
463 |
+
self.time_embedder = PixArtAlphaCombinedTimestepSizeEmbeddings(
|
464 |
+
in_channels * 4, 0, operations=ops,
|
465 |
+
)
|
466 |
+
|
467 |
+
self.res_blocks = nn.ModuleList(
|
468 |
+
[
|
469 |
+
ResnetBlock3D(
|
470 |
+
dims=dims,
|
471 |
+
in_channels=in_channels,
|
472 |
+
out_channels=in_channels,
|
473 |
+
eps=resnet_eps,
|
474 |
+
groups=resnet_groups,
|
475 |
+
dropout=dropout,
|
476 |
+
norm_layer=norm_layer,
|
477 |
+
inject_noise=inject_noise,
|
478 |
+
timestep_conditioning=timestep_conditioning,
|
479 |
+
)
|
480 |
+
for _ in range(num_layers)
|
481 |
+
]
|
482 |
+
)
|
483 |
+
|
484 |
+
def forward(
|
485 |
+
self, hidden_states: torch.FloatTensor, causal: bool = True, timestep: Optional[torch.Tensor] = None
|
486 |
+
) -> torch.FloatTensor:
|
487 |
+
timestep_embed = None
|
488 |
+
if self.timestep_conditioning:
|
489 |
+
assert (
|
490 |
+
timestep is not None
|
491 |
+
), "should pass timestep with timestep_conditioning=True"
|
492 |
+
batch_size = hidden_states.shape[0]
|
493 |
+
timestep_embed = self.time_embedder(
|
494 |
+
timestep=timestep.flatten(),
|
495 |
+
resolution=None,
|
496 |
+
aspect_ratio=None,
|
497 |
+
batch_size=batch_size,
|
498 |
+
hidden_dtype=hidden_states.dtype,
|
499 |
+
)
|
500 |
+
timestep_embed = timestep_embed.view(
|
501 |
+
batch_size, timestep_embed.shape[-1], 1, 1, 1
|
502 |
+
)
|
503 |
+
|
504 |
+
for resnet in self.res_blocks:
|
505 |
+
hidden_states = resnet(hidden_states, causal=causal, timestep=timestep_embed)
|
506 |
+
|
507 |
+
return hidden_states
|
508 |
+
|
509 |
+
|
510 |
+
class DepthToSpaceUpsample(nn.Module):
|
511 |
+
def __init__(
|
512 |
+
self, dims, in_channels, stride, residual=False, out_channels_reduction_factor=1
|
513 |
+
):
|
514 |
+
super().__init__()
|
515 |
+
self.stride = stride
|
516 |
+
self.out_channels = (
|
517 |
+
math.prod(stride) * in_channels // out_channels_reduction_factor
|
518 |
+
)
|
519 |
+
self.conv = make_conv_nd(
|
520 |
+
dims=dims,
|
521 |
+
in_channels=in_channels,
|
522 |
+
out_channels=self.out_channels,
|
523 |
+
kernel_size=3,
|
524 |
+
stride=1,
|
525 |
+
causal=True,
|
526 |
+
)
|
527 |
+
self.residual = residual
|
528 |
+
self.out_channels_reduction_factor = out_channels_reduction_factor
|
529 |
+
|
530 |
+
def forward(self, x, causal: bool = True, timestep: Optional[torch.Tensor] = None):
|
531 |
+
if self.residual:
|
532 |
+
# Reshape and duplicate the input to match the output shape
|
533 |
+
x_in = rearrange(
|
534 |
+
x,
|
535 |
+
"b (c p1 p2 p3) d h w -> b c (d p1) (h p2) (w p3)",
|
536 |
+
p1=self.stride[0],
|
537 |
+
p2=self.stride[1],
|
538 |
+
p3=self.stride[2],
|
539 |
+
)
|
540 |
+
num_repeat = math.prod(self.stride) // self.out_channels_reduction_factor
|
541 |
+
x_in = x_in.repeat(1, num_repeat, 1, 1, 1)
|
542 |
+
if self.stride[0] == 2:
|
543 |
+
x_in = x_in[:, :, 1:, :, :]
|
544 |
+
x = self.conv(x, causal=causal)
|
545 |
+
x = rearrange(
|
546 |
+
x,
|
547 |
+
"b (c p1 p2 p3) d h w -> b c (d p1) (h p2) (w p3)",
|
548 |
+
p1=self.stride[0],
|
549 |
+
p2=self.stride[1],
|
550 |
+
p3=self.stride[2],
|
551 |
+
)
|
552 |
+
if self.stride[0] == 2:
|
553 |
+
x = x[:, :, 1:, :, :]
|
554 |
+
if self.residual:
|
555 |
+
x = x + x_in
|
556 |
+
return x
|
557 |
+
|
558 |
+
class LayerNorm(nn.Module):
|
559 |
+
def __init__(self, dim, eps, elementwise_affine=True) -> None:
|
560 |
+
super().__init__()
|
561 |
+
self.norm = nn.LayerNorm(dim, eps=eps, elementwise_affine=elementwise_affine)
|
562 |
+
|
563 |
+
def forward(self, x):
|
564 |
+
x = rearrange(x, "b c d h w -> b d h w c")
|
565 |
+
x = self.norm(x)
|
566 |
+
x = rearrange(x, "b d h w c -> b c d h w")
|
567 |
+
return x
|
568 |
+
|
569 |
+
|
570 |
+
class ResnetBlock3D(nn.Module):
|
571 |
+
r"""
|
572 |
+
A Resnet block.
|
573 |
+
|
574 |
+
Parameters:
|
575 |
+
in_channels (`int`): The number of channels in the input.
|
576 |
+
out_channels (`int`, *optional*, default to be `None`):
|
577 |
+
The number of output channels for the first conv layer. If None, same as `in_channels`.
|
578 |
+
dropout (`float`, *optional*, defaults to `0.0`): The dropout probability to use.
|
579 |
+
groups (`int`, *optional*, default to `32`): The number of groups to use for the first normalization layer.
|
580 |
+
eps (`float`, *optional*, defaults to `1e-6`): The epsilon to use for the normalization.
|
581 |
+
"""
|
582 |
+
|
583 |
+
def __init__(
|
584 |
+
self,
|
585 |
+
dims: Union[int, Tuple[int, int]],
|
586 |
+
in_channels: int,
|
587 |
+
out_channels: Optional[int] = None,
|
588 |
+
dropout: float = 0.0,
|
589 |
+
groups: int = 32,
|
590 |
+
eps: float = 1e-6,
|
591 |
+
norm_layer: str = "group_norm",
|
592 |
+
inject_noise: bool = False,
|
593 |
+
timestep_conditioning: bool = False,
|
594 |
+
):
|
595 |
+
super().__init__()
|
596 |
+
self.in_channels = in_channels
|
597 |
+
out_channels = in_channels if out_channels is None else out_channels
|
598 |
+
self.out_channels = out_channels
|
599 |
+
self.inject_noise = inject_noise
|
600 |
+
|
601 |
+
if norm_layer == "group_norm":
|
602 |
+
self.norm1 = nn.GroupNorm(
|
603 |
+
num_groups=groups, num_channels=in_channels, eps=eps, affine=True
|
604 |
+
)
|
605 |
+
elif norm_layer == "pixel_norm":
|
606 |
+
self.norm1 = PixelNorm()
|
607 |
+
elif norm_layer == "layer_norm":
|
608 |
+
self.norm1 = LayerNorm(in_channels, eps=eps, elementwise_affine=True)
|
609 |
+
|
610 |
+
self.non_linearity = nn.SiLU()
|
611 |
+
|
612 |
+
self.conv1 = make_conv_nd(
|
613 |
+
dims,
|
614 |
+
in_channels,
|
615 |
+
out_channels,
|
616 |
+
kernel_size=3,
|
617 |
+
stride=1,
|
618 |
+
padding=1,
|
619 |
+
causal=True,
|
620 |
+
)
|
621 |
+
|
622 |
+
if inject_noise:
|
623 |
+
self.per_channel_scale1 = nn.Parameter(torch.zeros((in_channels, 1, 1)))
|
624 |
+
|
625 |
+
if norm_layer == "group_norm":
|
626 |
+
self.norm2 = nn.GroupNorm(
|
627 |
+
num_groups=groups, num_channels=out_channels, eps=eps, affine=True
|
628 |
+
)
|
629 |
+
elif norm_layer == "pixel_norm":
|
630 |
+
self.norm2 = PixelNorm()
|
631 |
+
elif norm_layer == "layer_norm":
|
632 |
+
self.norm2 = LayerNorm(out_channels, eps=eps, elementwise_affine=True)
|
633 |
+
|
634 |
+
self.dropout = torch.nn.Dropout(dropout)
|
635 |
+
|
636 |
+
self.conv2 = make_conv_nd(
|
637 |
+
dims,
|
638 |
+
out_channels,
|
639 |
+
out_channels,
|
640 |
+
kernel_size=3,
|
641 |
+
stride=1,
|
642 |
+
padding=1,
|
643 |
+
causal=True,
|
644 |
+
)
|
645 |
+
|
646 |
+
if inject_noise:
|
647 |
+
self.per_channel_scale2 = nn.Parameter(torch.zeros((in_channels, 1, 1)))
|
648 |
+
|
649 |
+
self.conv_shortcut = (
|
650 |
+
make_linear_nd(
|
651 |
+
dims=dims, in_channels=in_channels, out_channels=out_channels
|
652 |
+
)
|
653 |
+
if in_channels != out_channels
|
654 |
+
else nn.Identity()
|
655 |
+
)
|
656 |
+
|
657 |
+
self.norm3 = (
|
658 |
+
LayerNorm(in_channels, eps=eps, elementwise_affine=True)
|
659 |
+
if in_channels != out_channels
|
660 |
+
else nn.Identity()
|
661 |
+
)
|
662 |
+
|
663 |
+
self.timestep_conditioning = timestep_conditioning
|
664 |
+
|
665 |
+
if timestep_conditioning:
|
666 |
+
self.scale_shift_table = nn.Parameter(
|
667 |
+
torch.randn(4, in_channels) / in_channels**0.5
|
668 |
+
)
|
669 |
+
|
670 |
+
def _feed_spatial_noise(
|
671 |
+
self, hidden_states: torch.FloatTensor, per_channel_scale: torch.FloatTensor
|
672 |
+
) -> torch.FloatTensor:
|
673 |
+
spatial_shape = hidden_states.shape[-2:]
|
674 |
+
device = hidden_states.device
|
675 |
+
dtype = hidden_states.dtype
|
676 |
+
|
677 |
+
# similar to the "explicit noise inputs" method in style-gan
|
678 |
+
spatial_noise = torch.randn(spatial_shape, device=device, dtype=dtype)[None]
|
679 |
+
scaled_noise = (spatial_noise * per_channel_scale)[None, :, None, ...]
|
680 |
+
hidden_states = hidden_states + scaled_noise
|
681 |
+
|
682 |
+
return hidden_states
|
683 |
+
|
684 |
+
def forward(
|
685 |
+
self,
|
686 |
+
input_tensor: torch.FloatTensor,
|
687 |
+
causal: bool = True,
|
688 |
+
timestep: Optional[torch.Tensor] = None,
|
689 |
+
) -> torch.FloatTensor:
|
690 |
+
hidden_states = input_tensor
|
691 |
+
batch_size = hidden_states.shape[0]
|
692 |
+
|
693 |
+
hidden_states = self.norm1(hidden_states)
|
694 |
+
if self.timestep_conditioning:
|
695 |
+
assert (
|
696 |
+
timestep is not None
|
697 |
+
), "should pass timestep with timestep_conditioning=True"
|
698 |
+
ada_values = self.scale_shift_table[
|
699 |
+
None, ..., None, None, None
|
700 |
+
].to(device=hidden_states.device, dtype=hidden_states.dtype) + timestep.reshape(
|
701 |
+
batch_size,
|
702 |
+
4,
|
703 |
+
-1,
|
704 |
+
timestep.shape[-3],
|
705 |
+
timestep.shape[-2],
|
706 |
+
timestep.shape[-1],
|
707 |
+
)
|
708 |
+
shift1, scale1, shift2, scale2 = ada_values.unbind(dim=1)
|
709 |
+
|
710 |
+
hidden_states = hidden_states * (1 + scale1) + shift1
|
711 |
+
|
712 |
+
hidden_states = self.non_linearity(hidden_states)
|
713 |
+
|
714 |
+
hidden_states = self.conv1(hidden_states, causal=causal)
|
715 |
+
|
716 |
+
if self.inject_noise:
|
717 |
+
hidden_states = self._feed_spatial_noise(
|
718 |
+
hidden_states, self.per_channel_scale1.to(device=hidden_states.device, dtype=hidden_states.dtype)
|
719 |
+
)
|
720 |
+
|
721 |
+
hidden_states = self.norm2(hidden_states)
|
722 |
+
|
723 |
+
if self.timestep_conditioning:
|
724 |
+
hidden_states = hidden_states * (1 + scale2) + shift2
|
725 |
+
|
726 |
+
hidden_states = self.non_linearity(hidden_states)
|
727 |
+
|
728 |
+
hidden_states = self.dropout(hidden_states)
|
729 |
+
|
730 |
+
hidden_states = self.conv2(hidden_states, causal=causal)
|
731 |
+
|
732 |
+
if self.inject_noise:
|
733 |
+
hidden_states = self._feed_spatial_noise(
|
734 |
+
hidden_states, self.per_channel_scale2.to(device=hidden_states.device, dtype=hidden_states.dtype)
|
735 |
+
)
|
736 |
+
|
737 |
+
input_tensor = self.norm3(input_tensor)
|
738 |
+
|
739 |
+
batch_size = input_tensor.shape[0]
|
740 |
+
|
741 |
+
input_tensor = self.conv_shortcut(input_tensor)
|
742 |
+
|
743 |
+
output_tensor = input_tensor + hidden_states
|
744 |
+
|
745 |
+
return output_tensor
|
746 |
+
|
747 |
+
|
748 |
+
def patchify(x, patch_size_hw, patch_size_t=1):
|
749 |
+
if patch_size_hw == 1 and patch_size_t == 1:
|
750 |
+
return x
|
751 |
+
if x.dim() == 4:
|
752 |
+
x = rearrange(
|
753 |
+
x, "b c (h q) (w r) -> b (c r q) h w", q=patch_size_hw, r=patch_size_hw
|
754 |
+
)
|
755 |
+
elif x.dim() == 5:
|
756 |
+
x = rearrange(
|
757 |
+
x,
|
758 |
+
"b c (f p) (h q) (w r) -> b (c p r q) f h w",
|
759 |
+
p=patch_size_t,
|
760 |
+
q=patch_size_hw,
|
761 |
+
r=patch_size_hw,
|
762 |
+
)
|
763 |
+
else:
|
764 |
+
raise ValueError(f"Invalid input shape: {x.shape}")
|
765 |
+
|
766 |
+
return x
|
767 |
+
|
768 |
+
|
769 |
+
def unpatchify(x, patch_size_hw, patch_size_t=1):
|
770 |
+
if patch_size_hw == 1 and patch_size_t == 1:
|
771 |
+
return x
|
772 |
+
|
773 |
+
if x.dim() == 4:
|
774 |
+
x = rearrange(
|
775 |
+
x, "b (c r q) h w -> b c (h q) (w r)", q=patch_size_hw, r=patch_size_hw
|
776 |
+
)
|
777 |
+
elif x.dim() == 5:
|
778 |
+
x = rearrange(
|
779 |
+
x,
|
780 |
+
"b (c p r q) f h w -> b c (f p) (h q) (w r)",
|
781 |
+
p=patch_size_t,
|
782 |
+
q=patch_size_hw,
|
783 |
+
r=patch_size_hw,
|
784 |
+
)
|
785 |
+
|
786 |
+
return x
|
787 |
+
|
788 |
+
class processor(nn.Module):
|
789 |
+
def __init__(self):
|
790 |
+
super().__init__()
|
791 |
+
self.register_buffer("std-of-means", torch.empty(128))
|
792 |
+
self.register_buffer("mean-of-means", torch.empty(128))
|
793 |
+
self.register_buffer("mean-of-stds", torch.empty(128))
|
794 |
+
self.register_buffer("mean-of-stds_over_std-of-means", torch.empty(128))
|
795 |
+
self.register_buffer("channel", torch.empty(128))
|
796 |
+
|
797 |
+
def un_normalize(self, x):
|
798 |
+
return (x * self.get_buffer("std-of-means").view(1, -1, 1, 1, 1).to(x)) + self.get_buffer("mean-of-means").view(1, -1, 1, 1, 1).to(x)
|
799 |
+
|
800 |
+
def normalize(self, x):
|
801 |
+
return (x - self.get_buffer("mean-of-means").view(1, -1, 1, 1, 1).to(x)) / self.get_buffer("std-of-means").view(1, -1, 1, 1, 1).to(x)
|
802 |
+
|
803 |
+
class VideoVAE(nn.Module):
|
804 |
+
def __init__(self, version=0):
|
805 |
+
super().__init__()
|
806 |
+
|
807 |
+
if version == 0:
|
808 |
+
config = {
|
809 |
+
"_class_name": "CausalVideoAutoencoder",
|
810 |
+
"dims": 3,
|
811 |
+
"in_channels": 3,
|
812 |
+
"out_channels": 3,
|
813 |
+
"latent_channels": 128,
|
814 |
+
"blocks": [
|
815 |
+
["res_x", 4],
|
816 |
+
["compress_all", 1],
|
817 |
+
["res_x_y", 1],
|
818 |
+
["res_x", 3],
|
819 |
+
["compress_all", 1],
|
820 |
+
["res_x_y", 1],
|
821 |
+
["res_x", 3],
|
822 |
+
["compress_all", 1],
|
823 |
+
["res_x", 3],
|
824 |
+
["res_x", 4],
|
825 |
+
],
|
826 |
+
"scaling_factor": 1.0,
|
827 |
+
"norm_layer": "pixel_norm",
|
828 |
+
"patch_size": 4,
|
829 |
+
"latent_log_var": "uniform",
|
830 |
+
"use_quant_conv": False,
|
831 |
+
"causal_decoder": False,
|
832 |
+
}
|
833 |
+
else:
|
834 |
+
config = {
|
835 |
+
"_class_name": "CausalVideoAutoencoder",
|
836 |
+
"dims": 3,
|
837 |
+
"in_channels": 3,
|
838 |
+
"out_channels": 3,
|
839 |
+
"latent_channels": 128,
|
840 |
+
"decoder_blocks": [
|
841 |
+
["res_x", {"num_layers": 5, "inject_noise": True}],
|
842 |
+
["compress_all", {"residual": True, "multiplier": 2}],
|
843 |
+
["res_x", {"num_layers": 6, "inject_noise": True}],
|
844 |
+
["compress_all", {"residual": True, "multiplier": 2}],
|
845 |
+
["res_x", {"num_layers": 7, "inject_noise": True}],
|
846 |
+
["compress_all", {"residual": True, "multiplier": 2}],
|
847 |
+
["res_x", {"num_layers": 8, "inject_noise": False}]
|
848 |
+
],
|
849 |
+
"encoder_blocks": [
|
850 |
+
["res_x", {"num_layers": 4}],
|
851 |
+
["compress_all", {}],
|
852 |
+
["res_x_y", 1],
|
853 |
+
["res_x", {"num_layers": 3}],
|
854 |
+
["compress_all", {}],
|
855 |
+
["res_x_y", 1],
|
856 |
+
["res_x", {"num_layers": 3}],
|
857 |
+
["compress_all", {}],
|
858 |
+
["res_x", {"num_layers": 3}],
|
859 |
+
["res_x", {"num_layers": 4}]
|
860 |
+
],
|
861 |
+
"scaling_factor": 1.0,
|
862 |
+
"norm_layer": "pixel_norm",
|
863 |
+
"patch_size": 4,
|
864 |
+
"latent_log_var": "uniform",
|
865 |
+
"use_quant_conv": False,
|
866 |
+
"causal_decoder": False,
|
867 |
+
"timestep_conditioning": True,
|
868 |
+
}
|
869 |
+
|
870 |
+
double_z = config.get("double_z", True)
|
871 |
+
latent_log_var = config.get(
|
872 |
+
"latent_log_var", "per_channel" if double_z else "none"
|
873 |
+
)
|
874 |
+
|
875 |
+
self.encoder = Encoder(
|
876 |
+
dims=config["dims"],
|
877 |
+
in_channels=config.get("in_channels", 3),
|
878 |
+
out_channels=config["latent_channels"],
|
879 |
+
blocks=config.get("encoder_blocks", config.get("encoder_blocks", config.get("blocks"))),
|
880 |
+
patch_size=config.get("patch_size", 1),
|
881 |
+
latent_log_var=latent_log_var,
|
882 |
+
norm_layer=config.get("norm_layer", "group_norm"),
|
883 |
+
)
|
884 |
+
|
885 |
+
self.decoder = Decoder(
|
886 |
+
dims=config["dims"],
|
887 |
+
in_channels=config["latent_channels"],
|
888 |
+
out_channels=config.get("out_channels", 3),
|
889 |
+
blocks=config.get("decoder_blocks", config.get("decoder_blocks", config.get("blocks"))),
|
890 |
+
patch_size=config.get("patch_size", 1),
|
891 |
+
norm_layer=config.get("norm_layer", "group_norm"),
|
892 |
+
causal=config.get("causal_decoder", False),
|
893 |
+
timestep_conditioning=config.get("timestep_conditioning", False),
|
894 |
+
)
|
895 |
+
|
896 |
+
self.timestep_conditioning = config.get("timestep_conditioning", False)
|
897 |
+
self.per_channel_statistics = processor()
|
898 |
+
|
899 |
+
def encode(self, x):
|
900 |
+
means, logvar = torch.chunk(self.encoder(x), 2, dim=1)
|
901 |
+
return self.per_channel_statistics.normalize(means)
|
902 |
+
|
903 |
+
def decode(self, x, timestep=0.05, noise_scale=0.025):
|
904 |
+
if self.timestep_conditioning: #TODO: seed
|
905 |
+
x = torch.randn_like(x) * noise_scale + (1.0 - noise_scale) * x
|
906 |
+
return self.decoder(self.per_channel_statistics.un_normalize(x), timestep=timestep)
|
907 |
+
|
vae/conv_nd_factory.py
ADDED
@@ -0,0 +1,82 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Tuple, Union
|
2 |
+
|
3 |
+
|
4 |
+
from .dual_conv3d import DualConv3d
|
5 |
+
from .causal_conv3d import CausalConv3d
|
6 |
+
import comfy.ops
|
7 |
+
ops = comfy.ops.disable_weight_init
|
8 |
+
|
9 |
+
def make_conv_nd(
|
10 |
+
dims: Union[int, Tuple[int, int]],
|
11 |
+
in_channels: int,
|
12 |
+
out_channels: int,
|
13 |
+
kernel_size: int,
|
14 |
+
stride=1,
|
15 |
+
padding=0,
|
16 |
+
dilation=1,
|
17 |
+
groups=1,
|
18 |
+
bias=True,
|
19 |
+
causal=False,
|
20 |
+
):
|
21 |
+
if dims == 2:
|
22 |
+
return ops.Conv2d(
|
23 |
+
in_channels=in_channels,
|
24 |
+
out_channels=out_channels,
|
25 |
+
kernel_size=kernel_size,
|
26 |
+
stride=stride,
|
27 |
+
padding=padding,
|
28 |
+
dilation=dilation,
|
29 |
+
groups=groups,
|
30 |
+
bias=bias,
|
31 |
+
)
|
32 |
+
elif dims == 3:
|
33 |
+
if causal:
|
34 |
+
return CausalConv3d(
|
35 |
+
in_channels=in_channels,
|
36 |
+
out_channels=out_channels,
|
37 |
+
kernel_size=kernel_size,
|
38 |
+
stride=stride,
|
39 |
+
padding=padding,
|
40 |
+
dilation=dilation,
|
41 |
+
groups=groups,
|
42 |
+
bias=bias,
|
43 |
+
)
|
44 |
+
return ops.Conv3d(
|
45 |
+
in_channels=in_channels,
|
46 |
+
out_channels=out_channels,
|
47 |
+
kernel_size=kernel_size,
|
48 |
+
stride=stride,
|
49 |
+
padding=padding,
|
50 |
+
dilation=dilation,
|
51 |
+
groups=groups,
|
52 |
+
bias=bias,
|
53 |
+
)
|
54 |
+
elif dims == (2, 1):
|
55 |
+
return DualConv3d(
|
56 |
+
in_channels=in_channels,
|
57 |
+
out_channels=out_channels,
|
58 |
+
kernel_size=kernel_size,
|
59 |
+
stride=stride,
|
60 |
+
padding=padding,
|
61 |
+
bias=bias,
|
62 |
+
)
|
63 |
+
else:
|
64 |
+
raise ValueError(f"unsupported dimensions: {dims}")
|
65 |
+
|
66 |
+
|
67 |
+
def make_linear_nd(
|
68 |
+
dims: int,
|
69 |
+
in_channels: int,
|
70 |
+
out_channels: int,
|
71 |
+
bias=True,
|
72 |
+
):
|
73 |
+
if dims == 2:
|
74 |
+
return ops.Conv2d(
|
75 |
+
in_channels=in_channels, out_channels=out_channels, kernel_size=1, bias=bias
|
76 |
+
)
|
77 |
+
elif dims == 3 or dims == (2, 1):
|
78 |
+
return ops.Conv3d(
|
79 |
+
in_channels=in_channels, out_channels=out_channels, kernel_size=1, bias=bias
|
80 |
+
)
|
81 |
+
else:
|
82 |
+
raise ValueError(f"unsupported dimensions: {dims}")
|
vae/dual_conv3d.py
ADDED
@@ -0,0 +1,195 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
from typing import Tuple, Union
|
3 |
+
|
4 |
+
import torch
|
5 |
+
import torch.nn as nn
|
6 |
+
import torch.nn.functional as F
|
7 |
+
from einops import rearrange
|
8 |
+
|
9 |
+
|
10 |
+
class DualConv3d(nn.Module):
|
11 |
+
def __init__(
|
12 |
+
self,
|
13 |
+
in_channels,
|
14 |
+
out_channels,
|
15 |
+
kernel_size,
|
16 |
+
stride: Union[int, Tuple[int, int, int]] = 1,
|
17 |
+
padding: Union[int, Tuple[int, int, int]] = 0,
|
18 |
+
dilation: Union[int, Tuple[int, int, int]] = 1,
|
19 |
+
groups=1,
|
20 |
+
bias=True,
|
21 |
+
):
|
22 |
+
super(DualConv3d, self).__init__()
|
23 |
+
|
24 |
+
self.in_channels = in_channels
|
25 |
+
self.out_channels = out_channels
|
26 |
+
# Ensure kernel_size, stride, padding, and dilation are tuples of length 3
|
27 |
+
if isinstance(kernel_size, int):
|
28 |
+
kernel_size = (kernel_size, kernel_size, kernel_size)
|
29 |
+
if kernel_size == (1, 1, 1):
|
30 |
+
raise ValueError(
|
31 |
+
"kernel_size must be greater than 1. Use make_linear_nd instead."
|
32 |
+
)
|
33 |
+
if isinstance(stride, int):
|
34 |
+
stride = (stride, stride, stride)
|
35 |
+
if isinstance(padding, int):
|
36 |
+
padding = (padding, padding, padding)
|
37 |
+
if isinstance(dilation, int):
|
38 |
+
dilation = (dilation, dilation, dilation)
|
39 |
+
|
40 |
+
# Set parameters for convolutions
|
41 |
+
self.groups = groups
|
42 |
+
self.bias = bias
|
43 |
+
|
44 |
+
# Define the size of the channels after the first convolution
|
45 |
+
intermediate_channels = (
|
46 |
+
out_channels if in_channels < out_channels else in_channels
|
47 |
+
)
|
48 |
+
|
49 |
+
# Define parameters for the first convolution
|
50 |
+
self.weight1 = nn.Parameter(
|
51 |
+
torch.Tensor(
|
52 |
+
intermediate_channels,
|
53 |
+
in_channels // groups,
|
54 |
+
1,
|
55 |
+
kernel_size[1],
|
56 |
+
kernel_size[2],
|
57 |
+
)
|
58 |
+
)
|
59 |
+
self.stride1 = (1, stride[1], stride[2])
|
60 |
+
self.padding1 = (0, padding[1], padding[2])
|
61 |
+
self.dilation1 = (1, dilation[1], dilation[2])
|
62 |
+
if bias:
|
63 |
+
self.bias1 = nn.Parameter(torch.Tensor(intermediate_channels))
|
64 |
+
else:
|
65 |
+
self.register_parameter("bias1", None)
|
66 |
+
|
67 |
+
# Define parameters for the second convolution
|
68 |
+
self.weight2 = nn.Parameter(
|
69 |
+
torch.Tensor(
|
70 |
+
out_channels, intermediate_channels // groups, kernel_size[0], 1, 1
|
71 |
+
)
|
72 |
+
)
|
73 |
+
self.stride2 = (stride[0], 1, 1)
|
74 |
+
self.padding2 = (padding[0], 0, 0)
|
75 |
+
self.dilation2 = (dilation[0], 1, 1)
|
76 |
+
if bias:
|
77 |
+
self.bias2 = nn.Parameter(torch.Tensor(out_channels))
|
78 |
+
else:
|
79 |
+
self.register_parameter("bias2", None)
|
80 |
+
|
81 |
+
# Initialize weights and biases
|
82 |
+
self.reset_parameters()
|
83 |
+
|
84 |
+
def reset_parameters(self):
|
85 |
+
nn.init.kaiming_uniform_(self.weight1, a=math.sqrt(5))
|
86 |
+
nn.init.kaiming_uniform_(self.weight2, a=math.sqrt(5))
|
87 |
+
if self.bias:
|
88 |
+
fan_in1, _ = nn.init._calculate_fan_in_and_fan_out(self.weight1)
|
89 |
+
bound1 = 1 / math.sqrt(fan_in1)
|
90 |
+
nn.init.uniform_(self.bias1, -bound1, bound1)
|
91 |
+
fan_in2, _ = nn.init._calculate_fan_in_and_fan_out(self.weight2)
|
92 |
+
bound2 = 1 / math.sqrt(fan_in2)
|
93 |
+
nn.init.uniform_(self.bias2, -bound2, bound2)
|
94 |
+
|
95 |
+
def forward(self, x, use_conv3d=False, skip_time_conv=False):
|
96 |
+
if use_conv3d:
|
97 |
+
return self.forward_with_3d(x=x, skip_time_conv=skip_time_conv)
|
98 |
+
else:
|
99 |
+
return self.forward_with_2d(x=x, skip_time_conv=skip_time_conv)
|
100 |
+
|
101 |
+
def forward_with_3d(self, x, skip_time_conv):
|
102 |
+
# First convolution
|
103 |
+
x = F.conv3d(
|
104 |
+
x,
|
105 |
+
self.weight1,
|
106 |
+
self.bias1,
|
107 |
+
self.stride1,
|
108 |
+
self.padding1,
|
109 |
+
self.dilation1,
|
110 |
+
self.groups,
|
111 |
+
)
|
112 |
+
|
113 |
+
if skip_time_conv:
|
114 |
+
return x
|
115 |
+
|
116 |
+
# Second convolution
|
117 |
+
x = F.conv3d(
|
118 |
+
x,
|
119 |
+
self.weight2,
|
120 |
+
self.bias2,
|
121 |
+
self.stride2,
|
122 |
+
self.padding2,
|
123 |
+
self.dilation2,
|
124 |
+
self.groups,
|
125 |
+
)
|
126 |
+
|
127 |
+
return x
|
128 |
+
|
129 |
+
def forward_with_2d(self, x, skip_time_conv):
|
130 |
+
b, c, d, h, w = x.shape
|
131 |
+
|
132 |
+
# First 2D convolution
|
133 |
+
x = rearrange(x, "b c d h w -> (b d) c h w")
|
134 |
+
# Squeeze the depth dimension out of weight1 since it's 1
|
135 |
+
weight1 = self.weight1.squeeze(2)
|
136 |
+
# Select stride, padding, and dilation for the 2D convolution
|
137 |
+
stride1 = (self.stride1[1], self.stride1[2])
|
138 |
+
padding1 = (self.padding1[1], self.padding1[2])
|
139 |
+
dilation1 = (self.dilation1[1], self.dilation1[2])
|
140 |
+
x = F.conv2d(x, weight1, self.bias1, stride1, padding1, dilation1, self.groups)
|
141 |
+
|
142 |
+
_, _, h, w = x.shape
|
143 |
+
|
144 |
+
if skip_time_conv:
|
145 |
+
x = rearrange(x, "(b d) c h w -> b c d h w", b=b)
|
146 |
+
return x
|
147 |
+
|
148 |
+
# Second convolution which is essentially treated as a 1D convolution across the 'd' dimension
|
149 |
+
x = rearrange(x, "(b d) c h w -> (b h w) c d", b=b)
|
150 |
+
|
151 |
+
# Reshape weight2 to match the expected dimensions for conv1d
|
152 |
+
weight2 = self.weight2.squeeze(-1).squeeze(-1)
|
153 |
+
# Use only the relevant dimension for stride, padding, and dilation for the 1D convolution
|
154 |
+
stride2 = self.stride2[0]
|
155 |
+
padding2 = self.padding2[0]
|
156 |
+
dilation2 = self.dilation2[0]
|
157 |
+
x = F.conv1d(x, weight2, self.bias2, stride2, padding2, dilation2, self.groups)
|
158 |
+
x = rearrange(x, "(b h w) c d -> b c d h w", b=b, h=h, w=w)
|
159 |
+
|
160 |
+
return x
|
161 |
+
|
162 |
+
@property
|
163 |
+
def weight(self):
|
164 |
+
return self.weight2
|
165 |
+
|
166 |
+
|
167 |
+
def test_dual_conv3d_consistency():
|
168 |
+
# Initialize parameters
|
169 |
+
in_channels = 3
|
170 |
+
out_channels = 5
|
171 |
+
kernel_size = (3, 3, 3)
|
172 |
+
stride = (2, 2, 2)
|
173 |
+
padding = (1, 1, 1)
|
174 |
+
|
175 |
+
# Create an instance of the DualConv3d class
|
176 |
+
dual_conv3d = DualConv3d(
|
177 |
+
in_channels=in_channels,
|
178 |
+
out_channels=out_channels,
|
179 |
+
kernel_size=kernel_size,
|
180 |
+
stride=stride,
|
181 |
+
padding=padding,
|
182 |
+
bias=True,
|
183 |
+
)
|
184 |
+
|
185 |
+
# Example input tensor
|
186 |
+
test_input = torch.randn(1, 3, 10, 10, 10)
|
187 |
+
|
188 |
+
# Perform forward passes with both 3D and 2D settings
|
189 |
+
output_conv3d = dual_conv3d(test_input, use_conv3d=True)
|
190 |
+
output_2d = dual_conv3d(test_input, use_conv3d=False)
|
191 |
+
|
192 |
+
# Assert that the outputs from both methods are sufficiently close
|
193 |
+
assert torch.allclose(
|
194 |
+
output_conv3d, output_2d, atol=1e-6
|
195 |
+
), "Outputs are not consistent between 3D and 2D convolutions."
|
vae/model.py
ADDED
@@ -0,0 +1,711 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#original code from https://github.com/genmoai/models under apache 2.0 license
|
2 |
+
#adapted to ComfyUI
|
3 |
+
|
4 |
+
from typing import List, Optional, Tuple, Union
|
5 |
+
from functools import partial
|
6 |
+
import math
|
7 |
+
|
8 |
+
import torch
|
9 |
+
import torch.nn as nn
|
10 |
+
import torch.nn.functional as F
|
11 |
+
from einops import rearrange
|
12 |
+
|
13 |
+
from comfy.ldm.modules.attention import optimized_attention
|
14 |
+
|
15 |
+
import comfy.ops
|
16 |
+
ops = comfy.ops.disable_weight_init
|
17 |
+
|
18 |
+
# import mochi_preview.dit.joint_model.context_parallel as cp
|
19 |
+
# from mochi_preview.vae.cp_conv import cp_pass_frames, gather_all_frames
|
20 |
+
|
21 |
+
|
22 |
+
def cast_tuple(t, length=1):
|
23 |
+
return t if isinstance(t, tuple) else ((t,) * length)
|
24 |
+
|
25 |
+
|
26 |
+
class GroupNormSpatial(ops.GroupNorm):
|
27 |
+
"""
|
28 |
+
GroupNorm applied per-frame.
|
29 |
+
"""
|
30 |
+
|
31 |
+
def forward(self, x: torch.Tensor, *, chunk_size: int = 8):
|
32 |
+
B, C, T, H, W = x.shape
|
33 |
+
x = rearrange(x, "B C T H W -> (B T) C H W")
|
34 |
+
# Run group norm in chunks.
|
35 |
+
output = torch.empty_like(x)
|
36 |
+
for b in range(0, B * T, chunk_size):
|
37 |
+
output[b : b + chunk_size] = super().forward(x[b : b + chunk_size])
|
38 |
+
return rearrange(output, "(B T) C H W -> B C T H W", B=B, T=T)
|
39 |
+
|
40 |
+
class PConv3d(ops.Conv3d):
|
41 |
+
def __init__(
|
42 |
+
self,
|
43 |
+
in_channels,
|
44 |
+
out_channels,
|
45 |
+
kernel_size: Union[int, Tuple[int, int, int]],
|
46 |
+
stride: Union[int, Tuple[int, int, int]],
|
47 |
+
causal: bool = True,
|
48 |
+
context_parallel: bool = True,
|
49 |
+
**kwargs,
|
50 |
+
):
|
51 |
+
self.causal = causal
|
52 |
+
self.context_parallel = context_parallel
|
53 |
+
kernel_size = cast_tuple(kernel_size, 3)
|
54 |
+
stride = cast_tuple(stride, 3)
|
55 |
+
height_pad = (kernel_size[1] - 1) // 2
|
56 |
+
width_pad = (kernel_size[2] - 1) // 2
|
57 |
+
|
58 |
+
super().__init__(
|
59 |
+
in_channels=in_channels,
|
60 |
+
out_channels=out_channels,
|
61 |
+
kernel_size=kernel_size,
|
62 |
+
stride=stride,
|
63 |
+
dilation=(1, 1, 1),
|
64 |
+
padding=(0, height_pad, width_pad),
|
65 |
+
**kwargs,
|
66 |
+
)
|
67 |
+
|
68 |
+
def forward(self, x: torch.Tensor):
|
69 |
+
# Compute padding amounts.
|
70 |
+
context_size = self.kernel_size[0] - 1
|
71 |
+
if self.causal:
|
72 |
+
pad_front = context_size
|
73 |
+
pad_back = 0
|
74 |
+
else:
|
75 |
+
pad_front = context_size // 2
|
76 |
+
pad_back = context_size - pad_front
|
77 |
+
|
78 |
+
# Apply padding.
|
79 |
+
assert self.padding_mode == "replicate" # DEBUG
|
80 |
+
mode = "constant" if self.padding_mode == "zeros" else self.padding_mode
|
81 |
+
x = F.pad(x, (0, 0, 0, 0, pad_front, pad_back), mode=mode)
|
82 |
+
return super().forward(x)
|
83 |
+
|
84 |
+
|
85 |
+
class Conv1x1(ops.Linear):
|
86 |
+
"""*1x1 Conv implemented with a linear layer."""
|
87 |
+
|
88 |
+
def __init__(self, in_features: int, out_features: int, *args, **kwargs):
|
89 |
+
super().__init__(in_features, out_features, *args, **kwargs)
|
90 |
+
|
91 |
+
def forward(self, x: torch.Tensor):
|
92 |
+
"""Forward pass.
|
93 |
+
|
94 |
+
Args:
|
95 |
+
x: Input tensor. Shape: [B, C, *] or [B, *, C].
|
96 |
+
|
97 |
+
Returns:
|
98 |
+
x: Output tensor. Shape: [B, C', *] or [B, *, C'].
|
99 |
+
"""
|
100 |
+
x = x.movedim(1, -1)
|
101 |
+
x = super().forward(x)
|
102 |
+
x = x.movedim(-1, 1)
|
103 |
+
return x
|
104 |
+
|
105 |
+
|
106 |
+
class DepthToSpaceTime(nn.Module):
|
107 |
+
def __init__(
|
108 |
+
self,
|
109 |
+
temporal_expansion: int,
|
110 |
+
spatial_expansion: int,
|
111 |
+
):
|
112 |
+
super().__init__()
|
113 |
+
self.temporal_expansion = temporal_expansion
|
114 |
+
self.spatial_expansion = spatial_expansion
|
115 |
+
|
116 |
+
# When printed, this module should show the temporal and spatial expansion factors.
|
117 |
+
def extra_repr(self):
|
118 |
+
return f"texp={self.temporal_expansion}, sexp={self.spatial_expansion}"
|
119 |
+
|
120 |
+
def forward(self, x: torch.Tensor):
|
121 |
+
"""Forward pass.
|
122 |
+
|
123 |
+
Args:
|
124 |
+
x: Input tensor. Shape: [B, C, T, H, W].
|
125 |
+
|
126 |
+
Returns:
|
127 |
+
x: Rearranged tensor. Shape: [B, C/(st*s*s), T*st, H*s, W*s].
|
128 |
+
"""
|
129 |
+
x = rearrange(
|
130 |
+
x,
|
131 |
+
"B (C st sh sw) T H W -> B C (T st) (H sh) (W sw)",
|
132 |
+
st=self.temporal_expansion,
|
133 |
+
sh=self.spatial_expansion,
|
134 |
+
sw=self.spatial_expansion,
|
135 |
+
)
|
136 |
+
|
137 |
+
# cp_rank, _ = cp.get_cp_rank_size()
|
138 |
+
if self.temporal_expansion > 1: # and cp_rank == 0:
|
139 |
+
# Drop the first self.temporal_expansion - 1 frames.
|
140 |
+
# This is because we always want the 3x3x3 conv filter to only apply
|
141 |
+
# to the first frame, and the first frame doesn't need to be repeated.
|
142 |
+
assert all(x.shape)
|
143 |
+
x = x[:, :, self.temporal_expansion - 1 :]
|
144 |
+
assert all(x.shape)
|
145 |
+
|
146 |
+
return x
|
147 |
+
|
148 |
+
|
149 |
+
def norm_fn(
|
150 |
+
in_channels: int,
|
151 |
+
affine: bool = True,
|
152 |
+
):
|
153 |
+
return GroupNormSpatial(affine=affine, num_groups=32, num_channels=in_channels)
|
154 |
+
|
155 |
+
|
156 |
+
class ResBlock(nn.Module):
|
157 |
+
"""Residual block that preserves the spatial dimensions."""
|
158 |
+
|
159 |
+
def __init__(
|
160 |
+
self,
|
161 |
+
channels: int,
|
162 |
+
*,
|
163 |
+
affine: bool = True,
|
164 |
+
attn_block: Optional[nn.Module] = None,
|
165 |
+
causal: bool = True,
|
166 |
+
prune_bottleneck: bool = False,
|
167 |
+
padding_mode: str,
|
168 |
+
bias: bool = True,
|
169 |
+
):
|
170 |
+
super().__init__()
|
171 |
+
self.channels = channels
|
172 |
+
|
173 |
+
assert causal
|
174 |
+
self.stack = nn.Sequential(
|
175 |
+
norm_fn(channels, affine=affine),
|
176 |
+
nn.SiLU(inplace=True),
|
177 |
+
PConv3d(
|
178 |
+
in_channels=channels,
|
179 |
+
out_channels=channels // 2 if prune_bottleneck else channels,
|
180 |
+
kernel_size=(3, 3, 3),
|
181 |
+
stride=(1, 1, 1),
|
182 |
+
padding_mode=padding_mode,
|
183 |
+
bias=bias,
|
184 |
+
causal=causal,
|
185 |
+
),
|
186 |
+
norm_fn(channels, affine=affine),
|
187 |
+
nn.SiLU(inplace=True),
|
188 |
+
PConv3d(
|
189 |
+
in_channels=channels // 2 if prune_bottleneck else channels,
|
190 |
+
out_channels=channels,
|
191 |
+
kernel_size=(3, 3, 3),
|
192 |
+
stride=(1, 1, 1),
|
193 |
+
padding_mode=padding_mode,
|
194 |
+
bias=bias,
|
195 |
+
causal=causal,
|
196 |
+
),
|
197 |
+
)
|
198 |
+
|
199 |
+
self.attn_block = attn_block if attn_block else nn.Identity()
|
200 |
+
|
201 |
+
def forward(self, x: torch.Tensor):
|
202 |
+
"""Forward pass.
|
203 |
+
|
204 |
+
Args:
|
205 |
+
x: Input tensor. Shape: [B, C, T, H, W].
|
206 |
+
"""
|
207 |
+
residual = x
|
208 |
+
x = self.stack(x)
|
209 |
+
x = x + residual
|
210 |
+
del residual
|
211 |
+
|
212 |
+
return self.attn_block(x)
|
213 |
+
|
214 |
+
|
215 |
+
class Attention(nn.Module):
|
216 |
+
def __init__(
|
217 |
+
self,
|
218 |
+
dim: int,
|
219 |
+
head_dim: int = 32,
|
220 |
+
qkv_bias: bool = False,
|
221 |
+
out_bias: bool = True,
|
222 |
+
qk_norm: bool = True,
|
223 |
+
) -> None:
|
224 |
+
super().__init__()
|
225 |
+
self.head_dim = head_dim
|
226 |
+
self.num_heads = dim // head_dim
|
227 |
+
self.qk_norm = qk_norm
|
228 |
+
|
229 |
+
self.qkv = nn.Linear(dim, 3 * dim, bias=qkv_bias)
|
230 |
+
self.out = nn.Linear(dim, dim, bias=out_bias)
|
231 |
+
|
232 |
+
def forward(
|
233 |
+
self,
|
234 |
+
x: torch.Tensor,
|
235 |
+
) -> torch.Tensor:
|
236 |
+
"""Compute temporal self-attention.
|
237 |
+
|
238 |
+
Args:
|
239 |
+
x: Input tensor. Shape: [B, C, T, H, W].
|
240 |
+
chunk_size: Chunk size for large tensors.
|
241 |
+
|
242 |
+
Returns:
|
243 |
+
x: Output tensor. Shape: [B, C, T, H, W].
|
244 |
+
"""
|
245 |
+
B, _, T, H, W = x.shape
|
246 |
+
|
247 |
+
if T == 1:
|
248 |
+
# No attention for single frame.
|
249 |
+
x = x.movedim(1, -1) # [B, C, T, H, W] -> [B, T, H, W, C]
|
250 |
+
qkv = self.qkv(x)
|
251 |
+
_, _, x = qkv.chunk(3, dim=-1) # Throw away queries and keys.
|
252 |
+
x = self.out(x)
|
253 |
+
return x.movedim(-1, 1) # [B, T, H, W, C] -> [B, C, T, H, W]
|
254 |
+
|
255 |
+
# 1D temporal attention.
|
256 |
+
x = rearrange(x, "B C t h w -> (B h w) t C")
|
257 |
+
qkv = self.qkv(x)
|
258 |
+
|
259 |
+
# Input: qkv with shape [B, t, 3 * num_heads * head_dim]
|
260 |
+
# Output: x with shape [B, num_heads, t, head_dim]
|
261 |
+
q, k, v = qkv.view(qkv.shape[0], qkv.shape[1], 3, self.num_heads, self.head_dim).transpose(1, 3).unbind(2)
|
262 |
+
|
263 |
+
if self.qk_norm:
|
264 |
+
q = F.normalize(q, p=2, dim=-1)
|
265 |
+
k = F.normalize(k, p=2, dim=-1)
|
266 |
+
|
267 |
+
x = optimized_attention(q, k, v, self.num_heads, skip_reshape=True)
|
268 |
+
|
269 |
+
assert x.size(0) == q.size(0)
|
270 |
+
|
271 |
+
x = self.out(x)
|
272 |
+
x = rearrange(x, "(B h w) t C -> B C t h w", B=B, h=H, w=W)
|
273 |
+
return x
|
274 |
+
|
275 |
+
|
276 |
+
class AttentionBlock(nn.Module):
|
277 |
+
def __init__(
|
278 |
+
self,
|
279 |
+
dim: int,
|
280 |
+
**attn_kwargs,
|
281 |
+
) -> None:
|
282 |
+
super().__init__()
|
283 |
+
self.norm = norm_fn(dim)
|
284 |
+
self.attn = Attention(dim, **attn_kwargs)
|
285 |
+
|
286 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
287 |
+
return x + self.attn(self.norm(x))
|
288 |
+
|
289 |
+
|
290 |
+
class CausalUpsampleBlock(nn.Module):
|
291 |
+
def __init__(
|
292 |
+
self,
|
293 |
+
in_channels: int,
|
294 |
+
out_channels: int,
|
295 |
+
num_res_blocks: int,
|
296 |
+
*,
|
297 |
+
temporal_expansion: int = 2,
|
298 |
+
spatial_expansion: int = 2,
|
299 |
+
**block_kwargs,
|
300 |
+
):
|
301 |
+
super().__init__()
|
302 |
+
|
303 |
+
blocks = []
|
304 |
+
for _ in range(num_res_blocks):
|
305 |
+
blocks.append(block_fn(in_channels, **block_kwargs))
|
306 |
+
self.blocks = nn.Sequential(*blocks)
|
307 |
+
|
308 |
+
self.temporal_expansion = temporal_expansion
|
309 |
+
self.spatial_expansion = spatial_expansion
|
310 |
+
|
311 |
+
# Change channels in the final convolution layer.
|
312 |
+
self.proj = Conv1x1(
|
313 |
+
in_channels,
|
314 |
+
out_channels * temporal_expansion * (spatial_expansion**2),
|
315 |
+
)
|
316 |
+
|
317 |
+
self.d2st = DepthToSpaceTime(
|
318 |
+
temporal_expansion=temporal_expansion, spatial_expansion=spatial_expansion
|
319 |
+
)
|
320 |
+
|
321 |
+
def forward(self, x):
|
322 |
+
x = self.blocks(x)
|
323 |
+
x = self.proj(x)
|
324 |
+
x = self.d2st(x)
|
325 |
+
return x
|
326 |
+
|
327 |
+
|
328 |
+
def block_fn(channels, *, affine: bool = True, has_attention: bool = False, **block_kwargs):
|
329 |
+
attn_block = AttentionBlock(channels) if has_attention else None
|
330 |
+
return ResBlock(channels, affine=affine, attn_block=attn_block, **block_kwargs)
|
331 |
+
|
332 |
+
|
333 |
+
class DownsampleBlock(nn.Module):
|
334 |
+
def __init__(
|
335 |
+
self,
|
336 |
+
in_channels: int,
|
337 |
+
out_channels: int,
|
338 |
+
num_res_blocks,
|
339 |
+
*,
|
340 |
+
temporal_reduction=2,
|
341 |
+
spatial_reduction=2,
|
342 |
+
**block_kwargs,
|
343 |
+
):
|
344 |
+
"""
|
345 |
+
Downsample block for the VAE encoder.
|
346 |
+
|
347 |
+
Args:
|
348 |
+
in_channels: Number of input channels.
|
349 |
+
out_channels: Number of output channels.
|
350 |
+
num_res_blocks: Number of residual blocks.
|
351 |
+
temporal_reduction: Temporal reduction factor.
|
352 |
+
spatial_reduction: Spatial reduction factor.
|
353 |
+
"""
|
354 |
+
super().__init__()
|
355 |
+
layers = []
|
356 |
+
|
357 |
+
# Change the channel count in the strided convolution.
|
358 |
+
# This lets the ResBlock have uniform channel count,
|
359 |
+
# as in ConvNeXt.
|
360 |
+
assert in_channels != out_channels
|
361 |
+
layers.append(
|
362 |
+
PConv3d(
|
363 |
+
in_channels=in_channels,
|
364 |
+
out_channels=out_channels,
|
365 |
+
kernel_size=(temporal_reduction, spatial_reduction, spatial_reduction),
|
366 |
+
stride=(temporal_reduction, spatial_reduction, spatial_reduction),
|
367 |
+
# First layer in each block always uses replicate padding
|
368 |
+
padding_mode="replicate",
|
369 |
+
bias=block_kwargs["bias"],
|
370 |
+
)
|
371 |
+
)
|
372 |
+
|
373 |
+
for _ in range(num_res_blocks):
|
374 |
+
layers.append(block_fn(out_channels, **block_kwargs))
|
375 |
+
|
376 |
+
self.layers = nn.Sequential(*layers)
|
377 |
+
|
378 |
+
def forward(self, x):
|
379 |
+
return self.layers(x)
|
380 |
+
|
381 |
+
|
382 |
+
def add_fourier_features(inputs: torch.Tensor, start=6, stop=8, step=1):
|
383 |
+
num_freqs = (stop - start) // step
|
384 |
+
assert inputs.ndim == 5
|
385 |
+
C = inputs.size(1)
|
386 |
+
|
387 |
+
# Create Base 2 Fourier features.
|
388 |
+
freqs = torch.arange(start, stop, step, dtype=inputs.dtype, device=inputs.device)
|
389 |
+
assert num_freqs == len(freqs)
|
390 |
+
w = torch.pow(2.0, freqs) * (2 * torch.pi) # [num_freqs]
|
391 |
+
C = inputs.shape[1]
|
392 |
+
w = w.repeat(C)[None, :, None, None, None] # [1, C * num_freqs, 1, 1, 1]
|
393 |
+
|
394 |
+
# Interleaved repeat of input channels to match w.
|
395 |
+
h = inputs.repeat_interleave(num_freqs, dim=1) # [B, C * num_freqs, T, H, W]
|
396 |
+
# Scale channels by frequency.
|
397 |
+
h = w * h
|
398 |
+
|
399 |
+
return torch.cat(
|
400 |
+
[
|
401 |
+
inputs,
|
402 |
+
torch.sin(h),
|
403 |
+
torch.cos(h),
|
404 |
+
],
|
405 |
+
dim=1,
|
406 |
+
)
|
407 |
+
|
408 |
+
|
409 |
+
class FourierFeatures(nn.Module):
|
410 |
+
def __init__(self, start: int = 6, stop: int = 8, step: int = 1):
|
411 |
+
super().__init__()
|
412 |
+
self.start = start
|
413 |
+
self.stop = stop
|
414 |
+
self.step = step
|
415 |
+
|
416 |
+
def forward(self, inputs):
|
417 |
+
"""Add Fourier features to inputs.
|
418 |
+
|
419 |
+
Args:
|
420 |
+
inputs: Input tensor. Shape: [B, C, T, H, W]
|
421 |
+
|
422 |
+
Returns:
|
423 |
+
h: Output tensor. Shape: [B, (1 + 2 * num_freqs) * C, T, H, W]
|
424 |
+
"""
|
425 |
+
return add_fourier_features(inputs, self.start, self.stop, self.step)
|
426 |
+
|
427 |
+
|
428 |
+
class Decoder(nn.Module):
|
429 |
+
def __init__(
|
430 |
+
self,
|
431 |
+
*,
|
432 |
+
out_channels: int = 3,
|
433 |
+
latent_dim: int,
|
434 |
+
base_channels: int,
|
435 |
+
channel_multipliers: List[int],
|
436 |
+
num_res_blocks: List[int],
|
437 |
+
temporal_expansions: Optional[List[int]] = None,
|
438 |
+
spatial_expansions: Optional[List[int]] = None,
|
439 |
+
has_attention: List[bool],
|
440 |
+
output_norm: bool = True,
|
441 |
+
nonlinearity: str = "silu",
|
442 |
+
output_nonlinearity: str = "silu",
|
443 |
+
causal: bool = True,
|
444 |
+
**block_kwargs,
|
445 |
+
):
|
446 |
+
super().__init__()
|
447 |
+
self.input_channels = latent_dim
|
448 |
+
self.base_channels = base_channels
|
449 |
+
self.channel_multipliers = channel_multipliers
|
450 |
+
self.num_res_blocks = num_res_blocks
|
451 |
+
self.output_nonlinearity = output_nonlinearity
|
452 |
+
assert nonlinearity == "silu"
|
453 |
+
assert causal
|
454 |
+
|
455 |
+
ch = [mult * base_channels for mult in channel_multipliers]
|
456 |
+
self.num_up_blocks = len(ch) - 1
|
457 |
+
assert len(num_res_blocks) == self.num_up_blocks + 2
|
458 |
+
|
459 |
+
blocks = []
|
460 |
+
|
461 |
+
first_block = [
|
462 |
+
ops.Conv3d(latent_dim, ch[-1], kernel_size=(1, 1, 1))
|
463 |
+
] # Input layer.
|
464 |
+
# First set of blocks preserve channel count.
|
465 |
+
for _ in range(num_res_blocks[-1]):
|
466 |
+
first_block.append(
|
467 |
+
block_fn(
|
468 |
+
ch[-1],
|
469 |
+
has_attention=has_attention[-1],
|
470 |
+
causal=causal,
|
471 |
+
**block_kwargs,
|
472 |
+
)
|
473 |
+
)
|
474 |
+
blocks.append(nn.Sequential(*first_block))
|
475 |
+
|
476 |
+
assert len(temporal_expansions) == len(spatial_expansions) == self.num_up_blocks
|
477 |
+
assert len(num_res_blocks) == len(has_attention) == self.num_up_blocks + 2
|
478 |
+
|
479 |
+
upsample_block_fn = CausalUpsampleBlock
|
480 |
+
|
481 |
+
for i in range(self.num_up_blocks):
|
482 |
+
block = upsample_block_fn(
|
483 |
+
ch[-i - 1],
|
484 |
+
ch[-i - 2],
|
485 |
+
num_res_blocks=num_res_blocks[-i - 2],
|
486 |
+
has_attention=has_attention[-i - 2],
|
487 |
+
temporal_expansion=temporal_expansions[-i - 1],
|
488 |
+
spatial_expansion=spatial_expansions[-i - 1],
|
489 |
+
causal=causal,
|
490 |
+
**block_kwargs,
|
491 |
+
)
|
492 |
+
blocks.append(block)
|
493 |
+
|
494 |
+
assert not output_norm
|
495 |
+
|
496 |
+
# Last block. Preserve channel count.
|
497 |
+
last_block = []
|
498 |
+
for _ in range(num_res_blocks[0]):
|
499 |
+
last_block.append(
|
500 |
+
block_fn(
|
501 |
+
ch[0], has_attention=has_attention[0], causal=causal, **block_kwargs
|
502 |
+
)
|
503 |
+
)
|
504 |
+
blocks.append(nn.Sequential(*last_block))
|
505 |
+
|
506 |
+
self.blocks = nn.ModuleList(blocks)
|
507 |
+
self.output_proj = Conv1x1(ch[0], out_channels)
|
508 |
+
|
509 |
+
def forward(self, x):
|
510 |
+
"""Forward pass.
|
511 |
+
|
512 |
+
Args:
|
513 |
+
x: Latent tensor. Shape: [B, input_channels, t, h, w]. Scaled [-1, 1].
|
514 |
+
|
515 |
+
Returns:
|
516 |
+
x: Reconstructed video tensor. Shape: [B, C, T, H, W]. Scaled to [-1, 1].
|
517 |
+
T + 1 = (t - 1) * 4.
|
518 |
+
H = h * 16, W = w * 16.
|
519 |
+
"""
|
520 |
+
for block in self.blocks:
|
521 |
+
x = block(x)
|
522 |
+
|
523 |
+
if self.output_nonlinearity == "silu":
|
524 |
+
x = F.silu(x, inplace=not self.training)
|
525 |
+
else:
|
526 |
+
assert (
|
527 |
+
not self.output_nonlinearity
|
528 |
+
) # StyleGAN3 omits the to-RGB nonlinearity.
|
529 |
+
|
530 |
+
return self.output_proj(x).contiguous()
|
531 |
+
|
532 |
+
class LatentDistribution:
|
533 |
+
def __init__(self, mean: torch.Tensor, logvar: torch.Tensor):
|
534 |
+
"""Initialize latent distribution.
|
535 |
+
|
536 |
+
Args:
|
537 |
+
mean: Mean of the distribution. Shape: [B, C, T, H, W].
|
538 |
+
logvar: Logarithm of variance of the distribution. Shape: [B, C, T, H, W].
|
539 |
+
"""
|
540 |
+
assert mean.shape == logvar.shape
|
541 |
+
self.mean = mean
|
542 |
+
self.logvar = logvar
|
543 |
+
|
544 |
+
def sample(self, temperature=1.0, generator: torch.Generator = None, noise=None):
|
545 |
+
if temperature == 0.0:
|
546 |
+
return self.mean
|
547 |
+
|
548 |
+
if noise is None:
|
549 |
+
noise = torch.randn(self.mean.shape, device=self.mean.device, dtype=self.mean.dtype, generator=generator)
|
550 |
+
else:
|
551 |
+
assert noise.device == self.mean.device
|
552 |
+
noise = noise.to(self.mean.dtype)
|
553 |
+
|
554 |
+
if temperature != 1.0:
|
555 |
+
raise NotImplementedError(f"Temperature {temperature} is not supported.")
|
556 |
+
|
557 |
+
# Just Gaussian sample with no scaling of variance.
|
558 |
+
return noise * torch.exp(self.logvar * 0.5) + self.mean
|
559 |
+
|
560 |
+
def mode(self):
|
561 |
+
return self.mean
|
562 |
+
|
563 |
+
class Encoder(nn.Module):
|
564 |
+
def __init__(
|
565 |
+
self,
|
566 |
+
*,
|
567 |
+
in_channels: int,
|
568 |
+
base_channels: int,
|
569 |
+
channel_multipliers: List[int],
|
570 |
+
num_res_blocks: List[int],
|
571 |
+
latent_dim: int,
|
572 |
+
temporal_reductions: List[int],
|
573 |
+
spatial_reductions: List[int],
|
574 |
+
prune_bottlenecks: List[bool],
|
575 |
+
has_attentions: List[bool],
|
576 |
+
affine: bool = True,
|
577 |
+
bias: bool = True,
|
578 |
+
input_is_conv_1x1: bool = False,
|
579 |
+
padding_mode: str,
|
580 |
+
):
|
581 |
+
super().__init__()
|
582 |
+
self.temporal_reductions = temporal_reductions
|
583 |
+
self.spatial_reductions = spatial_reductions
|
584 |
+
self.base_channels = base_channels
|
585 |
+
self.channel_multipliers = channel_multipliers
|
586 |
+
self.num_res_blocks = num_res_blocks
|
587 |
+
self.latent_dim = latent_dim
|
588 |
+
|
589 |
+
self.fourier_features = FourierFeatures()
|
590 |
+
ch = [mult * base_channels for mult in channel_multipliers]
|
591 |
+
num_down_blocks = len(ch) - 1
|
592 |
+
assert len(num_res_blocks) == num_down_blocks + 2
|
593 |
+
|
594 |
+
layers = (
|
595 |
+
[ops.Conv3d(in_channels, ch[0], kernel_size=(1, 1, 1), bias=True)]
|
596 |
+
if not input_is_conv_1x1
|
597 |
+
else [Conv1x1(in_channels, ch[0])]
|
598 |
+
)
|
599 |
+
|
600 |
+
assert len(prune_bottlenecks) == num_down_blocks + 2
|
601 |
+
assert len(has_attentions) == num_down_blocks + 2
|
602 |
+
block = partial(block_fn, padding_mode=padding_mode, affine=affine, bias=bias)
|
603 |
+
|
604 |
+
for _ in range(num_res_blocks[0]):
|
605 |
+
layers.append(block(ch[0], has_attention=has_attentions[0], prune_bottleneck=prune_bottlenecks[0]))
|
606 |
+
prune_bottlenecks = prune_bottlenecks[1:]
|
607 |
+
has_attentions = has_attentions[1:]
|
608 |
+
|
609 |
+
assert len(temporal_reductions) == len(spatial_reductions) == len(ch) - 1
|
610 |
+
for i in range(num_down_blocks):
|
611 |
+
layer = DownsampleBlock(
|
612 |
+
ch[i],
|
613 |
+
ch[i + 1],
|
614 |
+
num_res_blocks=num_res_blocks[i + 1],
|
615 |
+
temporal_reduction=temporal_reductions[i],
|
616 |
+
spatial_reduction=spatial_reductions[i],
|
617 |
+
prune_bottleneck=prune_bottlenecks[i],
|
618 |
+
has_attention=has_attentions[i],
|
619 |
+
affine=affine,
|
620 |
+
bias=bias,
|
621 |
+
padding_mode=padding_mode,
|
622 |
+
)
|
623 |
+
|
624 |
+
layers.append(layer)
|
625 |
+
|
626 |
+
# Additional blocks.
|
627 |
+
for _ in range(num_res_blocks[-1]):
|
628 |
+
layers.append(block(ch[-1], has_attention=has_attentions[-1], prune_bottleneck=prune_bottlenecks[-1]))
|
629 |
+
|
630 |
+
self.layers = nn.Sequential(*layers)
|
631 |
+
|
632 |
+
# Output layers.
|
633 |
+
self.output_norm = norm_fn(ch[-1])
|
634 |
+
self.output_proj = Conv1x1(ch[-1], 2 * latent_dim, bias=False)
|
635 |
+
|
636 |
+
@property
|
637 |
+
def temporal_downsample(self):
|
638 |
+
return math.prod(self.temporal_reductions)
|
639 |
+
|
640 |
+
@property
|
641 |
+
def spatial_downsample(self):
|
642 |
+
return math.prod(self.spatial_reductions)
|
643 |
+
|
644 |
+
def forward(self, x) -> LatentDistribution:
|
645 |
+
"""Forward pass.
|
646 |
+
|
647 |
+
Args:
|
648 |
+
x: Input video tensor. Shape: [B, C, T, H, W]. Scaled to [-1, 1]
|
649 |
+
|
650 |
+
Returns:
|
651 |
+
means: Latent tensor. Shape: [B, latent_dim, t, h, w]. Scaled [-1, 1].
|
652 |
+
h = H // 8, w = W // 8, t - 1 = (T - 1) // 6
|
653 |
+
logvar: Shape: [B, latent_dim, t, h, w].
|
654 |
+
"""
|
655 |
+
assert x.ndim == 5, f"Expected 5D input, got {x.shape}"
|
656 |
+
x = self.fourier_features(x)
|
657 |
+
|
658 |
+
x = self.layers(x)
|
659 |
+
|
660 |
+
x = self.output_norm(x)
|
661 |
+
x = F.silu(x, inplace=True)
|
662 |
+
x = self.output_proj(x)
|
663 |
+
|
664 |
+
means, logvar = torch.chunk(x, 2, dim=1)
|
665 |
+
|
666 |
+
assert means.ndim == 5
|
667 |
+
assert logvar.shape == means.shape
|
668 |
+
assert means.size(1) == self.latent_dim
|
669 |
+
|
670 |
+
return LatentDistribution(means, logvar)
|
671 |
+
|
672 |
+
|
673 |
+
class VideoVAE(nn.Module):
|
674 |
+
def __init__(self):
|
675 |
+
super().__init__()
|
676 |
+
self.encoder = Encoder(
|
677 |
+
in_channels=15,
|
678 |
+
base_channels=64,
|
679 |
+
channel_multipliers=[1, 2, 4, 6],
|
680 |
+
num_res_blocks=[3, 3, 4, 6, 3],
|
681 |
+
latent_dim=12,
|
682 |
+
temporal_reductions=[1, 2, 3],
|
683 |
+
spatial_reductions=[2, 2, 2],
|
684 |
+
prune_bottlenecks=[False, False, False, False, False],
|
685 |
+
has_attentions=[False, True, True, True, True],
|
686 |
+
affine=True,
|
687 |
+
bias=True,
|
688 |
+
input_is_conv_1x1=True,
|
689 |
+
padding_mode="replicate"
|
690 |
+
)
|
691 |
+
self.decoder = Decoder(
|
692 |
+
out_channels=3,
|
693 |
+
base_channels=128,
|
694 |
+
channel_multipliers=[1, 2, 4, 6],
|
695 |
+
temporal_expansions=[1, 2, 3],
|
696 |
+
spatial_expansions=[2, 2, 2],
|
697 |
+
num_res_blocks=[3, 3, 4, 6, 3],
|
698 |
+
latent_dim=12,
|
699 |
+
has_attention=[False, False, False, False, False],
|
700 |
+
padding_mode="replicate",
|
701 |
+
output_norm=False,
|
702 |
+
nonlinearity="silu",
|
703 |
+
output_nonlinearity="silu",
|
704 |
+
causal=True,
|
705 |
+
)
|
706 |
+
|
707 |
+
def encode(self, x):
|
708 |
+
return self.encoder(x).mode()
|
709 |
+
|
710 |
+
def decode(self, x):
|
711 |
+
return self.decoder(x)
|
vae/pixel_norm.py
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from torch import nn
|
3 |
+
|
4 |
+
|
5 |
+
class PixelNorm(nn.Module):
|
6 |
+
def __init__(self, dim=1, eps=1e-8):
|
7 |
+
super(PixelNorm, self).__init__()
|
8 |
+
self.dim = dim
|
9 |
+
self.eps = eps
|
10 |
+
|
11 |
+
def forward(self, x):
|
12 |
+
return x / torch.sqrt(torch.mean(x**2, dim=self.dim, keepdim=True) + self.eps)
|