Upload 21 files
Browse files- GraphView-CUSGEqGS.js +0 -0
- causal_conv3d.py +64 -0
- causal_video_autoencoder.py +907 -0
- conv_nd_factory.py +82 -0
- dual_conv3d.py +195 -0
- index-4Hb32CNk.js +0 -0
- index-C1Hb_Yo9.css +5129 -0
- merges.txt +0 -0
- model.py +711 -0
- pixel_norm.py +12 -0
- put_taesd_encoder_pth_and_taesd_decoder_pth_here +0 -0
- put_vae_here +0 -0
- vae (1)/causal_conv3d.py +64 -0
- vae (1)/causal_video_autoencoder.py +907 -0
- vae (1)/conv_nd_factory.py +82 -0
- vae (1)/dual_conv3d.py +195 -0
- vae (1)/pixel_norm.py +12 -0
- vae (2)/model.py +711 -0
- vae.py +131 -0
- vae/put_vae_here +0 -0
GraphView-CUSGEqGS.js
ADDED
The diff for this file is too large to render.
See raw diff
|
|
causal_conv3d.py
ADDED
@@ -0,0 +1,64 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Tuple, Union
|
2 |
+
|
3 |
+
import torch
|
4 |
+
import torch.nn as nn
|
5 |
+
import comfy.ops
|
6 |
+
ops = comfy.ops.disable_weight_init
|
7 |
+
|
8 |
+
|
9 |
+
class CausalConv3d(nn.Module):
|
10 |
+
def __init__(
|
11 |
+
self,
|
12 |
+
in_channels,
|
13 |
+
out_channels,
|
14 |
+
kernel_size: int = 3,
|
15 |
+
stride: Union[int, Tuple[int]] = 1,
|
16 |
+
dilation: int = 1,
|
17 |
+
groups: int = 1,
|
18 |
+
**kwargs,
|
19 |
+
):
|
20 |
+
super().__init__()
|
21 |
+
|
22 |
+
self.in_channels = in_channels
|
23 |
+
self.out_channels = out_channels
|
24 |
+
|
25 |
+
kernel_size = (kernel_size, kernel_size, kernel_size)
|
26 |
+
self.time_kernel_size = kernel_size[0]
|
27 |
+
|
28 |
+
dilation = (dilation, 1, 1)
|
29 |
+
|
30 |
+
height_pad = kernel_size[1] // 2
|
31 |
+
width_pad = kernel_size[2] // 2
|
32 |
+
padding = (0, height_pad, width_pad)
|
33 |
+
|
34 |
+
self.conv = ops.Conv3d(
|
35 |
+
in_channels,
|
36 |
+
out_channels,
|
37 |
+
kernel_size,
|
38 |
+
stride=stride,
|
39 |
+
dilation=dilation,
|
40 |
+
padding=padding,
|
41 |
+
padding_mode="zeros",
|
42 |
+
groups=groups,
|
43 |
+
)
|
44 |
+
|
45 |
+
def forward(self, x, causal: bool = True):
|
46 |
+
if causal:
|
47 |
+
first_frame_pad = x[:, :, :1, :, :].repeat(
|
48 |
+
(1, 1, self.time_kernel_size - 1, 1, 1)
|
49 |
+
)
|
50 |
+
x = torch.concatenate((first_frame_pad, x), dim=2)
|
51 |
+
else:
|
52 |
+
first_frame_pad = x[:, :, :1, :, :].repeat(
|
53 |
+
(1, 1, (self.time_kernel_size - 1) // 2, 1, 1)
|
54 |
+
)
|
55 |
+
last_frame_pad = x[:, :, -1:, :, :].repeat(
|
56 |
+
(1, 1, (self.time_kernel_size - 1) // 2, 1, 1)
|
57 |
+
)
|
58 |
+
x = torch.concatenate((first_frame_pad, x, last_frame_pad), dim=2)
|
59 |
+
x = self.conv(x)
|
60 |
+
return x
|
61 |
+
|
62 |
+
@property
|
63 |
+
def weight(self):
|
64 |
+
return self.conv.weight
|
causal_video_autoencoder.py
ADDED
@@ -0,0 +1,907 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from torch import nn
|
3 |
+
from functools import partial
|
4 |
+
import math
|
5 |
+
from einops import rearrange
|
6 |
+
from typing import Optional, Tuple, Union
|
7 |
+
from .conv_nd_factory import make_conv_nd, make_linear_nd
|
8 |
+
from .pixel_norm import PixelNorm
|
9 |
+
from ..model import PixArtAlphaCombinedTimestepSizeEmbeddings
|
10 |
+
import comfy.ops
|
11 |
+
ops = comfy.ops.disable_weight_init
|
12 |
+
|
13 |
+
class Encoder(nn.Module):
|
14 |
+
r"""
|
15 |
+
The `Encoder` layer of a variational autoencoder that encodes its input into a latent representation.
|
16 |
+
|
17 |
+
Args:
|
18 |
+
dims (`int` or `Tuple[int, int]`, *optional*, defaults to 3):
|
19 |
+
The number of dimensions to use in convolutions.
|
20 |
+
in_channels (`int`, *optional*, defaults to 3):
|
21 |
+
The number of input channels.
|
22 |
+
out_channels (`int`, *optional*, defaults to 3):
|
23 |
+
The number of output channels.
|
24 |
+
blocks (`List[Tuple[str, int]]`, *optional*, defaults to `[("res_x", 1)]`):
|
25 |
+
The blocks to use. Each block is a tuple of the block name and the number of layers.
|
26 |
+
base_channels (`int`, *optional*, defaults to 128):
|
27 |
+
The number of output channels for the first convolutional layer.
|
28 |
+
norm_num_groups (`int`, *optional*, defaults to 32):
|
29 |
+
The number of groups for normalization.
|
30 |
+
patch_size (`int`, *optional*, defaults to 1):
|
31 |
+
The patch size to use. Should be a power of 2.
|
32 |
+
norm_layer (`str`, *optional*, defaults to `group_norm`):
|
33 |
+
The normalization layer to use. Can be either `group_norm` or `pixel_norm`.
|
34 |
+
latent_log_var (`str`, *optional*, defaults to `per_channel`):
|
35 |
+
The number of channels for the log variance. Can be either `per_channel`, `uniform`, or `none`.
|
36 |
+
"""
|
37 |
+
|
38 |
+
def __init__(
|
39 |
+
self,
|
40 |
+
dims: Union[int, Tuple[int, int]] = 3,
|
41 |
+
in_channels: int = 3,
|
42 |
+
out_channels: int = 3,
|
43 |
+
blocks=[("res_x", 1)],
|
44 |
+
base_channels: int = 128,
|
45 |
+
norm_num_groups: int = 32,
|
46 |
+
patch_size: Union[int, Tuple[int]] = 1,
|
47 |
+
norm_layer: str = "group_norm", # group_norm, pixel_norm
|
48 |
+
latent_log_var: str = "per_channel",
|
49 |
+
):
|
50 |
+
super().__init__()
|
51 |
+
self.patch_size = patch_size
|
52 |
+
self.norm_layer = norm_layer
|
53 |
+
self.latent_channels = out_channels
|
54 |
+
self.latent_log_var = latent_log_var
|
55 |
+
self.blocks_desc = blocks
|
56 |
+
|
57 |
+
in_channels = in_channels * patch_size**2
|
58 |
+
output_channel = base_channels
|
59 |
+
|
60 |
+
self.conv_in = make_conv_nd(
|
61 |
+
dims=dims,
|
62 |
+
in_channels=in_channels,
|
63 |
+
out_channels=output_channel,
|
64 |
+
kernel_size=3,
|
65 |
+
stride=1,
|
66 |
+
padding=1,
|
67 |
+
causal=True,
|
68 |
+
)
|
69 |
+
|
70 |
+
self.down_blocks = nn.ModuleList([])
|
71 |
+
|
72 |
+
for block_name, block_params in blocks:
|
73 |
+
input_channel = output_channel
|
74 |
+
if isinstance(block_params, int):
|
75 |
+
block_params = {"num_layers": block_params}
|
76 |
+
|
77 |
+
if block_name == "res_x":
|
78 |
+
block = UNetMidBlock3D(
|
79 |
+
dims=dims,
|
80 |
+
in_channels=input_channel,
|
81 |
+
num_layers=block_params["num_layers"],
|
82 |
+
resnet_eps=1e-6,
|
83 |
+
resnet_groups=norm_num_groups,
|
84 |
+
norm_layer=norm_layer,
|
85 |
+
)
|
86 |
+
elif block_name == "res_x_y":
|
87 |
+
output_channel = block_params.get("multiplier", 2) * output_channel
|
88 |
+
block = ResnetBlock3D(
|
89 |
+
dims=dims,
|
90 |
+
in_channels=input_channel,
|
91 |
+
out_channels=output_channel,
|
92 |
+
eps=1e-6,
|
93 |
+
groups=norm_num_groups,
|
94 |
+
norm_layer=norm_layer,
|
95 |
+
)
|
96 |
+
elif block_name == "compress_time":
|
97 |
+
block = make_conv_nd(
|
98 |
+
dims=dims,
|
99 |
+
in_channels=input_channel,
|
100 |
+
out_channels=output_channel,
|
101 |
+
kernel_size=3,
|
102 |
+
stride=(2, 1, 1),
|
103 |
+
causal=True,
|
104 |
+
)
|
105 |
+
elif block_name == "compress_space":
|
106 |
+
block = make_conv_nd(
|
107 |
+
dims=dims,
|
108 |
+
in_channels=input_channel,
|
109 |
+
out_channels=output_channel,
|
110 |
+
kernel_size=3,
|
111 |
+
stride=(1, 2, 2),
|
112 |
+
causal=True,
|
113 |
+
)
|
114 |
+
elif block_name == "compress_all":
|
115 |
+
block = make_conv_nd(
|
116 |
+
dims=dims,
|
117 |
+
in_channels=input_channel,
|
118 |
+
out_channels=output_channel,
|
119 |
+
kernel_size=3,
|
120 |
+
stride=(2, 2, 2),
|
121 |
+
causal=True,
|
122 |
+
)
|
123 |
+
elif block_name == "compress_all_x_y":
|
124 |
+
output_channel = block_params.get("multiplier", 2) * output_channel
|
125 |
+
block = make_conv_nd(
|
126 |
+
dims=dims,
|
127 |
+
in_channels=input_channel,
|
128 |
+
out_channels=output_channel,
|
129 |
+
kernel_size=3,
|
130 |
+
stride=(2, 2, 2),
|
131 |
+
causal=True,
|
132 |
+
)
|
133 |
+
else:
|
134 |
+
raise ValueError(f"unknown block: {block_name}")
|
135 |
+
|
136 |
+
self.down_blocks.append(block)
|
137 |
+
|
138 |
+
# out
|
139 |
+
if norm_layer == "group_norm":
|
140 |
+
self.conv_norm_out = nn.GroupNorm(
|
141 |
+
num_channels=output_channel, num_groups=norm_num_groups, eps=1e-6
|
142 |
+
)
|
143 |
+
elif norm_layer == "pixel_norm":
|
144 |
+
self.conv_norm_out = PixelNorm()
|
145 |
+
elif norm_layer == "layer_norm":
|
146 |
+
self.conv_norm_out = LayerNorm(output_channel, eps=1e-6)
|
147 |
+
|
148 |
+
self.conv_act = nn.SiLU()
|
149 |
+
|
150 |
+
conv_out_channels = out_channels
|
151 |
+
if latent_log_var == "per_channel":
|
152 |
+
conv_out_channels *= 2
|
153 |
+
elif latent_log_var == "uniform":
|
154 |
+
conv_out_channels += 1
|
155 |
+
elif latent_log_var != "none":
|
156 |
+
raise ValueError(f"Invalid latent_log_var: {latent_log_var}")
|
157 |
+
self.conv_out = make_conv_nd(
|
158 |
+
dims, output_channel, conv_out_channels, 3, padding=1, causal=True
|
159 |
+
)
|
160 |
+
|
161 |
+
self.gradient_checkpointing = False
|
162 |
+
|
163 |
+
def forward(self, sample: torch.FloatTensor) -> torch.FloatTensor:
|
164 |
+
r"""The forward method of the `Encoder` class."""
|
165 |
+
|
166 |
+
sample = patchify(sample, patch_size_hw=self.patch_size, patch_size_t=1)
|
167 |
+
sample = self.conv_in(sample)
|
168 |
+
|
169 |
+
checkpoint_fn = (
|
170 |
+
partial(torch.utils.checkpoint.checkpoint, use_reentrant=False)
|
171 |
+
if self.gradient_checkpointing and self.training
|
172 |
+
else lambda x: x
|
173 |
+
)
|
174 |
+
|
175 |
+
for down_block in self.down_blocks:
|
176 |
+
sample = checkpoint_fn(down_block)(sample)
|
177 |
+
|
178 |
+
sample = self.conv_norm_out(sample)
|
179 |
+
sample = self.conv_act(sample)
|
180 |
+
sample = self.conv_out(sample)
|
181 |
+
|
182 |
+
if self.latent_log_var == "uniform":
|
183 |
+
last_channel = sample[:, -1:, ...]
|
184 |
+
num_dims = sample.dim()
|
185 |
+
|
186 |
+
if num_dims == 4:
|
187 |
+
# For shape (B, C, H, W)
|
188 |
+
repeated_last_channel = last_channel.repeat(
|
189 |
+
1, sample.shape[1] - 2, 1, 1
|
190 |
+
)
|
191 |
+
sample = torch.cat([sample, repeated_last_channel], dim=1)
|
192 |
+
elif num_dims == 5:
|
193 |
+
# For shape (B, C, F, H, W)
|
194 |
+
repeated_last_channel = last_channel.repeat(
|
195 |
+
1, sample.shape[1] - 2, 1, 1, 1
|
196 |
+
)
|
197 |
+
sample = torch.cat([sample, repeated_last_channel], dim=1)
|
198 |
+
else:
|
199 |
+
raise ValueError(f"Invalid input shape: {sample.shape}")
|
200 |
+
|
201 |
+
return sample
|
202 |
+
|
203 |
+
|
204 |
+
class Decoder(nn.Module):
|
205 |
+
r"""
|
206 |
+
The `Decoder` layer of a variational autoencoder that decodes its latent representation into an output sample.
|
207 |
+
|
208 |
+
Args:
|
209 |
+
dims (`int` or `Tuple[int, int]`, *optional*, defaults to 3):
|
210 |
+
The number of dimensions to use in convolutions.
|
211 |
+
in_channels (`int`, *optional*, defaults to 3):
|
212 |
+
The number of input channels.
|
213 |
+
out_channels (`int`, *optional*, defaults to 3):
|
214 |
+
The number of output channels.
|
215 |
+
blocks (`List[Tuple[str, int]]`, *optional*, defaults to `[("res_x", 1)]`):
|
216 |
+
The blocks to use. Each block is a tuple of the block name and the number of layers.
|
217 |
+
base_channels (`int`, *optional*, defaults to 128):
|
218 |
+
The number of output channels for the first convolutional layer.
|
219 |
+
norm_num_groups (`int`, *optional*, defaults to 32):
|
220 |
+
The number of groups for normalization.
|
221 |
+
patch_size (`int`, *optional*, defaults to 1):
|
222 |
+
The patch size to use. Should be a power of 2.
|
223 |
+
norm_layer (`str`, *optional*, defaults to `group_norm`):
|
224 |
+
The normalization layer to use. Can be either `group_norm` or `pixel_norm`.
|
225 |
+
causal (`bool`, *optional*, defaults to `True`):
|
226 |
+
Whether to use causal convolutions or not.
|
227 |
+
"""
|
228 |
+
|
229 |
+
def __init__(
|
230 |
+
self,
|
231 |
+
dims,
|
232 |
+
in_channels: int = 3,
|
233 |
+
out_channels: int = 3,
|
234 |
+
blocks=[("res_x", 1)],
|
235 |
+
base_channels: int = 128,
|
236 |
+
layers_per_block: int = 2,
|
237 |
+
norm_num_groups: int = 32,
|
238 |
+
patch_size: int = 1,
|
239 |
+
norm_layer: str = "group_norm",
|
240 |
+
causal: bool = True,
|
241 |
+
timestep_conditioning: bool = False,
|
242 |
+
):
|
243 |
+
super().__init__()
|
244 |
+
self.patch_size = patch_size
|
245 |
+
self.layers_per_block = layers_per_block
|
246 |
+
out_channels = out_channels * patch_size**2
|
247 |
+
self.causal = causal
|
248 |
+
self.blocks_desc = blocks
|
249 |
+
|
250 |
+
# Compute output channel to be product of all channel-multiplier blocks
|
251 |
+
output_channel = base_channels
|
252 |
+
for block_name, block_params in list(reversed(blocks)):
|
253 |
+
block_params = block_params if isinstance(block_params, dict) else {}
|
254 |
+
if block_name == "res_x_y":
|
255 |
+
output_channel = output_channel * block_params.get("multiplier", 2)
|
256 |
+
if block_name == "compress_all":
|
257 |
+
output_channel = output_channel * block_params.get("multiplier", 1)
|
258 |
+
|
259 |
+
self.conv_in = make_conv_nd(
|
260 |
+
dims,
|
261 |
+
in_channels,
|
262 |
+
output_channel,
|
263 |
+
kernel_size=3,
|
264 |
+
stride=1,
|
265 |
+
padding=1,
|
266 |
+
causal=True,
|
267 |
+
)
|
268 |
+
|
269 |
+
self.up_blocks = nn.ModuleList([])
|
270 |
+
|
271 |
+
for block_name, block_params in list(reversed(blocks)):
|
272 |
+
input_channel = output_channel
|
273 |
+
if isinstance(block_params, int):
|
274 |
+
block_params = {"num_layers": block_params}
|
275 |
+
|
276 |
+
if block_name == "res_x":
|
277 |
+
block = UNetMidBlock3D(
|
278 |
+
dims=dims,
|
279 |
+
in_channels=input_channel,
|
280 |
+
num_layers=block_params["num_layers"],
|
281 |
+
resnet_eps=1e-6,
|
282 |
+
resnet_groups=norm_num_groups,
|
283 |
+
norm_layer=norm_layer,
|
284 |
+
inject_noise=block_params.get("inject_noise", False),
|
285 |
+
timestep_conditioning=timestep_conditioning,
|
286 |
+
)
|
287 |
+
elif block_name == "attn_res_x":
|
288 |
+
block = UNetMidBlock3D(
|
289 |
+
dims=dims,
|
290 |
+
in_channels=input_channel,
|
291 |
+
num_layers=block_params["num_layers"],
|
292 |
+
resnet_groups=norm_num_groups,
|
293 |
+
norm_layer=norm_layer,
|
294 |
+
inject_noise=block_params.get("inject_noise", False),
|
295 |
+
timestep_conditioning=timestep_conditioning,
|
296 |
+
attention_head_dim=block_params["attention_head_dim"],
|
297 |
+
)
|
298 |
+
elif block_name == "res_x_y":
|
299 |
+
output_channel = output_channel // block_params.get("multiplier", 2)
|
300 |
+
block = ResnetBlock3D(
|
301 |
+
dims=dims,
|
302 |
+
in_channels=input_channel,
|
303 |
+
out_channels=output_channel,
|
304 |
+
eps=1e-6,
|
305 |
+
groups=norm_num_groups,
|
306 |
+
norm_layer=norm_layer,
|
307 |
+
inject_noise=block_params.get("inject_noise", False),
|
308 |
+
timestep_conditioning=False,
|
309 |
+
)
|
310 |
+
elif block_name == "compress_time":
|
311 |
+
block = DepthToSpaceUpsample(
|
312 |
+
dims=dims, in_channels=input_channel, stride=(2, 1, 1)
|
313 |
+
)
|
314 |
+
elif block_name == "compress_space":
|
315 |
+
block = DepthToSpaceUpsample(
|
316 |
+
dims=dims, in_channels=input_channel, stride=(1, 2, 2)
|
317 |
+
)
|
318 |
+
elif block_name == "compress_all":
|
319 |
+
output_channel = output_channel // block_params.get("multiplier", 1)
|
320 |
+
block = DepthToSpaceUpsample(
|
321 |
+
dims=dims,
|
322 |
+
in_channels=input_channel,
|
323 |
+
stride=(2, 2, 2),
|
324 |
+
residual=block_params.get("residual", False),
|
325 |
+
out_channels_reduction_factor=block_params.get("multiplier", 1),
|
326 |
+
)
|
327 |
+
else:
|
328 |
+
raise ValueError(f"unknown layer: {block_name}")
|
329 |
+
|
330 |
+
self.up_blocks.append(block)
|
331 |
+
|
332 |
+
if norm_layer == "group_norm":
|
333 |
+
self.conv_norm_out = nn.GroupNorm(
|
334 |
+
num_channels=output_channel, num_groups=norm_num_groups, eps=1e-6
|
335 |
+
)
|
336 |
+
elif norm_layer == "pixel_norm":
|
337 |
+
self.conv_norm_out = PixelNorm()
|
338 |
+
elif norm_layer == "layer_norm":
|
339 |
+
self.conv_norm_out = LayerNorm(output_channel, eps=1e-6)
|
340 |
+
|
341 |
+
self.conv_act = nn.SiLU()
|
342 |
+
self.conv_out = make_conv_nd(
|
343 |
+
dims, output_channel, out_channels, 3, padding=1, causal=True
|
344 |
+
)
|
345 |
+
|
346 |
+
self.gradient_checkpointing = False
|
347 |
+
|
348 |
+
self.timestep_conditioning = timestep_conditioning
|
349 |
+
|
350 |
+
if timestep_conditioning:
|
351 |
+
self.timestep_scale_multiplier = nn.Parameter(
|
352 |
+
torch.tensor(1000.0, dtype=torch.float32)
|
353 |
+
)
|
354 |
+
self.last_time_embedder = PixArtAlphaCombinedTimestepSizeEmbeddings(
|
355 |
+
output_channel * 2, 0, operations=ops,
|
356 |
+
)
|
357 |
+
self.last_scale_shift_table = nn.Parameter(torch.empty(2, output_channel))
|
358 |
+
|
359 |
+
# def forward(self, sample: torch.FloatTensor, target_shape) -> torch.FloatTensor:
|
360 |
+
def forward(
|
361 |
+
self,
|
362 |
+
sample: torch.FloatTensor,
|
363 |
+
timestep: Optional[torch.Tensor] = None,
|
364 |
+
) -> torch.FloatTensor:
|
365 |
+
r"""The forward method of the `Decoder` class."""
|
366 |
+
batch_size = sample.shape[0]
|
367 |
+
|
368 |
+
sample = self.conv_in(sample, causal=self.causal)
|
369 |
+
|
370 |
+
checkpoint_fn = (
|
371 |
+
partial(torch.utils.checkpoint.checkpoint, use_reentrant=False)
|
372 |
+
if self.gradient_checkpointing and self.training
|
373 |
+
else lambda x: x
|
374 |
+
)
|
375 |
+
|
376 |
+
scaled_timestep = None
|
377 |
+
if self.timestep_conditioning:
|
378 |
+
assert (
|
379 |
+
timestep is not None
|
380 |
+
), "should pass timestep with timestep_conditioning=True"
|
381 |
+
scaled_timestep = timestep * self.timestep_scale_multiplier.to(dtype=sample.dtype, device=sample.device)
|
382 |
+
|
383 |
+
for up_block in self.up_blocks:
|
384 |
+
if self.timestep_conditioning and isinstance(up_block, UNetMidBlock3D):
|
385 |
+
sample = checkpoint_fn(up_block)(
|
386 |
+
sample, causal=self.causal, timestep=scaled_timestep
|
387 |
+
)
|
388 |
+
else:
|
389 |
+
sample = checkpoint_fn(up_block)(sample, causal=self.causal)
|
390 |
+
|
391 |
+
sample = self.conv_norm_out(sample)
|
392 |
+
|
393 |
+
if self.timestep_conditioning:
|
394 |
+
embedded_timestep = self.last_time_embedder(
|
395 |
+
timestep=scaled_timestep.flatten(),
|
396 |
+
resolution=None,
|
397 |
+
aspect_ratio=None,
|
398 |
+
batch_size=sample.shape[0],
|
399 |
+
hidden_dtype=sample.dtype,
|
400 |
+
)
|
401 |
+
embedded_timestep = embedded_timestep.view(
|
402 |
+
batch_size, embedded_timestep.shape[-1], 1, 1, 1
|
403 |
+
)
|
404 |
+
ada_values = self.last_scale_shift_table[
|
405 |
+
None, ..., None, None, None
|
406 |
+
].to(device=sample.device, dtype=sample.dtype) + embedded_timestep.reshape(
|
407 |
+
batch_size,
|
408 |
+
2,
|
409 |
+
-1,
|
410 |
+
embedded_timestep.shape[-3],
|
411 |
+
embedded_timestep.shape[-2],
|
412 |
+
embedded_timestep.shape[-1],
|
413 |
+
)
|
414 |
+
shift, scale = ada_values.unbind(dim=1)
|
415 |
+
sample = sample * (1 + scale) + shift
|
416 |
+
|
417 |
+
sample = self.conv_act(sample)
|
418 |
+
sample = self.conv_out(sample, causal=self.causal)
|
419 |
+
|
420 |
+
sample = unpatchify(sample, patch_size_hw=self.patch_size, patch_size_t=1)
|
421 |
+
|
422 |
+
return sample
|
423 |
+
|
424 |
+
|
425 |
+
class UNetMidBlock3D(nn.Module):
|
426 |
+
"""
|
427 |
+
A 3D UNet mid-block [`UNetMidBlock3D`] with multiple residual blocks.
|
428 |
+
|
429 |
+
Args:
|
430 |
+
in_channels (`int`): The number of input channels.
|
431 |
+
dropout (`float`, *optional*, defaults to 0.0): The dropout rate.
|
432 |
+
num_layers (`int`, *optional*, defaults to 1): The number of residual blocks.
|
433 |
+
resnet_eps (`float`, *optional*, 1e-6 ): The epsilon value for the resnet blocks.
|
434 |
+
resnet_groups (`int`, *optional*, defaults to 32):
|
435 |
+
The number of groups to use in the group normalization layers of the resnet blocks.
|
436 |
+
|
437 |
+
Returns:
|
438 |
+
`torch.FloatTensor`: The output of the last residual block, which is a tensor of shape `(batch_size,
|
439 |
+
in_channels, height, width)`.
|
440 |
+
|
441 |
+
"""
|
442 |
+
|
443 |
+
def __init__(
|
444 |
+
self,
|
445 |
+
dims: Union[int, Tuple[int, int]],
|
446 |
+
in_channels: int,
|
447 |
+
dropout: float = 0.0,
|
448 |
+
num_layers: int = 1,
|
449 |
+
resnet_eps: float = 1e-6,
|
450 |
+
resnet_groups: int = 32,
|
451 |
+
norm_layer: str = "group_norm",
|
452 |
+
inject_noise: bool = False,
|
453 |
+
timestep_conditioning: bool = False,
|
454 |
+
):
|
455 |
+
super().__init__()
|
456 |
+
resnet_groups = (
|
457 |
+
resnet_groups if resnet_groups is not None else min(in_channels // 4, 32)
|
458 |
+
)
|
459 |
+
|
460 |
+
self.timestep_conditioning = timestep_conditioning
|
461 |
+
|
462 |
+
if timestep_conditioning:
|
463 |
+
self.time_embedder = PixArtAlphaCombinedTimestepSizeEmbeddings(
|
464 |
+
in_channels * 4, 0, operations=ops,
|
465 |
+
)
|
466 |
+
|
467 |
+
self.res_blocks = nn.ModuleList(
|
468 |
+
[
|
469 |
+
ResnetBlock3D(
|
470 |
+
dims=dims,
|
471 |
+
in_channels=in_channels,
|
472 |
+
out_channels=in_channels,
|
473 |
+
eps=resnet_eps,
|
474 |
+
groups=resnet_groups,
|
475 |
+
dropout=dropout,
|
476 |
+
norm_layer=norm_layer,
|
477 |
+
inject_noise=inject_noise,
|
478 |
+
timestep_conditioning=timestep_conditioning,
|
479 |
+
)
|
480 |
+
for _ in range(num_layers)
|
481 |
+
]
|
482 |
+
)
|
483 |
+
|
484 |
+
def forward(
|
485 |
+
self, hidden_states: torch.FloatTensor, causal: bool = True, timestep: Optional[torch.Tensor] = None
|
486 |
+
) -> torch.FloatTensor:
|
487 |
+
timestep_embed = None
|
488 |
+
if self.timestep_conditioning:
|
489 |
+
assert (
|
490 |
+
timestep is not None
|
491 |
+
), "should pass timestep with timestep_conditioning=True"
|
492 |
+
batch_size = hidden_states.shape[0]
|
493 |
+
timestep_embed = self.time_embedder(
|
494 |
+
timestep=timestep.flatten(),
|
495 |
+
resolution=None,
|
496 |
+
aspect_ratio=None,
|
497 |
+
batch_size=batch_size,
|
498 |
+
hidden_dtype=hidden_states.dtype,
|
499 |
+
)
|
500 |
+
timestep_embed = timestep_embed.view(
|
501 |
+
batch_size, timestep_embed.shape[-1], 1, 1, 1
|
502 |
+
)
|
503 |
+
|
504 |
+
for resnet in self.res_blocks:
|
505 |
+
hidden_states = resnet(hidden_states, causal=causal, timestep=timestep_embed)
|
506 |
+
|
507 |
+
return hidden_states
|
508 |
+
|
509 |
+
|
510 |
+
class DepthToSpaceUpsample(nn.Module):
|
511 |
+
def __init__(
|
512 |
+
self, dims, in_channels, stride, residual=False, out_channels_reduction_factor=1
|
513 |
+
):
|
514 |
+
super().__init__()
|
515 |
+
self.stride = stride
|
516 |
+
self.out_channels = (
|
517 |
+
math.prod(stride) * in_channels // out_channels_reduction_factor
|
518 |
+
)
|
519 |
+
self.conv = make_conv_nd(
|
520 |
+
dims=dims,
|
521 |
+
in_channels=in_channels,
|
522 |
+
out_channels=self.out_channels,
|
523 |
+
kernel_size=3,
|
524 |
+
stride=1,
|
525 |
+
causal=True,
|
526 |
+
)
|
527 |
+
self.residual = residual
|
528 |
+
self.out_channels_reduction_factor = out_channels_reduction_factor
|
529 |
+
|
530 |
+
def forward(self, x, causal: bool = True, timestep: Optional[torch.Tensor] = None):
|
531 |
+
if self.residual:
|
532 |
+
# Reshape and duplicate the input to match the output shape
|
533 |
+
x_in = rearrange(
|
534 |
+
x,
|
535 |
+
"b (c p1 p2 p3) d h w -> b c (d p1) (h p2) (w p3)",
|
536 |
+
p1=self.stride[0],
|
537 |
+
p2=self.stride[1],
|
538 |
+
p3=self.stride[2],
|
539 |
+
)
|
540 |
+
num_repeat = math.prod(self.stride) // self.out_channels_reduction_factor
|
541 |
+
x_in = x_in.repeat(1, num_repeat, 1, 1, 1)
|
542 |
+
if self.stride[0] == 2:
|
543 |
+
x_in = x_in[:, :, 1:, :, :]
|
544 |
+
x = self.conv(x, causal=causal)
|
545 |
+
x = rearrange(
|
546 |
+
x,
|
547 |
+
"b (c p1 p2 p3) d h w -> b c (d p1) (h p2) (w p3)",
|
548 |
+
p1=self.stride[0],
|
549 |
+
p2=self.stride[1],
|
550 |
+
p3=self.stride[2],
|
551 |
+
)
|
552 |
+
if self.stride[0] == 2:
|
553 |
+
x = x[:, :, 1:, :, :]
|
554 |
+
if self.residual:
|
555 |
+
x = x + x_in
|
556 |
+
return x
|
557 |
+
|
558 |
+
class LayerNorm(nn.Module):
|
559 |
+
def __init__(self, dim, eps, elementwise_affine=True) -> None:
|
560 |
+
super().__init__()
|
561 |
+
self.norm = nn.LayerNorm(dim, eps=eps, elementwise_affine=elementwise_affine)
|
562 |
+
|
563 |
+
def forward(self, x):
|
564 |
+
x = rearrange(x, "b c d h w -> b d h w c")
|
565 |
+
x = self.norm(x)
|
566 |
+
x = rearrange(x, "b d h w c -> b c d h w")
|
567 |
+
return x
|
568 |
+
|
569 |
+
|
570 |
+
class ResnetBlock3D(nn.Module):
|
571 |
+
r"""
|
572 |
+
A Resnet block.
|
573 |
+
|
574 |
+
Parameters:
|
575 |
+
in_channels (`int`): The number of channels in the input.
|
576 |
+
out_channels (`int`, *optional*, default to be `None`):
|
577 |
+
The number of output channels for the first conv layer. If None, same as `in_channels`.
|
578 |
+
dropout (`float`, *optional*, defaults to `0.0`): The dropout probability to use.
|
579 |
+
groups (`int`, *optional*, default to `32`): The number of groups to use for the first normalization layer.
|
580 |
+
eps (`float`, *optional*, defaults to `1e-6`): The epsilon to use for the normalization.
|
581 |
+
"""
|
582 |
+
|
583 |
+
def __init__(
|
584 |
+
self,
|
585 |
+
dims: Union[int, Tuple[int, int]],
|
586 |
+
in_channels: int,
|
587 |
+
out_channels: Optional[int] = None,
|
588 |
+
dropout: float = 0.0,
|
589 |
+
groups: int = 32,
|
590 |
+
eps: float = 1e-6,
|
591 |
+
norm_layer: str = "group_norm",
|
592 |
+
inject_noise: bool = False,
|
593 |
+
timestep_conditioning: bool = False,
|
594 |
+
):
|
595 |
+
super().__init__()
|
596 |
+
self.in_channels = in_channels
|
597 |
+
out_channels = in_channels if out_channels is None else out_channels
|
598 |
+
self.out_channels = out_channels
|
599 |
+
self.inject_noise = inject_noise
|
600 |
+
|
601 |
+
if norm_layer == "group_norm":
|
602 |
+
self.norm1 = nn.GroupNorm(
|
603 |
+
num_groups=groups, num_channels=in_channels, eps=eps, affine=True
|
604 |
+
)
|
605 |
+
elif norm_layer == "pixel_norm":
|
606 |
+
self.norm1 = PixelNorm()
|
607 |
+
elif norm_layer == "layer_norm":
|
608 |
+
self.norm1 = LayerNorm(in_channels, eps=eps, elementwise_affine=True)
|
609 |
+
|
610 |
+
self.non_linearity = nn.SiLU()
|
611 |
+
|
612 |
+
self.conv1 = make_conv_nd(
|
613 |
+
dims,
|
614 |
+
in_channels,
|
615 |
+
out_channels,
|
616 |
+
kernel_size=3,
|
617 |
+
stride=1,
|
618 |
+
padding=1,
|
619 |
+
causal=True,
|
620 |
+
)
|
621 |
+
|
622 |
+
if inject_noise:
|
623 |
+
self.per_channel_scale1 = nn.Parameter(torch.zeros((in_channels, 1, 1)))
|
624 |
+
|
625 |
+
if norm_layer == "group_norm":
|
626 |
+
self.norm2 = nn.GroupNorm(
|
627 |
+
num_groups=groups, num_channels=out_channels, eps=eps, affine=True
|
628 |
+
)
|
629 |
+
elif norm_layer == "pixel_norm":
|
630 |
+
self.norm2 = PixelNorm()
|
631 |
+
elif norm_layer == "layer_norm":
|
632 |
+
self.norm2 = LayerNorm(out_channels, eps=eps, elementwise_affine=True)
|
633 |
+
|
634 |
+
self.dropout = torch.nn.Dropout(dropout)
|
635 |
+
|
636 |
+
self.conv2 = make_conv_nd(
|
637 |
+
dims,
|
638 |
+
out_channels,
|
639 |
+
out_channels,
|
640 |
+
kernel_size=3,
|
641 |
+
stride=1,
|
642 |
+
padding=1,
|
643 |
+
causal=True,
|
644 |
+
)
|
645 |
+
|
646 |
+
if inject_noise:
|
647 |
+
self.per_channel_scale2 = nn.Parameter(torch.zeros((in_channels, 1, 1)))
|
648 |
+
|
649 |
+
self.conv_shortcut = (
|
650 |
+
make_linear_nd(
|
651 |
+
dims=dims, in_channels=in_channels, out_channels=out_channels
|
652 |
+
)
|
653 |
+
if in_channels != out_channels
|
654 |
+
else nn.Identity()
|
655 |
+
)
|
656 |
+
|
657 |
+
self.norm3 = (
|
658 |
+
LayerNorm(in_channels, eps=eps, elementwise_affine=True)
|
659 |
+
if in_channels != out_channels
|
660 |
+
else nn.Identity()
|
661 |
+
)
|
662 |
+
|
663 |
+
self.timestep_conditioning = timestep_conditioning
|
664 |
+
|
665 |
+
if timestep_conditioning:
|
666 |
+
self.scale_shift_table = nn.Parameter(
|
667 |
+
torch.randn(4, in_channels) / in_channels**0.5
|
668 |
+
)
|
669 |
+
|
670 |
+
def _feed_spatial_noise(
|
671 |
+
self, hidden_states: torch.FloatTensor, per_channel_scale: torch.FloatTensor
|
672 |
+
) -> torch.FloatTensor:
|
673 |
+
spatial_shape = hidden_states.shape[-2:]
|
674 |
+
device = hidden_states.device
|
675 |
+
dtype = hidden_states.dtype
|
676 |
+
|
677 |
+
# similar to the "explicit noise inputs" method in style-gan
|
678 |
+
spatial_noise = torch.randn(spatial_shape, device=device, dtype=dtype)[None]
|
679 |
+
scaled_noise = (spatial_noise * per_channel_scale)[None, :, None, ...]
|
680 |
+
hidden_states = hidden_states + scaled_noise
|
681 |
+
|
682 |
+
return hidden_states
|
683 |
+
|
684 |
+
def forward(
|
685 |
+
self,
|
686 |
+
input_tensor: torch.FloatTensor,
|
687 |
+
causal: bool = True,
|
688 |
+
timestep: Optional[torch.Tensor] = None,
|
689 |
+
) -> torch.FloatTensor:
|
690 |
+
hidden_states = input_tensor
|
691 |
+
batch_size = hidden_states.shape[0]
|
692 |
+
|
693 |
+
hidden_states = self.norm1(hidden_states)
|
694 |
+
if self.timestep_conditioning:
|
695 |
+
assert (
|
696 |
+
timestep is not None
|
697 |
+
), "should pass timestep with timestep_conditioning=True"
|
698 |
+
ada_values = self.scale_shift_table[
|
699 |
+
None, ..., None, None, None
|
700 |
+
].to(device=hidden_states.device, dtype=hidden_states.dtype) + timestep.reshape(
|
701 |
+
batch_size,
|
702 |
+
4,
|
703 |
+
-1,
|
704 |
+
timestep.shape[-3],
|
705 |
+
timestep.shape[-2],
|
706 |
+
timestep.shape[-1],
|
707 |
+
)
|
708 |
+
shift1, scale1, shift2, scale2 = ada_values.unbind(dim=1)
|
709 |
+
|
710 |
+
hidden_states = hidden_states * (1 + scale1) + shift1
|
711 |
+
|
712 |
+
hidden_states = self.non_linearity(hidden_states)
|
713 |
+
|
714 |
+
hidden_states = self.conv1(hidden_states, causal=causal)
|
715 |
+
|
716 |
+
if self.inject_noise:
|
717 |
+
hidden_states = self._feed_spatial_noise(
|
718 |
+
hidden_states, self.per_channel_scale1.to(device=hidden_states.device, dtype=hidden_states.dtype)
|
719 |
+
)
|
720 |
+
|
721 |
+
hidden_states = self.norm2(hidden_states)
|
722 |
+
|
723 |
+
if self.timestep_conditioning:
|
724 |
+
hidden_states = hidden_states * (1 + scale2) + shift2
|
725 |
+
|
726 |
+
hidden_states = self.non_linearity(hidden_states)
|
727 |
+
|
728 |
+
hidden_states = self.dropout(hidden_states)
|
729 |
+
|
730 |
+
hidden_states = self.conv2(hidden_states, causal=causal)
|
731 |
+
|
732 |
+
if self.inject_noise:
|
733 |
+
hidden_states = self._feed_spatial_noise(
|
734 |
+
hidden_states, self.per_channel_scale2.to(device=hidden_states.device, dtype=hidden_states.dtype)
|
735 |
+
)
|
736 |
+
|
737 |
+
input_tensor = self.norm3(input_tensor)
|
738 |
+
|
739 |
+
batch_size = input_tensor.shape[0]
|
740 |
+
|
741 |
+
input_tensor = self.conv_shortcut(input_tensor)
|
742 |
+
|
743 |
+
output_tensor = input_tensor + hidden_states
|
744 |
+
|
745 |
+
return output_tensor
|
746 |
+
|
747 |
+
|
748 |
+
def patchify(x, patch_size_hw, patch_size_t=1):
|
749 |
+
if patch_size_hw == 1 and patch_size_t == 1:
|
750 |
+
return x
|
751 |
+
if x.dim() == 4:
|
752 |
+
x = rearrange(
|
753 |
+
x, "b c (h q) (w r) -> b (c r q) h w", q=patch_size_hw, r=patch_size_hw
|
754 |
+
)
|
755 |
+
elif x.dim() == 5:
|
756 |
+
x = rearrange(
|
757 |
+
x,
|
758 |
+
"b c (f p) (h q) (w r) -> b (c p r q) f h w",
|
759 |
+
p=patch_size_t,
|
760 |
+
q=patch_size_hw,
|
761 |
+
r=patch_size_hw,
|
762 |
+
)
|
763 |
+
else:
|
764 |
+
raise ValueError(f"Invalid input shape: {x.shape}")
|
765 |
+
|
766 |
+
return x
|
767 |
+
|
768 |
+
|
769 |
+
def unpatchify(x, patch_size_hw, patch_size_t=1):
|
770 |
+
if patch_size_hw == 1 and patch_size_t == 1:
|
771 |
+
return x
|
772 |
+
|
773 |
+
if x.dim() == 4:
|
774 |
+
x = rearrange(
|
775 |
+
x, "b (c r q) h w -> b c (h q) (w r)", q=patch_size_hw, r=patch_size_hw
|
776 |
+
)
|
777 |
+
elif x.dim() == 5:
|
778 |
+
x = rearrange(
|
779 |
+
x,
|
780 |
+
"b (c p r q) f h w -> b c (f p) (h q) (w r)",
|
781 |
+
p=patch_size_t,
|
782 |
+
q=patch_size_hw,
|
783 |
+
r=patch_size_hw,
|
784 |
+
)
|
785 |
+
|
786 |
+
return x
|
787 |
+
|
788 |
+
class processor(nn.Module):
|
789 |
+
def __init__(self):
|
790 |
+
super().__init__()
|
791 |
+
self.register_buffer("std-of-means", torch.empty(128))
|
792 |
+
self.register_buffer("mean-of-means", torch.empty(128))
|
793 |
+
self.register_buffer("mean-of-stds", torch.empty(128))
|
794 |
+
self.register_buffer("mean-of-stds_over_std-of-means", torch.empty(128))
|
795 |
+
self.register_buffer("channel", torch.empty(128))
|
796 |
+
|
797 |
+
def un_normalize(self, x):
|
798 |
+
return (x * self.get_buffer("std-of-means").view(1, -1, 1, 1, 1).to(x)) + self.get_buffer("mean-of-means").view(1, -1, 1, 1, 1).to(x)
|
799 |
+
|
800 |
+
def normalize(self, x):
|
801 |
+
return (x - self.get_buffer("mean-of-means").view(1, -1, 1, 1, 1).to(x)) / self.get_buffer("std-of-means").view(1, -1, 1, 1, 1).to(x)
|
802 |
+
|
803 |
+
class VideoVAE(nn.Module):
|
804 |
+
def __init__(self, version=0):
|
805 |
+
super().__init__()
|
806 |
+
|
807 |
+
if version == 0:
|
808 |
+
config = {
|
809 |
+
"_class_name": "CausalVideoAutoencoder",
|
810 |
+
"dims": 3,
|
811 |
+
"in_channels": 3,
|
812 |
+
"out_channels": 3,
|
813 |
+
"latent_channels": 128,
|
814 |
+
"blocks": [
|
815 |
+
["res_x", 4],
|
816 |
+
["compress_all", 1],
|
817 |
+
["res_x_y", 1],
|
818 |
+
["res_x", 3],
|
819 |
+
["compress_all", 1],
|
820 |
+
["res_x_y", 1],
|
821 |
+
["res_x", 3],
|
822 |
+
["compress_all", 1],
|
823 |
+
["res_x", 3],
|
824 |
+
["res_x", 4],
|
825 |
+
],
|
826 |
+
"scaling_factor": 1.0,
|
827 |
+
"norm_layer": "pixel_norm",
|
828 |
+
"patch_size": 4,
|
829 |
+
"latent_log_var": "uniform",
|
830 |
+
"use_quant_conv": False,
|
831 |
+
"causal_decoder": False,
|
832 |
+
}
|
833 |
+
else:
|
834 |
+
config = {
|
835 |
+
"_class_name": "CausalVideoAutoencoder",
|
836 |
+
"dims": 3,
|
837 |
+
"in_channels": 3,
|
838 |
+
"out_channels": 3,
|
839 |
+
"latent_channels": 128,
|
840 |
+
"decoder_blocks": [
|
841 |
+
["res_x", {"num_layers": 5, "inject_noise": True}],
|
842 |
+
["compress_all", {"residual": True, "multiplier": 2}],
|
843 |
+
["res_x", {"num_layers": 6, "inject_noise": True}],
|
844 |
+
["compress_all", {"residual": True, "multiplier": 2}],
|
845 |
+
["res_x", {"num_layers": 7, "inject_noise": True}],
|
846 |
+
["compress_all", {"residual": True, "multiplier": 2}],
|
847 |
+
["res_x", {"num_layers": 8, "inject_noise": False}]
|
848 |
+
],
|
849 |
+
"encoder_blocks": [
|
850 |
+
["res_x", {"num_layers": 4}],
|
851 |
+
["compress_all", {}],
|
852 |
+
["res_x_y", 1],
|
853 |
+
["res_x", {"num_layers": 3}],
|
854 |
+
["compress_all", {}],
|
855 |
+
["res_x_y", 1],
|
856 |
+
["res_x", {"num_layers": 3}],
|
857 |
+
["compress_all", {}],
|
858 |
+
["res_x", {"num_layers": 3}],
|
859 |
+
["res_x", {"num_layers": 4}]
|
860 |
+
],
|
861 |
+
"scaling_factor": 1.0,
|
862 |
+
"norm_layer": "pixel_norm",
|
863 |
+
"patch_size": 4,
|
864 |
+
"latent_log_var": "uniform",
|
865 |
+
"use_quant_conv": False,
|
866 |
+
"causal_decoder": False,
|
867 |
+
"timestep_conditioning": True,
|
868 |
+
}
|
869 |
+
|
870 |
+
double_z = config.get("double_z", True)
|
871 |
+
latent_log_var = config.get(
|
872 |
+
"latent_log_var", "per_channel" if double_z else "none"
|
873 |
+
)
|
874 |
+
|
875 |
+
self.encoder = Encoder(
|
876 |
+
dims=config["dims"],
|
877 |
+
in_channels=config.get("in_channels", 3),
|
878 |
+
out_channels=config["latent_channels"],
|
879 |
+
blocks=config.get("encoder_blocks", config.get("encoder_blocks", config.get("blocks"))),
|
880 |
+
patch_size=config.get("patch_size", 1),
|
881 |
+
latent_log_var=latent_log_var,
|
882 |
+
norm_layer=config.get("norm_layer", "group_norm"),
|
883 |
+
)
|
884 |
+
|
885 |
+
self.decoder = Decoder(
|
886 |
+
dims=config["dims"],
|
887 |
+
in_channels=config["latent_channels"],
|
888 |
+
out_channels=config.get("out_channels", 3),
|
889 |
+
blocks=config.get("decoder_blocks", config.get("decoder_blocks", config.get("blocks"))),
|
890 |
+
patch_size=config.get("patch_size", 1),
|
891 |
+
norm_layer=config.get("norm_layer", "group_norm"),
|
892 |
+
causal=config.get("causal_decoder", False),
|
893 |
+
timestep_conditioning=config.get("timestep_conditioning", False),
|
894 |
+
)
|
895 |
+
|
896 |
+
self.timestep_conditioning = config.get("timestep_conditioning", False)
|
897 |
+
self.per_channel_statistics = processor()
|
898 |
+
|
899 |
+
def encode(self, x):
|
900 |
+
means, logvar = torch.chunk(self.encoder(x), 2, dim=1)
|
901 |
+
return self.per_channel_statistics.normalize(means)
|
902 |
+
|
903 |
+
def decode(self, x, timestep=0.05, noise_scale=0.025):
|
904 |
+
if self.timestep_conditioning: #TODO: seed
|
905 |
+
x = torch.randn_like(x) * noise_scale + (1.0 - noise_scale) * x
|
906 |
+
return self.decoder(self.per_channel_statistics.un_normalize(x), timestep=timestep)
|
907 |
+
|
conv_nd_factory.py
ADDED
@@ -0,0 +1,82 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Tuple, Union
|
2 |
+
|
3 |
+
|
4 |
+
from .dual_conv3d import DualConv3d
|
5 |
+
from .causal_conv3d import CausalConv3d
|
6 |
+
import comfy.ops
|
7 |
+
ops = comfy.ops.disable_weight_init
|
8 |
+
|
9 |
+
def make_conv_nd(
|
10 |
+
dims: Union[int, Tuple[int, int]],
|
11 |
+
in_channels: int,
|
12 |
+
out_channels: int,
|
13 |
+
kernel_size: int,
|
14 |
+
stride=1,
|
15 |
+
padding=0,
|
16 |
+
dilation=1,
|
17 |
+
groups=1,
|
18 |
+
bias=True,
|
19 |
+
causal=False,
|
20 |
+
):
|
21 |
+
if dims == 2:
|
22 |
+
return ops.Conv2d(
|
23 |
+
in_channels=in_channels,
|
24 |
+
out_channels=out_channels,
|
25 |
+
kernel_size=kernel_size,
|
26 |
+
stride=stride,
|
27 |
+
padding=padding,
|
28 |
+
dilation=dilation,
|
29 |
+
groups=groups,
|
30 |
+
bias=bias,
|
31 |
+
)
|
32 |
+
elif dims == 3:
|
33 |
+
if causal:
|
34 |
+
return CausalConv3d(
|
35 |
+
in_channels=in_channels,
|
36 |
+
out_channels=out_channels,
|
37 |
+
kernel_size=kernel_size,
|
38 |
+
stride=stride,
|
39 |
+
padding=padding,
|
40 |
+
dilation=dilation,
|
41 |
+
groups=groups,
|
42 |
+
bias=bias,
|
43 |
+
)
|
44 |
+
return ops.Conv3d(
|
45 |
+
in_channels=in_channels,
|
46 |
+
out_channels=out_channels,
|
47 |
+
kernel_size=kernel_size,
|
48 |
+
stride=stride,
|
49 |
+
padding=padding,
|
50 |
+
dilation=dilation,
|
51 |
+
groups=groups,
|
52 |
+
bias=bias,
|
53 |
+
)
|
54 |
+
elif dims == (2, 1):
|
55 |
+
return DualConv3d(
|
56 |
+
in_channels=in_channels,
|
57 |
+
out_channels=out_channels,
|
58 |
+
kernel_size=kernel_size,
|
59 |
+
stride=stride,
|
60 |
+
padding=padding,
|
61 |
+
bias=bias,
|
62 |
+
)
|
63 |
+
else:
|
64 |
+
raise ValueError(f"unsupported dimensions: {dims}")
|
65 |
+
|
66 |
+
|
67 |
+
def make_linear_nd(
|
68 |
+
dims: int,
|
69 |
+
in_channels: int,
|
70 |
+
out_channels: int,
|
71 |
+
bias=True,
|
72 |
+
):
|
73 |
+
if dims == 2:
|
74 |
+
return ops.Conv2d(
|
75 |
+
in_channels=in_channels, out_channels=out_channels, kernel_size=1, bias=bias
|
76 |
+
)
|
77 |
+
elif dims == 3 or dims == (2, 1):
|
78 |
+
return ops.Conv3d(
|
79 |
+
in_channels=in_channels, out_channels=out_channels, kernel_size=1, bias=bias
|
80 |
+
)
|
81 |
+
else:
|
82 |
+
raise ValueError(f"unsupported dimensions: {dims}")
|
dual_conv3d.py
ADDED
@@ -0,0 +1,195 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
from typing import Tuple, Union
|
3 |
+
|
4 |
+
import torch
|
5 |
+
import torch.nn as nn
|
6 |
+
import torch.nn.functional as F
|
7 |
+
from einops import rearrange
|
8 |
+
|
9 |
+
|
10 |
+
class DualConv3d(nn.Module):
|
11 |
+
def __init__(
|
12 |
+
self,
|
13 |
+
in_channels,
|
14 |
+
out_channels,
|
15 |
+
kernel_size,
|
16 |
+
stride: Union[int, Tuple[int, int, int]] = 1,
|
17 |
+
padding: Union[int, Tuple[int, int, int]] = 0,
|
18 |
+
dilation: Union[int, Tuple[int, int, int]] = 1,
|
19 |
+
groups=1,
|
20 |
+
bias=True,
|
21 |
+
):
|
22 |
+
super(DualConv3d, self).__init__()
|
23 |
+
|
24 |
+
self.in_channels = in_channels
|
25 |
+
self.out_channels = out_channels
|
26 |
+
# Ensure kernel_size, stride, padding, and dilation are tuples of length 3
|
27 |
+
if isinstance(kernel_size, int):
|
28 |
+
kernel_size = (kernel_size, kernel_size, kernel_size)
|
29 |
+
if kernel_size == (1, 1, 1):
|
30 |
+
raise ValueError(
|
31 |
+
"kernel_size must be greater than 1. Use make_linear_nd instead."
|
32 |
+
)
|
33 |
+
if isinstance(stride, int):
|
34 |
+
stride = (stride, stride, stride)
|
35 |
+
if isinstance(padding, int):
|
36 |
+
padding = (padding, padding, padding)
|
37 |
+
if isinstance(dilation, int):
|
38 |
+
dilation = (dilation, dilation, dilation)
|
39 |
+
|
40 |
+
# Set parameters for convolutions
|
41 |
+
self.groups = groups
|
42 |
+
self.bias = bias
|
43 |
+
|
44 |
+
# Define the size of the channels after the first convolution
|
45 |
+
intermediate_channels = (
|
46 |
+
out_channels if in_channels < out_channels else in_channels
|
47 |
+
)
|
48 |
+
|
49 |
+
# Define parameters for the first convolution
|
50 |
+
self.weight1 = nn.Parameter(
|
51 |
+
torch.Tensor(
|
52 |
+
intermediate_channels,
|
53 |
+
in_channels // groups,
|
54 |
+
1,
|
55 |
+
kernel_size[1],
|
56 |
+
kernel_size[2],
|
57 |
+
)
|
58 |
+
)
|
59 |
+
self.stride1 = (1, stride[1], stride[2])
|
60 |
+
self.padding1 = (0, padding[1], padding[2])
|
61 |
+
self.dilation1 = (1, dilation[1], dilation[2])
|
62 |
+
if bias:
|
63 |
+
self.bias1 = nn.Parameter(torch.Tensor(intermediate_channels))
|
64 |
+
else:
|
65 |
+
self.register_parameter("bias1", None)
|
66 |
+
|
67 |
+
# Define parameters for the second convolution
|
68 |
+
self.weight2 = nn.Parameter(
|
69 |
+
torch.Tensor(
|
70 |
+
out_channels, intermediate_channels // groups, kernel_size[0], 1, 1
|
71 |
+
)
|
72 |
+
)
|
73 |
+
self.stride2 = (stride[0], 1, 1)
|
74 |
+
self.padding2 = (padding[0], 0, 0)
|
75 |
+
self.dilation2 = (dilation[0], 1, 1)
|
76 |
+
if bias:
|
77 |
+
self.bias2 = nn.Parameter(torch.Tensor(out_channels))
|
78 |
+
else:
|
79 |
+
self.register_parameter("bias2", None)
|
80 |
+
|
81 |
+
# Initialize weights and biases
|
82 |
+
self.reset_parameters()
|
83 |
+
|
84 |
+
def reset_parameters(self):
|
85 |
+
nn.init.kaiming_uniform_(self.weight1, a=math.sqrt(5))
|
86 |
+
nn.init.kaiming_uniform_(self.weight2, a=math.sqrt(5))
|
87 |
+
if self.bias:
|
88 |
+
fan_in1, _ = nn.init._calculate_fan_in_and_fan_out(self.weight1)
|
89 |
+
bound1 = 1 / math.sqrt(fan_in1)
|
90 |
+
nn.init.uniform_(self.bias1, -bound1, bound1)
|
91 |
+
fan_in2, _ = nn.init._calculate_fan_in_and_fan_out(self.weight2)
|
92 |
+
bound2 = 1 / math.sqrt(fan_in2)
|
93 |
+
nn.init.uniform_(self.bias2, -bound2, bound2)
|
94 |
+
|
95 |
+
def forward(self, x, use_conv3d=False, skip_time_conv=False):
|
96 |
+
if use_conv3d:
|
97 |
+
return self.forward_with_3d(x=x, skip_time_conv=skip_time_conv)
|
98 |
+
else:
|
99 |
+
return self.forward_with_2d(x=x, skip_time_conv=skip_time_conv)
|
100 |
+
|
101 |
+
def forward_with_3d(self, x, skip_time_conv):
|
102 |
+
# First convolution
|
103 |
+
x = F.conv3d(
|
104 |
+
x,
|
105 |
+
self.weight1,
|
106 |
+
self.bias1,
|
107 |
+
self.stride1,
|
108 |
+
self.padding1,
|
109 |
+
self.dilation1,
|
110 |
+
self.groups,
|
111 |
+
)
|
112 |
+
|
113 |
+
if skip_time_conv:
|
114 |
+
return x
|
115 |
+
|
116 |
+
# Second convolution
|
117 |
+
x = F.conv3d(
|
118 |
+
x,
|
119 |
+
self.weight2,
|
120 |
+
self.bias2,
|
121 |
+
self.stride2,
|
122 |
+
self.padding2,
|
123 |
+
self.dilation2,
|
124 |
+
self.groups,
|
125 |
+
)
|
126 |
+
|
127 |
+
return x
|
128 |
+
|
129 |
+
def forward_with_2d(self, x, skip_time_conv):
|
130 |
+
b, c, d, h, w = x.shape
|
131 |
+
|
132 |
+
# First 2D convolution
|
133 |
+
x = rearrange(x, "b c d h w -> (b d) c h w")
|
134 |
+
# Squeeze the depth dimension out of weight1 since it's 1
|
135 |
+
weight1 = self.weight1.squeeze(2)
|
136 |
+
# Select stride, padding, and dilation for the 2D convolution
|
137 |
+
stride1 = (self.stride1[1], self.stride1[2])
|
138 |
+
padding1 = (self.padding1[1], self.padding1[2])
|
139 |
+
dilation1 = (self.dilation1[1], self.dilation1[2])
|
140 |
+
x = F.conv2d(x, weight1, self.bias1, stride1, padding1, dilation1, self.groups)
|
141 |
+
|
142 |
+
_, _, h, w = x.shape
|
143 |
+
|
144 |
+
if skip_time_conv:
|
145 |
+
x = rearrange(x, "(b d) c h w -> b c d h w", b=b)
|
146 |
+
return x
|
147 |
+
|
148 |
+
# Second convolution which is essentially treated as a 1D convolution across the 'd' dimension
|
149 |
+
x = rearrange(x, "(b d) c h w -> (b h w) c d", b=b)
|
150 |
+
|
151 |
+
# Reshape weight2 to match the expected dimensions for conv1d
|
152 |
+
weight2 = self.weight2.squeeze(-1).squeeze(-1)
|
153 |
+
# Use only the relevant dimension for stride, padding, and dilation for the 1D convolution
|
154 |
+
stride2 = self.stride2[0]
|
155 |
+
padding2 = self.padding2[0]
|
156 |
+
dilation2 = self.dilation2[0]
|
157 |
+
x = F.conv1d(x, weight2, self.bias2, stride2, padding2, dilation2, self.groups)
|
158 |
+
x = rearrange(x, "(b h w) c d -> b c d h w", b=b, h=h, w=w)
|
159 |
+
|
160 |
+
return x
|
161 |
+
|
162 |
+
@property
|
163 |
+
def weight(self):
|
164 |
+
return self.weight2
|
165 |
+
|
166 |
+
|
167 |
+
def test_dual_conv3d_consistency():
|
168 |
+
# Initialize parameters
|
169 |
+
in_channels = 3
|
170 |
+
out_channels = 5
|
171 |
+
kernel_size = (3, 3, 3)
|
172 |
+
stride = (2, 2, 2)
|
173 |
+
padding = (1, 1, 1)
|
174 |
+
|
175 |
+
# Create an instance of the DualConv3d class
|
176 |
+
dual_conv3d = DualConv3d(
|
177 |
+
in_channels=in_channels,
|
178 |
+
out_channels=out_channels,
|
179 |
+
kernel_size=kernel_size,
|
180 |
+
stride=stride,
|
181 |
+
padding=padding,
|
182 |
+
bias=True,
|
183 |
+
)
|
184 |
+
|
185 |
+
# Example input tensor
|
186 |
+
test_input = torch.randn(1, 3, 10, 10, 10)
|
187 |
+
|
188 |
+
# Perform forward passes with both 3D and 2D settings
|
189 |
+
output_conv3d = dual_conv3d(test_input, use_conv3d=True)
|
190 |
+
output_2d = dual_conv3d(test_input, use_conv3d=False)
|
191 |
+
|
192 |
+
# Assert that the outputs from both methods are sufficiently close
|
193 |
+
assert torch.allclose(
|
194 |
+
output_conv3d, output_2d, atol=1e-6
|
195 |
+
), "Outputs are not consistent between 3D and 2D convolutions."
|
index-4Hb32CNk.js
ADDED
The diff for this file is too large to render.
See raw diff
|
|
index-C1Hb_Yo9.css
ADDED
@@ -0,0 +1,5129 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
/* this CSS contains only the basic CSS needed to run the app and use it */
|
2 |
+
|
3 |
+
.lgraphcanvas {
|
4 |
+
/*cursor: crosshair;*/
|
5 |
+
user-select: none;
|
6 |
+
-moz-user-select: none;
|
7 |
+
-webkit-user-select: none;
|
8 |
+
outline: none;
|
9 |
+
font-family: Tahoma, sans-serif;
|
10 |
+
}
|
11 |
+
|
12 |
+
.lgraphcanvas * {
|
13 |
+
box-sizing: border-box;
|
14 |
+
}
|
15 |
+
|
16 |
+
.litegraph.litecontextmenu {
|
17 |
+
font-family: Tahoma, sans-serif;
|
18 |
+
position: fixed;
|
19 |
+
top: 100px;
|
20 |
+
left: 100px;
|
21 |
+
min-width: 100px;
|
22 |
+
color: #aaf;
|
23 |
+
padding: 0;
|
24 |
+
box-shadow: 0 0 10px black !important;
|
25 |
+
background-color: #2e2e2e !important;
|
26 |
+
z-index: 10;
|
27 |
+
max-height: -webkit-fill-available;
|
28 |
+
overflow-y: auto;
|
29 |
+
}
|
30 |
+
|
31 |
+
/* Enable scrolling overflow in Firefox */
|
32 |
+
@supports not (max-height: -webkit-fill-available) {
|
33 |
+
.litegraph.litecontextmenu {
|
34 |
+
max-height: 80vh;
|
35 |
+
overflow-y: scroll;
|
36 |
+
}
|
37 |
+
}
|
38 |
+
|
39 |
+
.litegraph.litecontextmenu.dark {
|
40 |
+
background-color: #000 !important;
|
41 |
+
}
|
42 |
+
|
43 |
+
.litegraph.litecontextmenu .litemenu-title img {
|
44 |
+
margin-top: 2px;
|
45 |
+
margin-left: 2px;
|
46 |
+
margin-right: 4px;
|
47 |
+
}
|
48 |
+
|
49 |
+
.litegraph.litecontextmenu .litemenu-entry {
|
50 |
+
margin: 2px;
|
51 |
+
padding: 2px;
|
52 |
+
}
|
53 |
+
|
54 |
+
.litegraph.litecontextmenu .litemenu-entry.submenu {
|
55 |
+
background-color: #2e2e2e !important;
|
56 |
+
}
|
57 |
+
|
58 |
+
.litegraph.litecontextmenu.dark .litemenu-entry.submenu {
|
59 |
+
background-color: #000 !important;
|
60 |
+
}
|
61 |
+
|
62 |
+
.litegraph .litemenubar ul {
|
63 |
+
font-family: Tahoma, sans-serif;
|
64 |
+
margin: 0;
|
65 |
+
padding: 0;
|
66 |
+
}
|
67 |
+
|
68 |
+
.litegraph .litemenubar li {
|
69 |
+
font-size: 14px;
|
70 |
+
color: #999;
|
71 |
+
display: inline-block;
|
72 |
+
min-width: 50px;
|
73 |
+
padding-left: 10px;
|
74 |
+
padding-right: 10px;
|
75 |
+
user-select: none;
|
76 |
+
-moz-user-select: none;
|
77 |
+
-webkit-user-select: none;
|
78 |
+
cursor: pointer;
|
79 |
+
}
|
80 |
+
|
81 |
+
.litegraph .litemenubar li:hover {
|
82 |
+
background-color: #777;
|
83 |
+
color: #eee;
|
84 |
+
}
|
85 |
+
|
86 |
+
.litegraph .litegraph .litemenubar-panel {
|
87 |
+
position: absolute;
|
88 |
+
top: 5px;
|
89 |
+
left: 5px;
|
90 |
+
min-width: 100px;
|
91 |
+
background-color: #444;
|
92 |
+
box-shadow: 0 0 3px black;
|
93 |
+
padding: 4px;
|
94 |
+
border-bottom: 2px solid #aaf;
|
95 |
+
z-index: 10;
|
96 |
+
}
|
97 |
+
|
98 |
+
.litegraph .litemenu-entry,
|
99 |
+
.litemenu-title {
|
100 |
+
font-size: 12px;
|
101 |
+
color: #aaa;
|
102 |
+
padding: 0 0 0 4px;
|
103 |
+
margin: 2px;
|
104 |
+
padding-left: 2px;
|
105 |
+
-moz-user-select: none;
|
106 |
+
-webkit-user-select: none;
|
107 |
+
user-select: none;
|
108 |
+
cursor: pointer;
|
109 |
+
}
|
110 |
+
|
111 |
+
.litegraph .litemenu-entry .icon {
|
112 |
+
display: inline-block;
|
113 |
+
width: 12px;
|
114 |
+
height: 12px;
|
115 |
+
margin: 2px;
|
116 |
+
vertical-align: top;
|
117 |
+
}
|
118 |
+
|
119 |
+
.litegraph .litemenu-entry.checked .icon {
|
120 |
+
background-color: #aaf;
|
121 |
+
}
|
122 |
+
|
123 |
+
.litegraph .litemenu-entry .more {
|
124 |
+
float: right;
|
125 |
+
padding-right: 5px;
|
126 |
+
}
|
127 |
+
|
128 |
+
.litegraph .litemenu-entry.disabled {
|
129 |
+
opacity: 0.5;
|
130 |
+
cursor: default;
|
131 |
+
}
|
132 |
+
|
133 |
+
.litegraph .litemenu-entry.separator {
|
134 |
+
display: block;
|
135 |
+
border-top: 1px solid #333;
|
136 |
+
border-bottom: 1px solid #666;
|
137 |
+
width: 100%;
|
138 |
+
height: 0px;
|
139 |
+
margin: 3px 0 2px 0;
|
140 |
+
background-color: transparent;
|
141 |
+
padding: 0 !important;
|
142 |
+
cursor: default !important;
|
143 |
+
}
|
144 |
+
|
145 |
+
.litegraph .litemenu-entry.has_submenu {
|
146 |
+
border-right: 2px solid cyan;
|
147 |
+
}
|
148 |
+
|
149 |
+
.litegraph .litemenu-title {
|
150 |
+
color: #dde;
|
151 |
+
background-color: #111;
|
152 |
+
margin: 0;
|
153 |
+
padding: 2px;
|
154 |
+
cursor: default;
|
155 |
+
}
|
156 |
+
|
157 |
+
.litegraph .litemenu-entry:hover:not(.disabled):not(.separator) {
|
158 |
+
background-color: #444 !important;
|
159 |
+
color: #eee;
|
160 |
+
transition: all 0.2s;
|
161 |
+
}
|
162 |
+
|
163 |
+
.litegraph .litemenu-entry .property_name {
|
164 |
+
display: inline-block;
|
165 |
+
text-align: left;
|
166 |
+
min-width: 80px;
|
167 |
+
min-height: 1.2em;
|
168 |
+
}
|
169 |
+
|
170 |
+
.litegraph .litemenu-entry .property_value {
|
171 |
+
display: inline-block;
|
172 |
+
background-color: rgba(0, 0, 0, 0.5);
|
173 |
+
text-align: right;
|
174 |
+
min-width: 80px;
|
175 |
+
min-height: 1.2em;
|
176 |
+
vertical-align: middle;
|
177 |
+
padding-right: 10px;
|
178 |
+
}
|
179 |
+
|
180 |
+
.litegraph.litesearchbox {
|
181 |
+
font-family: Tahoma, sans-serif;
|
182 |
+
position: absolute;
|
183 |
+
background-color: rgba(0, 0, 0, 0.5);
|
184 |
+
padding-top: 4px;
|
185 |
+
}
|
186 |
+
|
187 |
+
.litegraph.litesearchbox input,
|
188 |
+
.litegraph.litesearchbox select {
|
189 |
+
margin-top: 3px;
|
190 |
+
min-width: 60px;
|
191 |
+
min-height: 1.5em;
|
192 |
+
background-color: black;
|
193 |
+
border: 0;
|
194 |
+
color: white;
|
195 |
+
padding-left: 10px;
|
196 |
+
margin-right: 5px;
|
197 |
+
max-width: 300px;
|
198 |
+
}
|
199 |
+
|
200 |
+
.litegraph.litesearchbox .name {
|
201 |
+
display: inline-block;
|
202 |
+
min-width: 60px;
|
203 |
+
min-height: 1.5em;
|
204 |
+
padding-left: 10px;
|
205 |
+
}
|
206 |
+
|
207 |
+
.litegraph.litesearchbox .helper {
|
208 |
+
overflow: auto;
|
209 |
+
max-height: 200px;
|
210 |
+
margin-top: 2px;
|
211 |
+
}
|
212 |
+
|
213 |
+
.litegraph.lite-search-item {
|
214 |
+
font-family: Tahoma, sans-serif;
|
215 |
+
background-color: rgba(0, 0, 0, 0.5);
|
216 |
+
color: white;
|
217 |
+
padding-top: 2px;
|
218 |
+
}
|
219 |
+
|
220 |
+
.litegraph.lite-search-item.not_in_filter {
|
221 |
+
/*background-color: rgba(50, 50, 50, 0.5);*/
|
222 |
+
/*color: #999;*/
|
223 |
+
color: #b99;
|
224 |
+
font-style: italic;
|
225 |
+
}
|
226 |
+
|
227 |
+
.litegraph.lite-search-item.generic_type {
|
228 |
+
/*background-color: rgba(50, 50, 50, 0.5);*/
|
229 |
+
/*color: #DD9;*/
|
230 |
+
color: #999;
|
231 |
+
font-style: italic;
|
232 |
+
}
|
233 |
+
|
234 |
+
.litegraph.lite-search-item:hover,
|
235 |
+
.litegraph.lite-search-item.selected {
|
236 |
+
cursor: pointer;
|
237 |
+
background-color: white;
|
238 |
+
color: black;
|
239 |
+
}
|
240 |
+
|
241 |
+
.litegraph.lite-search-item-type {
|
242 |
+
display: inline-block;
|
243 |
+
background: rgba(0, 0, 0, 0.2);
|
244 |
+
margin-left: 5px;
|
245 |
+
font-size: 14px;
|
246 |
+
padding: 2px 5px;
|
247 |
+
position: relative;
|
248 |
+
top: -2px;
|
249 |
+
opacity: 0.8;
|
250 |
+
border-radius: 4px;
|
251 |
+
}
|
252 |
+
|
253 |
+
/* DIALOGs ******/
|
254 |
+
|
255 |
+
.litegraph .dialog {
|
256 |
+
position: absolute;
|
257 |
+
top: 50%;
|
258 |
+
left: 50%;
|
259 |
+
margin-top: -150px;
|
260 |
+
margin-left: -200px;
|
261 |
+
|
262 |
+
background-color: #2a2a2a;
|
263 |
+
|
264 |
+
min-width: 400px;
|
265 |
+
min-height: 200px;
|
266 |
+
box-shadow: 0 0 4px #111;
|
267 |
+
border-radius: 6px;
|
268 |
+
}
|
269 |
+
|
270 |
+
.litegraph .dialog.settings {
|
271 |
+
left: 10px;
|
272 |
+
top: 10px;
|
273 |
+
height: calc(100% - 20px);
|
274 |
+
margin: auto;
|
275 |
+
max-width: 50%;
|
276 |
+
}
|
277 |
+
|
278 |
+
.litegraph .dialog.centered {
|
279 |
+
top: 50px;
|
280 |
+
left: 50%;
|
281 |
+
position: absolute;
|
282 |
+
transform: translateX(-50%);
|
283 |
+
min-width: 600px;
|
284 |
+
min-height: 300px;
|
285 |
+
height: calc(100% - 100px);
|
286 |
+
margin: auto;
|
287 |
+
}
|
288 |
+
|
289 |
+
.litegraph .dialog .close {
|
290 |
+
float: right;
|
291 |
+
margin: 4px;
|
292 |
+
margin-right: 10px;
|
293 |
+
cursor: pointer;
|
294 |
+
font-size: 1.4em;
|
295 |
+
}
|
296 |
+
|
297 |
+
.litegraph .dialog .close:hover {
|
298 |
+
color: white;
|
299 |
+
}
|
300 |
+
|
301 |
+
.litegraph .dialog .dialog-header {
|
302 |
+
color: #aaa;
|
303 |
+
border-bottom: 1px solid #161616;
|
304 |
+
height: 40px;
|
305 |
+
}
|
306 |
+
.litegraph .dialog .dialog-footer {
|
307 |
+
height: 50px;
|
308 |
+
padding: 10px;
|
309 |
+
border-top: 1px solid #1a1a1a;
|
310 |
+
}
|
311 |
+
|
312 |
+
.litegraph .dialog .dialog-header .dialog-title {
|
313 |
+
font: 20px "Arial";
|
314 |
+
margin: 4px;
|
315 |
+
padding: 4px 10px;
|
316 |
+
display: inline-block;
|
317 |
+
}
|
318 |
+
|
319 |
+
.litegraph .dialog .dialog-content,
|
320 |
+
.litegraph .dialog .dialog-alt-content {
|
321 |
+
height: calc(100% - 90px);
|
322 |
+
width: 100%;
|
323 |
+
min-height: 100px;
|
324 |
+
display: inline-block;
|
325 |
+
color: #aaa;
|
326 |
+
/*background-color: black;*/
|
327 |
+
overflow: auto;
|
328 |
+
}
|
329 |
+
|
330 |
+
.litegraph .dialog .dialog-content h3 {
|
331 |
+
margin: 10px;
|
332 |
+
}
|
333 |
+
|
334 |
+
.litegraph .dialog .dialog-content .connections {
|
335 |
+
flex-direction: row;
|
336 |
+
}
|
337 |
+
|
338 |
+
.litegraph .dialog .dialog-content .connections .connections_side {
|
339 |
+
width: calc(50% - 5px);
|
340 |
+
min-height: 100px;
|
341 |
+
background-color: black;
|
342 |
+
display: flex;
|
343 |
+
}
|
344 |
+
|
345 |
+
.litegraph .dialog .node_type {
|
346 |
+
font-size: 1.2em;
|
347 |
+
display: block;
|
348 |
+
margin: 10px;
|
349 |
+
}
|
350 |
+
|
351 |
+
.litegraph .dialog .node_desc {
|
352 |
+
opacity: 0.5;
|
353 |
+
display: block;
|
354 |
+
margin: 10px;
|
355 |
+
}
|
356 |
+
|
357 |
+
.litegraph .dialog .separator {
|
358 |
+
display: block;
|
359 |
+
width: calc(100% - 4px);
|
360 |
+
height: 1px;
|
361 |
+
border-top: 1px solid #000;
|
362 |
+
border-bottom: 1px solid #333;
|
363 |
+
margin: 10px 2px;
|
364 |
+
padding: 0;
|
365 |
+
}
|
366 |
+
|
367 |
+
.litegraph .dialog .property {
|
368 |
+
margin-bottom: 2px;
|
369 |
+
padding: 4px;
|
370 |
+
}
|
371 |
+
|
372 |
+
.litegraph .dialog .property:hover {
|
373 |
+
background: #545454;
|
374 |
+
}
|
375 |
+
|
376 |
+
.litegraph .dialog .property_name {
|
377 |
+
color: #737373;
|
378 |
+
display: inline-block;
|
379 |
+
text-align: left;
|
380 |
+
vertical-align: top;
|
381 |
+
width: 160px;
|
382 |
+
padding-left: 4px;
|
383 |
+
overflow: hidden;
|
384 |
+
margin-right: 6px;
|
385 |
+
}
|
386 |
+
|
387 |
+
.litegraph .dialog .property:hover .property_name {
|
388 |
+
color: white;
|
389 |
+
}
|
390 |
+
|
391 |
+
.litegraph .dialog .property_value {
|
392 |
+
display: inline-block;
|
393 |
+
text-align: right;
|
394 |
+
color: #aaa;
|
395 |
+
background-color: #1a1a1a;
|
396 |
+
/*width: calc( 100% - 122px );*/
|
397 |
+
max-width: calc(100% - 162px);
|
398 |
+
min-width: 200px;
|
399 |
+
max-height: 300px;
|
400 |
+
min-height: 20px;
|
401 |
+
padding: 4px;
|
402 |
+
padding-right: 12px;
|
403 |
+
overflow: hidden;
|
404 |
+
cursor: pointer;
|
405 |
+
border-radius: 3px;
|
406 |
+
}
|
407 |
+
|
408 |
+
.litegraph .dialog .property_value:hover {
|
409 |
+
color: white;
|
410 |
+
}
|
411 |
+
|
412 |
+
.litegraph .dialog .property.boolean .property_value {
|
413 |
+
padding-right: 30px;
|
414 |
+
color: #a88;
|
415 |
+
/*width: auto;
|
416 |
+
float: right;*/
|
417 |
+
}
|
418 |
+
|
419 |
+
.litegraph .dialog .property.boolean.bool-on .property_name {
|
420 |
+
color: #8a8;
|
421 |
+
}
|
422 |
+
.litegraph .dialog .property.boolean.bool-on .property_value {
|
423 |
+
color: #8a8;
|
424 |
+
}
|
425 |
+
|
426 |
+
.litegraph .dialog .btn {
|
427 |
+
border: 0;
|
428 |
+
border-radius: 4px;
|
429 |
+
padding: 4px 20px;
|
430 |
+
margin-left: 0px;
|
431 |
+
background-color: #060606;
|
432 |
+
color: #8e8e8e;
|
433 |
+
}
|
434 |
+
|
435 |
+
.litegraph .dialog .btn:hover {
|
436 |
+
background-color: #111;
|
437 |
+
color: #fff;
|
438 |
+
}
|
439 |
+
|
440 |
+
.litegraph .dialog .btn.delete:hover {
|
441 |
+
background-color: #f33;
|
442 |
+
color: black;
|
443 |
+
}
|
444 |
+
|
445 |
+
.litegraph .subgraph_property {
|
446 |
+
padding: 4px;
|
447 |
+
}
|
448 |
+
|
449 |
+
.litegraph .subgraph_property:hover {
|
450 |
+
background-color: #333;
|
451 |
+
}
|
452 |
+
|
453 |
+
.litegraph .subgraph_property.extra {
|
454 |
+
margin-top: 8px;
|
455 |
+
}
|
456 |
+
|
457 |
+
.litegraph .subgraph_property span.name {
|
458 |
+
font-size: 1.3em;
|
459 |
+
padding-left: 4px;
|
460 |
+
}
|
461 |
+
|
462 |
+
.litegraph .subgraph_property span.type {
|
463 |
+
opacity: 0.5;
|
464 |
+
margin-right: 20px;
|
465 |
+
padding-left: 4px;
|
466 |
+
}
|
467 |
+
|
468 |
+
.litegraph .subgraph_property span.label {
|
469 |
+
display: inline-block;
|
470 |
+
width: 60px;
|
471 |
+
padding: 0px 10px;
|
472 |
+
}
|
473 |
+
|
474 |
+
.litegraph .subgraph_property input {
|
475 |
+
width: 140px;
|
476 |
+
color: #999;
|
477 |
+
background-color: #1a1a1a;
|
478 |
+
border-radius: 4px;
|
479 |
+
border: 0;
|
480 |
+
margin-right: 10px;
|
481 |
+
padding: 4px;
|
482 |
+
padding-left: 10px;
|
483 |
+
}
|
484 |
+
|
485 |
+
.litegraph .subgraph_property button {
|
486 |
+
background-color: #1c1c1c;
|
487 |
+
color: #aaa;
|
488 |
+
border: 0;
|
489 |
+
border-radius: 2px;
|
490 |
+
padding: 4px 10px;
|
491 |
+
cursor: pointer;
|
492 |
+
}
|
493 |
+
|
494 |
+
.litegraph .subgraph_property.extra {
|
495 |
+
color: #ccc;
|
496 |
+
}
|
497 |
+
|
498 |
+
.litegraph .subgraph_property.extra input {
|
499 |
+
background-color: #111;
|
500 |
+
}
|
501 |
+
|
502 |
+
.litegraph .bullet_icon {
|
503 |
+
margin-left: 10px;
|
504 |
+
border-radius: 10px;
|
505 |
+
width: 12px;
|
506 |
+
height: 12px;
|
507 |
+
background-color: #666;
|
508 |
+
display: inline-block;
|
509 |
+
margin-top: 2px;
|
510 |
+
margin-right: 4px;
|
511 |
+
transition: background-color 0.1s ease 0s;
|
512 |
+
-moz-transition: background-color 0.1s ease 0s;
|
513 |
+
}
|
514 |
+
|
515 |
+
.litegraph .bullet_icon:hover {
|
516 |
+
background-color: #698;
|
517 |
+
cursor: pointer;
|
518 |
+
}
|
519 |
+
|
520 |
+
/* OLD */
|
521 |
+
|
522 |
+
.graphcontextmenu {
|
523 |
+
padding: 4px;
|
524 |
+
min-width: 100px;
|
525 |
+
}
|
526 |
+
|
527 |
+
.graphcontextmenu-title {
|
528 |
+
color: #dde;
|
529 |
+
background-color: #222;
|
530 |
+
margin: 0;
|
531 |
+
padding: 2px;
|
532 |
+
cursor: default;
|
533 |
+
}
|
534 |
+
|
535 |
+
.graphmenu-entry {
|
536 |
+
box-sizing: border-box;
|
537 |
+
margin: 2px;
|
538 |
+
padding-left: 20px;
|
539 |
+
user-select: none;
|
540 |
+
-moz-user-select: none;
|
541 |
+
-webkit-user-select: none;
|
542 |
+
transition: all linear 0.3s;
|
543 |
+
}
|
544 |
+
|
545 |
+
.graphmenu-entry.event,
|
546 |
+
.litemenu-entry.event {
|
547 |
+
border-left: 8px solid orange;
|
548 |
+
padding-left: 12px;
|
549 |
+
}
|
550 |
+
|
551 |
+
.graphmenu-entry.disabled {
|
552 |
+
opacity: 0.3;
|
553 |
+
}
|
554 |
+
|
555 |
+
.graphmenu-entry.submenu {
|
556 |
+
border-right: 2px solid #eee;
|
557 |
+
}
|
558 |
+
|
559 |
+
.graphmenu-entry:hover {
|
560 |
+
background-color: #555;
|
561 |
+
}
|
562 |
+
|
563 |
+
.graphmenu-entry.separator {
|
564 |
+
background-color: #111;
|
565 |
+
border-bottom: 1px solid #666;
|
566 |
+
height: 1px;
|
567 |
+
width: calc(100% - 20px);
|
568 |
+
-moz-width: calc(100% - 20px);
|
569 |
+
-webkit-width: calc(100% - 20px);
|
570 |
+
}
|
571 |
+
|
572 |
+
.graphmenu-entry .property_name {
|
573 |
+
display: inline-block;
|
574 |
+
text-align: left;
|
575 |
+
min-width: 80px;
|
576 |
+
min-height: 1.2em;
|
577 |
+
}
|
578 |
+
|
579 |
+
.graphmenu-entry .property_value,
|
580 |
+
.litemenu-entry .property_value {
|
581 |
+
display: inline-block;
|
582 |
+
background-color: rgba(0, 0, 0, 0.5);
|
583 |
+
text-align: right;
|
584 |
+
min-width: 80px;
|
585 |
+
min-height: 1.2em;
|
586 |
+
vertical-align: middle;
|
587 |
+
padding-right: 10px;
|
588 |
+
}
|
589 |
+
|
590 |
+
.graphdialog {
|
591 |
+
position: absolute;
|
592 |
+
top: 10px;
|
593 |
+
left: 10px;
|
594 |
+
min-height: 2em;
|
595 |
+
background-color: #333;
|
596 |
+
font-size: 1.2em;
|
597 |
+
box-shadow: 0 0 10px black !important;
|
598 |
+
z-index: 10;
|
599 |
+
}
|
600 |
+
|
601 |
+
.graphdialog.rounded {
|
602 |
+
border-radius: 12px;
|
603 |
+
padding-right: 2px;
|
604 |
+
}
|
605 |
+
|
606 |
+
.graphdialog .name {
|
607 |
+
display: inline-block;
|
608 |
+
min-width: 60px;
|
609 |
+
min-height: 1.5em;
|
610 |
+
padding-left: 10px;
|
611 |
+
}
|
612 |
+
|
613 |
+
.graphdialog input,
|
614 |
+
.graphdialog textarea,
|
615 |
+
.graphdialog select {
|
616 |
+
margin: 3px;
|
617 |
+
min-width: 60px;
|
618 |
+
min-height: 1.5em;
|
619 |
+
background-color: black;
|
620 |
+
border: 0;
|
621 |
+
color: white;
|
622 |
+
padding-left: 10px;
|
623 |
+
outline: none;
|
624 |
+
}
|
625 |
+
|
626 |
+
.graphdialog textarea {
|
627 |
+
min-height: 150px;
|
628 |
+
}
|
629 |
+
|
630 |
+
.graphdialog button {
|
631 |
+
margin-top: 3px;
|
632 |
+
vertical-align: top;
|
633 |
+
background-color: #999;
|
634 |
+
border: 0;
|
635 |
+
}
|
636 |
+
|
637 |
+
.graphdialog button.rounded,
|
638 |
+
.graphdialog input.rounded {
|
639 |
+
border-radius: 0 12px 12px 0;
|
640 |
+
}
|
641 |
+
|
642 |
+
.graphdialog .helper {
|
643 |
+
overflow: auto;
|
644 |
+
max-height: 200px;
|
645 |
+
}
|
646 |
+
|
647 |
+
.graphdialog .help-item {
|
648 |
+
padding-left: 10px;
|
649 |
+
}
|
650 |
+
|
651 |
+
.graphdialog .help-item:hover,
|
652 |
+
.graphdialog .help-item.selected {
|
653 |
+
cursor: pointer;
|
654 |
+
background-color: white;
|
655 |
+
color: black;
|
656 |
+
}
|
657 |
+
|
658 |
+
.litegraph .dialog {
|
659 |
+
min-height: 0;
|
660 |
+
}
|
661 |
+
.litegraph .dialog .dialog-content {
|
662 |
+
display: block;
|
663 |
+
}
|
664 |
+
.litegraph .dialog .dialog-content .subgraph_property {
|
665 |
+
padding: 5px;
|
666 |
+
}
|
667 |
+
.litegraph .dialog .dialog-footer {
|
668 |
+
margin: 0;
|
669 |
+
}
|
670 |
+
.litegraph .dialog .dialog-footer .subgraph_property {
|
671 |
+
margin-top: 0;
|
672 |
+
display: flex;
|
673 |
+
align-items: center;
|
674 |
+
padding: 5px;
|
675 |
+
}
|
676 |
+
.litegraph .dialog .dialog-footer .subgraph_property .name {
|
677 |
+
flex: 1;
|
678 |
+
}
|
679 |
+
.litegraph .graphdialog {
|
680 |
+
display: flex;
|
681 |
+
align-items: center;
|
682 |
+
border-radius: 20px;
|
683 |
+
padding: 4px 10px;
|
684 |
+
position: fixed;
|
685 |
+
}
|
686 |
+
.litegraph .graphdialog .name {
|
687 |
+
padding: 0;
|
688 |
+
min-height: 0;
|
689 |
+
font-size: 16px;
|
690 |
+
vertical-align: middle;
|
691 |
+
}
|
692 |
+
.litegraph .graphdialog .value {
|
693 |
+
font-size: 16px;
|
694 |
+
min-height: 0;
|
695 |
+
margin: 0 10px;
|
696 |
+
padding: 2px 5px;
|
697 |
+
}
|
698 |
+
.litegraph .graphdialog input[type="checkbox"] {
|
699 |
+
width: 16px;
|
700 |
+
height: 16px;
|
701 |
+
}
|
702 |
+
.litegraph .graphdialog button {
|
703 |
+
padding: 4px 18px;
|
704 |
+
border-radius: 20px;
|
705 |
+
cursor: pointer;
|
706 |
+
}
|
707 |
+
@font-face {
|
708 |
+
font-family: 'primeicons';
|
709 |
+
font-display: block;
|
710 |
+
src: url('./primeicons-DMOk5skT.eot');
|
711 |
+
src: url('./primeicons-DMOk5skT.eot?#iefix') format('embedded-opentype'), url('./primeicons-C6QP2o4f.woff2') format('woff2'), url('./primeicons-WjwUDZjB.woff') format('woff'), url('./primeicons-MpK4pl85.ttf') format('truetype'), url('./primeicons-Dr5RGzOO.svg?#primeicons') format('svg');
|
712 |
+
font-weight: normal;
|
713 |
+
font-style: normal;
|
714 |
+
}
|
715 |
+
|
716 |
+
.pi {
|
717 |
+
font-family: 'primeicons';
|
718 |
+
speak: none;
|
719 |
+
font-style: normal;
|
720 |
+
font-weight: normal;
|
721 |
+
font-variant: normal;
|
722 |
+
text-transform: none;
|
723 |
+
line-height: 1;
|
724 |
+
display: inline-block;
|
725 |
+
-webkit-font-smoothing: antialiased;
|
726 |
+
-moz-osx-font-smoothing: grayscale;
|
727 |
+
}
|
728 |
+
|
729 |
+
.pi:before {
|
730 |
+
--webkit-backface-visibility:hidden;
|
731 |
+
backface-visibility: hidden;
|
732 |
+
}
|
733 |
+
|
734 |
+
.pi-fw {
|
735 |
+
width: 1.28571429em;
|
736 |
+
text-align: center;
|
737 |
+
}
|
738 |
+
|
739 |
+
.pi-spin {
|
740 |
+
animation: fa-spin 2s infinite linear;
|
741 |
+
}
|
742 |
+
|
743 |
+
@media (prefers-reduced-motion: reduce) {
|
744 |
+
.pi-spin {
|
745 |
+
animation-delay: -1ms;
|
746 |
+
animation-duration: 1ms;
|
747 |
+
animation-iteration-count: 1;
|
748 |
+
transition-delay: 0s;
|
749 |
+
transition-duration: 0s;
|
750 |
+
}
|
751 |
+
}
|
752 |
+
|
753 |
+
@keyframes fa-spin {
|
754 |
+
0% {
|
755 |
+
transform: rotate(0deg);
|
756 |
+
}
|
757 |
+
100% {
|
758 |
+
transform: rotate(359deg);
|
759 |
+
}
|
760 |
+
}
|
761 |
+
|
762 |
+
.pi-folder-plus:before {
|
763 |
+
content: "\ea05";
|
764 |
+
}
|
765 |
+
|
766 |
+
.pi-receipt:before {
|
767 |
+
content: "\ea06";
|
768 |
+
}
|
769 |
+
|
770 |
+
.pi-asterisk:before {
|
771 |
+
content: "\ea07";
|
772 |
+
}
|
773 |
+
|
774 |
+
.pi-face-smile:before {
|
775 |
+
content: "\ea08";
|
776 |
+
}
|
777 |
+
|
778 |
+
.pi-pinterest:before {
|
779 |
+
content: "\ea09";
|
780 |
+
}
|
781 |
+
|
782 |
+
.pi-expand:before {
|
783 |
+
content: "\ea0a";
|
784 |
+
}
|
785 |
+
|
786 |
+
.pi-pen-to-square:before {
|
787 |
+
content: "\ea0b";
|
788 |
+
}
|
789 |
+
|
790 |
+
.pi-wave-pulse:before {
|
791 |
+
content: "\ea0c";
|
792 |
+
}
|
793 |
+
|
794 |
+
.pi-turkish-lira:before {
|
795 |
+
content: "\ea0d";
|
796 |
+
}
|
797 |
+
|
798 |
+
.pi-spinner-dotted:before {
|
799 |
+
content: "\ea0e";
|
800 |
+
}
|
801 |
+
|
802 |
+
.pi-crown:before {
|
803 |
+
content: "\ea0f";
|
804 |
+
}
|
805 |
+
|
806 |
+
.pi-pause-circle:before {
|
807 |
+
content: "\ea10";
|
808 |
+
}
|
809 |
+
|
810 |
+
.pi-warehouse:before {
|
811 |
+
content: "\ea11";
|
812 |
+
}
|
813 |
+
|
814 |
+
.pi-objects-column:before {
|
815 |
+
content: "\ea12";
|
816 |
+
}
|
817 |
+
|
818 |
+
.pi-clipboard:before {
|
819 |
+
content: "\ea13";
|
820 |
+
}
|
821 |
+
|
822 |
+
.pi-play-circle:before {
|
823 |
+
content: "\ea14";
|
824 |
+
}
|
825 |
+
|
826 |
+
.pi-venus:before {
|
827 |
+
content: "\ea15";
|
828 |
+
}
|
829 |
+
|
830 |
+
.pi-cart-minus:before {
|
831 |
+
content: "\ea16";
|
832 |
+
}
|
833 |
+
|
834 |
+
.pi-file-plus:before {
|
835 |
+
content: "\ea17";
|
836 |
+
}
|
837 |
+
|
838 |
+
.pi-microchip:before {
|
839 |
+
content: "\ea18";
|
840 |
+
}
|
841 |
+
|
842 |
+
.pi-twitch:before {
|
843 |
+
content: "\ea19";
|
844 |
+
}
|
845 |
+
|
846 |
+
.pi-building-columns:before {
|
847 |
+
content: "\ea1a";
|
848 |
+
}
|
849 |
+
|
850 |
+
.pi-file-check:before {
|
851 |
+
content: "\ea1b";
|
852 |
+
}
|
853 |
+
|
854 |
+
.pi-microchip-ai:before {
|
855 |
+
content: "\ea1c";
|
856 |
+
}
|
857 |
+
|
858 |
+
.pi-trophy:before {
|
859 |
+
content: "\ea1d";
|
860 |
+
}
|
861 |
+
|
862 |
+
.pi-barcode:before {
|
863 |
+
content: "\ea1e";
|
864 |
+
}
|
865 |
+
|
866 |
+
.pi-file-arrow-up:before {
|
867 |
+
content: "\ea1f";
|
868 |
+
}
|
869 |
+
|
870 |
+
.pi-mars:before {
|
871 |
+
content: "\ea20";
|
872 |
+
}
|
873 |
+
|
874 |
+
.pi-tiktok:before {
|
875 |
+
content: "\ea21";
|
876 |
+
}
|
877 |
+
|
878 |
+
.pi-arrow-up-right-and-arrow-down-left-from-center:before {
|
879 |
+
content: "\ea22";
|
880 |
+
}
|
881 |
+
|
882 |
+
.pi-ethereum:before {
|
883 |
+
content: "\ea23";
|
884 |
+
}
|
885 |
+
|
886 |
+
.pi-list-check:before {
|
887 |
+
content: "\ea24";
|
888 |
+
}
|
889 |
+
|
890 |
+
.pi-thumbtack:before {
|
891 |
+
content: "\ea25";
|
892 |
+
}
|
893 |
+
|
894 |
+
.pi-arrow-down-left-and-arrow-up-right-to-center:before {
|
895 |
+
content: "\ea26";
|
896 |
+
}
|
897 |
+
|
898 |
+
.pi-equals:before {
|
899 |
+
content: "\ea27";
|
900 |
+
}
|
901 |
+
|
902 |
+
.pi-lightbulb:before {
|
903 |
+
content: "\ea28";
|
904 |
+
}
|
905 |
+
|
906 |
+
.pi-star-half:before {
|
907 |
+
content: "\ea29";
|
908 |
+
}
|
909 |
+
|
910 |
+
.pi-address-book:before {
|
911 |
+
content: "\ea2a";
|
912 |
+
}
|
913 |
+
|
914 |
+
.pi-chart-scatter:before {
|
915 |
+
content: "\ea2b";
|
916 |
+
}
|
917 |
+
|
918 |
+
.pi-indian-rupee:before {
|
919 |
+
content: "\ea2c";
|
920 |
+
}
|
921 |
+
|
922 |
+
.pi-star-half-fill:before {
|
923 |
+
content: "\ea2d";
|
924 |
+
}
|
925 |
+
|
926 |
+
.pi-cart-arrow-down:before {
|
927 |
+
content: "\ea2e";
|
928 |
+
}
|
929 |
+
|
930 |
+
.pi-calendar-clock:before {
|
931 |
+
content: "\ea2f";
|
932 |
+
}
|
933 |
+
|
934 |
+
.pi-sort-up-fill:before {
|
935 |
+
content: "\ea30";
|
936 |
+
}
|
937 |
+
|
938 |
+
.pi-sparkles:before {
|
939 |
+
content: "\ea31";
|
940 |
+
}
|
941 |
+
|
942 |
+
.pi-bullseye:before {
|
943 |
+
content: "\ea32";
|
944 |
+
}
|
945 |
+
|
946 |
+
.pi-sort-down-fill:before {
|
947 |
+
content: "\ea33";
|
948 |
+
}
|
949 |
+
|
950 |
+
.pi-graduation-cap:before {
|
951 |
+
content: "\ea34";
|
952 |
+
}
|
953 |
+
|
954 |
+
.pi-hammer:before {
|
955 |
+
content: "\ea35";
|
956 |
+
}
|
957 |
+
|
958 |
+
.pi-bell-slash:before {
|
959 |
+
content: "\ea36";
|
960 |
+
}
|
961 |
+
|
962 |
+
.pi-gauge:before {
|
963 |
+
content: "\ea37";
|
964 |
+
}
|
965 |
+
|
966 |
+
.pi-shop:before {
|
967 |
+
content: "\ea38";
|
968 |
+
}
|
969 |
+
|
970 |
+
.pi-headphones:before {
|
971 |
+
content: "\ea39";
|
972 |
+
}
|
973 |
+
|
974 |
+
.pi-eraser:before {
|
975 |
+
content: "\ea04";
|
976 |
+
}
|
977 |
+
|
978 |
+
.pi-stopwatch:before {
|
979 |
+
content: "\ea01";
|
980 |
+
}
|
981 |
+
|
982 |
+
.pi-verified:before {
|
983 |
+
content: "\ea02";
|
984 |
+
}
|
985 |
+
|
986 |
+
.pi-delete-left:before {
|
987 |
+
content: "\ea03";
|
988 |
+
}
|
989 |
+
|
990 |
+
.pi-hourglass:before {
|
991 |
+
content: "\e9fe";
|
992 |
+
}
|
993 |
+
|
994 |
+
.pi-truck:before {
|
995 |
+
content: "\ea00";
|
996 |
+
}
|
997 |
+
|
998 |
+
.pi-wrench:before {
|
999 |
+
content: "\e9ff";
|
1000 |
+
}
|
1001 |
+
|
1002 |
+
.pi-microphone:before {
|
1003 |
+
content: "\e9fa";
|
1004 |
+
}
|
1005 |
+
|
1006 |
+
.pi-megaphone:before {
|
1007 |
+
content: "\e9fb";
|
1008 |
+
}
|
1009 |
+
|
1010 |
+
.pi-arrow-right-arrow-left:before {
|
1011 |
+
content: "\e9fc";
|
1012 |
+
}
|
1013 |
+
|
1014 |
+
.pi-bitcoin:before {
|
1015 |
+
content: "\e9fd";
|
1016 |
+
}
|
1017 |
+
|
1018 |
+
.pi-file-edit:before {
|
1019 |
+
content: "\e9f6";
|
1020 |
+
}
|
1021 |
+
|
1022 |
+
.pi-language:before {
|
1023 |
+
content: "\e9f7";
|
1024 |
+
}
|
1025 |
+
|
1026 |
+
.pi-file-export:before {
|
1027 |
+
content: "\e9f8";
|
1028 |
+
}
|
1029 |
+
|
1030 |
+
.pi-file-import:before {
|
1031 |
+
content: "\e9f9";
|
1032 |
+
}
|
1033 |
+
|
1034 |
+
.pi-file-word:before {
|
1035 |
+
content: "\e9f1";
|
1036 |
+
}
|
1037 |
+
|
1038 |
+
.pi-gift:before {
|
1039 |
+
content: "\e9f2";
|
1040 |
+
}
|
1041 |
+
|
1042 |
+
.pi-cart-plus:before {
|
1043 |
+
content: "\e9f3";
|
1044 |
+
}
|
1045 |
+
|
1046 |
+
.pi-thumbs-down-fill:before {
|
1047 |
+
content: "\e9f4";
|
1048 |
+
}
|
1049 |
+
|
1050 |
+
.pi-thumbs-up-fill:before {
|
1051 |
+
content: "\e9f5";
|
1052 |
+
}
|
1053 |
+
|
1054 |
+
.pi-arrows-alt:before {
|
1055 |
+
content: "\e9f0";
|
1056 |
+
}
|
1057 |
+
|
1058 |
+
.pi-calculator:before {
|
1059 |
+
content: "\e9ef";
|
1060 |
+
}
|
1061 |
+
|
1062 |
+
.pi-sort-alt-slash:before {
|
1063 |
+
content: "\e9ee";
|
1064 |
+
}
|
1065 |
+
|
1066 |
+
.pi-arrows-h:before {
|
1067 |
+
content: "\e9ec";
|
1068 |
+
}
|
1069 |
+
|
1070 |
+
.pi-arrows-v:before {
|
1071 |
+
content: "\e9ed";
|
1072 |
+
}
|
1073 |
+
|
1074 |
+
.pi-pound:before {
|
1075 |
+
content: "\e9eb";
|
1076 |
+
}
|
1077 |
+
|
1078 |
+
.pi-prime:before {
|
1079 |
+
content: "\e9ea";
|
1080 |
+
}
|
1081 |
+
|
1082 |
+
.pi-chart-pie:before {
|
1083 |
+
content: "\e9e9";
|
1084 |
+
}
|
1085 |
+
|
1086 |
+
.pi-reddit:before {
|
1087 |
+
content: "\e9e8";
|
1088 |
+
}
|
1089 |
+
|
1090 |
+
.pi-code:before {
|
1091 |
+
content: "\e9e7";
|
1092 |
+
}
|
1093 |
+
|
1094 |
+
.pi-sync:before {
|
1095 |
+
content: "\e9e6";
|
1096 |
+
}
|
1097 |
+
|
1098 |
+
.pi-shopping-bag:before {
|
1099 |
+
content: "\e9e5";
|
1100 |
+
}
|
1101 |
+
|
1102 |
+
.pi-server:before {
|
1103 |
+
content: "\e9e4";
|
1104 |
+
}
|
1105 |
+
|
1106 |
+
.pi-database:before {
|
1107 |
+
content: "\e9e3";
|
1108 |
+
}
|
1109 |
+
|
1110 |
+
.pi-hashtag:before {
|
1111 |
+
content: "\e9e2";
|
1112 |
+
}
|
1113 |
+
|
1114 |
+
.pi-bookmark-fill:before {
|
1115 |
+
content: "\e9df";
|
1116 |
+
}
|
1117 |
+
|
1118 |
+
.pi-filter-fill:before {
|
1119 |
+
content: "\e9e0";
|
1120 |
+
}
|
1121 |
+
|
1122 |
+
.pi-heart-fill:before {
|
1123 |
+
content: "\e9e1";
|
1124 |
+
}
|
1125 |
+
|
1126 |
+
.pi-flag-fill:before {
|
1127 |
+
content: "\e9de";
|
1128 |
+
}
|
1129 |
+
|
1130 |
+
.pi-circle:before {
|
1131 |
+
content: "\e9dc";
|
1132 |
+
}
|
1133 |
+
|
1134 |
+
.pi-circle-fill:before {
|
1135 |
+
content: "\e9dd";
|
1136 |
+
}
|
1137 |
+
|
1138 |
+
.pi-bolt:before {
|
1139 |
+
content: "\e9db";
|
1140 |
+
}
|
1141 |
+
|
1142 |
+
.pi-history:before {
|
1143 |
+
content: "\e9da";
|
1144 |
+
}
|
1145 |
+
|
1146 |
+
.pi-box:before {
|
1147 |
+
content: "\e9d9";
|
1148 |
+
}
|
1149 |
+
|
1150 |
+
.pi-at:before {
|
1151 |
+
content: "\e9d8";
|
1152 |
+
}
|
1153 |
+
|
1154 |
+
.pi-arrow-up-right:before {
|
1155 |
+
content: "\e9d4";
|
1156 |
+
}
|
1157 |
+
|
1158 |
+
.pi-arrow-up-left:before {
|
1159 |
+
content: "\e9d5";
|
1160 |
+
}
|
1161 |
+
|
1162 |
+
.pi-arrow-down-left:before {
|
1163 |
+
content: "\e9d6";
|
1164 |
+
}
|
1165 |
+
|
1166 |
+
.pi-arrow-down-right:before {
|
1167 |
+
content: "\e9d7";
|
1168 |
+
}
|
1169 |
+
|
1170 |
+
.pi-telegram:before {
|
1171 |
+
content: "\e9d3";
|
1172 |
+
}
|
1173 |
+
|
1174 |
+
.pi-stop-circle:before {
|
1175 |
+
content: "\e9d2";
|
1176 |
+
}
|
1177 |
+
|
1178 |
+
.pi-stop:before {
|
1179 |
+
content: "\e9d1";
|
1180 |
+
}
|
1181 |
+
|
1182 |
+
.pi-whatsapp:before {
|
1183 |
+
content: "\e9d0";
|
1184 |
+
}
|
1185 |
+
|
1186 |
+
.pi-building:before {
|
1187 |
+
content: "\e9cf";
|
1188 |
+
}
|
1189 |
+
|
1190 |
+
.pi-qrcode:before {
|
1191 |
+
content: "\e9ce";
|
1192 |
+
}
|
1193 |
+
|
1194 |
+
.pi-car:before {
|
1195 |
+
content: "\e9cd";
|
1196 |
+
}
|
1197 |
+
|
1198 |
+
.pi-instagram:before {
|
1199 |
+
content: "\e9cc";
|
1200 |
+
}
|
1201 |
+
|
1202 |
+
.pi-linkedin:before {
|
1203 |
+
content: "\e9cb";
|
1204 |
+
}
|
1205 |
+
|
1206 |
+
.pi-send:before {
|
1207 |
+
content: "\e9ca";
|
1208 |
+
}
|
1209 |
+
|
1210 |
+
.pi-slack:before {
|
1211 |
+
content: "\e9c9";
|
1212 |
+
}
|
1213 |
+
|
1214 |
+
.pi-sun:before {
|
1215 |
+
content: "\e9c8";
|
1216 |
+
}
|
1217 |
+
|
1218 |
+
.pi-moon:before {
|
1219 |
+
content: "\e9c7";
|
1220 |
+
}
|
1221 |
+
|
1222 |
+
.pi-vimeo:before {
|
1223 |
+
content: "\e9c6";
|
1224 |
+
}
|
1225 |
+
|
1226 |
+
.pi-youtube:before {
|
1227 |
+
content: "\e9c5";
|
1228 |
+
}
|
1229 |
+
|
1230 |
+
.pi-flag:before {
|
1231 |
+
content: "\e9c4";
|
1232 |
+
}
|
1233 |
+
|
1234 |
+
.pi-wallet:before {
|
1235 |
+
content: "\e9c3";
|
1236 |
+
}
|
1237 |
+
|
1238 |
+
.pi-map:before {
|
1239 |
+
content: "\e9c2";
|
1240 |
+
}
|
1241 |
+
|
1242 |
+
.pi-link:before {
|
1243 |
+
content: "\e9c1";
|
1244 |
+
}
|
1245 |
+
|
1246 |
+
.pi-credit-card:before {
|
1247 |
+
content: "\e9bf";
|
1248 |
+
}
|
1249 |
+
|
1250 |
+
.pi-discord:before {
|
1251 |
+
content: "\e9c0";
|
1252 |
+
}
|
1253 |
+
|
1254 |
+
.pi-percentage:before {
|
1255 |
+
content: "\e9be";
|
1256 |
+
}
|
1257 |
+
|
1258 |
+
.pi-euro:before {
|
1259 |
+
content: "\e9bd";
|
1260 |
+
}
|
1261 |
+
|
1262 |
+
.pi-book:before {
|
1263 |
+
content: "\e9ba";
|
1264 |
+
}
|
1265 |
+
|
1266 |
+
.pi-shield:before {
|
1267 |
+
content: "\e9b9";
|
1268 |
+
}
|
1269 |
+
|
1270 |
+
.pi-paypal:before {
|
1271 |
+
content: "\e9bb";
|
1272 |
+
}
|
1273 |
+
|
1274 |
+
.pi-amazon:before {
|
1275 |
+
content: "\e9bc";
|
1276 |
+
}
|
1277 |
+
|
1278 |
+
.pi-phone:before {
|
1279 |
+
content: "\e9b8";
|
1280 |
+
}
|
1281 |
+
|
1282 |
+
.pi-filter-slash:before {
|
1283 |
+
content: "\e9b7";
|
1284 |
+
}
|
1285 |
+
|
1286 |
+
.pi-facebook:before {
|
1287 |
+
content: "\e9b4";
|
1288 |
+
}
|
1289 |
+
|
1290 |
+
.pi-github:before {
|
1291 |
+
content: "\e9b5";
|
1292 |
+
}
|
1293 |
+
|
1294 |
+
.pi-twitter:before {
|
1295 |
+
content: "\e9b6";
|
1296 |
+
}
|
1297 |
+
|
1298 |
+
.pi-step-backward-alt:before {
|
1299 |
+
content: "\e9ac";
|
1300 |
+
}
|
1301 |
+
|
1302 |
+
.pi-step-forward-alt:before {
|
1303 |
+
content: "\e9ad";
|
1304 |
+
}
|
1305 |
+
|
1306 |
+
.pi-forward:before {
|
1307 |
+
content: "\e9ae";
|
1308 |
+
}
|
1309 |
+
|
1310 |
+
.pi-backward:before {
|
1311 |
+
content: "\e9af";
|
1312 |
+
}
|
1313 |
+
|
1314 |
+
.pi-fast-backward:before {
|
1315 |
+
content: "\e9b0";
|
1316 |
+
}
|
1317 |
+
|
1318 |
+
.pi-fast-forward:before {
|
1319 |
+
content: "\e9b1";
|
1320 |
+
}
|
1321 |
+
|
1322 |
+
.pi-pause:before {
|
1323 |
+
content: "\e9b2";
|
1324 |
+
}
|
1325 |
+
|
1326 |
+
.pi-play:before {
|
1327 |
+
content: "\e9b3";
|
1328 |
+
}
|
1329 |
+
|
1330 |
+
.pi-compass:before {
|
1331 |
+
content: "\e9ab";
|
1332 |
+
}
|
1333 |
+
|
1334 |
+
.pi-id-card:before {
|
1335 |
+
content: "\e9aa";
|
1336 |
+
}
|
1337 |
+
|
1338 |
+
.pi-ticket:before {
|
1339 |
+
content: "\e9a9";
|
1340 |
+
}
|
1341 |
+
|
1342 |
+
.pi-file-o:before {
|
1343 |
+
content: "\e9a8";
|
1344 |
+
}
|
1345 |
+
|
1346 |
+
.pi-reply:before {
|
1347 |
+
content: "\e9a7";
|
1348 |
+
}
|
1349 |
+
|
1350 |
+
.pi-directions-alt:before {
|
1351 |
+
content: "\e9a5";
|
1352 |
+
}
|
1353 |
+
|
1354 |
+
.pi-directions:before {
|
1355 |
+
content: "\e9a6";
|
1356 |
+
}
|
1357 |
+
|
1358 |
+
.pi-thumbs-up:before {
|
1359 |
+
content: "\e9a3";
|
1360 |
+
}
|
1361 |
+
|
1362 |
+
.pi-thumbs-down:before {
|
1363 |
+
content: "\e9a4";
|
1364 |
+
}
|
1365 |
+
|
1366 |
+
.pi-sort-numeric-down-alt:before {
|
1367 |
+
content: "\e996";
|
1368 |
+
}
|
1369 |
+
|
1370 |
+
.pi-sort-numeric-up-alt:before {
|
1371 |
+
content: "\e997";
|
1372 |
+
}
|
1373 |
+
|
1374 |
+
.pi-sort-alpha-down-alt:before {
|
1375 |
+
content: "\e998";
|
1376 |
+
}
|
1377 |
+
|
1378 |
+
.pi-sort-alpha-up-alt:before {
|
1379 |
+
content: "\e999";
|
1380 |
+
}
|
1381 |
+
|
1382 |
+
.pi-sort-numeric-down:before {
|
1383 |
+
content: "\e99a";
|
1384 |
+
}
|
1385 |
+
|
1386 |
+
.pi-sort-numeric-up:before {
|
1387 |
+
content: "\e99b";
|
1388 |
+
}
|
1389 |
+
|
1390 |
+
.pi-sort-alpha-down:before {
|
1391 |
+
content: "\e99c";
|
1392 |
+
}
|
1393 |
+
|
1394 |
+
.pi-sort-alpha-up:before {
|
1395 |
+
content: "\e99d";
|
1396 |
+
}
|
1397 |
+
|
1398 |
+
.pi-sort-alt:before {
|
1399 |
+
content: "\e99e";
|
1400 |
+
}
|
1401 |
+
|
1402 |
+
.pi-sort-amount-up:before {
|
1403 |
+
content: "\e99f";
|
1404 |
+
}
|
1405 |
+
|
1406 |
+
.pi-sort-amount-down:before {
|
1407 |
+
content: "\e9a0";
|
1408 |
+
}
|
1409 |
+
|
1410 |
+
.pi-sort-amount-down-alt:before {
|
1411 |
+
content: "\e9a1";
|
1412 |
+
}
|
1413 |
+
|
1414 |
+
.pi-sort-amount-up-alt:before {
|
1415 |
+
content: "\e9a2";
|
1416 |
+
}
|
1417 |
+
|
1418 |
+
.pi-palette:before {
|
1419 |
+
content: "\e995";
|
1420 |
+
}
|
1421 |
+
|
1422 |
+
.pi-undo:before {
|
1423 |
+
content: "\e994";
|
1424 |
+
}
|
1425 |
+
|
1426 |
+
.pi-desktop:before {
|
1427 |
+
content: "\e993";
|
1428 |
+
}
|
1429 |
+
|
1430 |
+
.pi-sliders-v:before {
|
1431 |
+
content: "\e991";
|
1432 |
+
}
|
1433 |
+
|
1434 |
+
.pi-sliders-h:before {
|
1435 |
+
content: "\e992";
|
1436 |
+
}
|
1437 |
+
|
1438 |
+
.pi-search-plus:before {
|
1439 |
+
content: "\e98f";
|
1440 |
+
}
|
1441 |
+
|
1442 |
+
.pi-search-minus:before {
|
1443 |
+
content: "\e990";
|
1444 |
+
}
|
1445 |
+
|
1446 |
+
.pi-file-excel:before {
|
1447 |
+
content: "\e98e";
|
1448 |
+
}
|
1449 |
+
|
1450 |
+
.pi-file-pdf:before {
|
1451 |
+
content: "\e98d";
|
1452 |
+
}
|
1453 |
+
|
1454 |
+
.pi-check-square:before {
|
1455 |
+
content: "\e98c";
|
1456 |
+
}
|
1457 |
+
|
1458 |
+
.pi-chart-line:before {
|
1459 |
+
content: "\e98b";
|
1460 |
+
}
|
1461 |
+
|
1462 |
+
.pi-user-edit:before {
|
1463 |
+
content: "\e98a";
|
1464 |
+
}
|
1465 |
+
|
1466 |
+
.pi-exclamation-circle:before {
|
1467 |
+
content: "\e989";
|
1468 |
+
}
|
1469 |
+
|
1470 |
+
.pi-android:before {
|
1471 |
+
content: "\e985";
|
1472 |
+
}
|
1473 |
+
|
1474 |
+
.pi-google:before {
|
1475 |
+
content: "\e986";
|
1476 |
+
}
|
1477 |
+
|
1478 |
+
.pi-apple:before {
|
1479 |
+
content: "\e987";
|
1480 |
+
}
|
1481 |
+
|
1482 |
+
.pi-microsoft:before {
|
1483 |
+
content: "\e988";
|
1484 |
+
}
|
1485 |
+
|
1486 |
+
.pi-heart:before {
|
1487 |
+
content: "\e984";
|
1488 |
+
}
|
1489 |
+
|
1490 |
+
.pi-mobile:before {
|
1491 |
+
content: "\e982";
|
1492 |
+
}
|
1493 |
+
|
1494 |
+
.pi-tablet:before {
|
1495 |
+
content: "\e983";
|
1496 |
+
}
|
1497 |
+
|
1498 |
+
.pi-key:before {
|
1499 |
+
content: "\e981";
|
1500 |
+
}
|
1501 |
+
|
1502 |
+
.pi-shopping-cart:before {
|
1503 |
+
content: "\e980";
|
1504 |
+
}
|
1505 |
+
|
1506 |
+
.pi-comments:before {
|
1507 |
+
content: "\e97e";
|
1508 |
+
}
|
1509 |
+
|
1510 |
+
.pi-comment:before {
|
1511 |
+
content: "\e97f";
|
1512 |
+
}
|
1513 |
+
|
1514 |
+
.pi-briefcase:before {
|
1515 |
+
content: "\e97d";
|
1516 |
+
}
|
1517 |
+
|
1518 |
+
.pi-bell:before {
|
1519 |
+
content: "\e97c";
|
1520 |
+
}
|
1521 |
+
|
1522 |
+
.pi-paperclip:before {
|
1523 |
+
content: "\e97b";
|
1524 |
+
}
|
1525 |
+
|
1526 |
+
.pi-share-alt:before {
|
1527 |
+
content: "\e97a";
|
1528 |
+
}
|
1529 |
+
|
1530 |
+
.pi-envelope:before {
|
1531 |
+
content: "\e979";
|
1532 |
+
}
|
1533 |
+
|
1534 |
+
.pi-volume-down:before {
|
1535 |
+
content: "\e976";
|
1536 |
+
}
|
1537 |
+
|
1538 |
+
.pi-volume-up:before {
|
1539 |
+
content: "\e977";
|
1540 |
+
}
|
1541 |
+
|
1542 |
+
.pi-volume-off:before {
|
1543 |
+
content: "\e978";
|
1544 |
+
}
|
1545 |
+
|
1546 |
+
.pi-eject:before {
|
1547 |
+
content: "\e975";
|
1548 |
+
}
|
1549 |
+
|
1550 |
+
.pi-money-bill:before {
|
1551 |
+
content: "\e974";
|
1552 |
+
}
|
1553 |
+
|
1554 |
+
.pi-images:before {
|
1555 |
+
content: "\e973";
|
1556 |
+
}
|
1557 |
+
|
1558 |
+
.pi-image:before {
|
1559 |
+
content: "\e972";
|
1560 |
+
}
|
1561 |
+
|
1562 |
+
.pi-sign-in:before {
|
1563 |
+
content: "\e970";
|
1564 |
+
}
|
1565 |
+
|
1566 |
+
.pi-sign-out:before {
|
1567 |
+
content: "\e971";
|
1568 |
+
}
|
1569 |
+
|
1570 |
+
.pi-wifi:before {
|
1571 |
+
content: "\e96f";
|
1572 |
+
}
|
1573 |
+
|
1574 |
+
.pi-sitemap:before {
|
1575 |
+
content: "\e96e";
|
1576 |
+
}
|
1577 |
+
|
1578 |
+
.pi-chart-bar:before {
|
1579 |
+
content: "\e96d";
|
1580 |
+
}
|
1581 |
+
|
1582 |
+
.pi-camera:before {
|
1583 |
+
content: "\e96c";
|
1584 |
+
}
|
1585 |
+
|
1586 |
+
.pi-dollar:before {
|
1587 |
+
content: "\e96b";
|
1588 |
+
}
|
1589 |
+
|
1590 |
+
.pi-lock-open:before {
|
1591 |
+
content: "\e96a";
|
1592 |
+
}
|
1593 |
+
|
1594 |
+
.pi-table:before {
|
1595 |
+
content: "\e969";
|
1596 |
+
}
|
1597 |
+
|
1598 |
+
.pi-map-marker:before {
|
1599 |
+
content: "\e968";
|
1600 |
+
}
|
1601 |
+
|
1602 |
+
.pi-list:before {
|
1603 |
+
content: "\e967";
|
1604 |
+
}
|
1605 |
+
|
1606 |
+
.pi-eye-slash:before {
|
1607 |
+
content: "\e965";
|
1608 |
+
}
|
1609 |
+
|
1610 |
+
.pi-eye:before {
|
1611 |
+
content: "\e966";
|
1612 |
+
}
|
1613 |
+
|
1614 |
+
.pi-folder-open:before {
|
1615 |
+
content: "\e964";
|
1616 |
+
}
|
1617 |
+
|
1618 |
+
.pi-folder:before {
|
1619 |
+
content: "\e963";
|
1620 |
+
}
|
1621 |
+
|
1622 |
+
.pi-video:before {
|
1623 |
+
content: "\e962";
|
1624 |
+
}
|
1625 |
+
|
1626 |
+
.pi-inbox:before {
|
1627 |
+
content: "\e961";
|
1628 |
+
}
|
1629 |
+
|
1630 |
+
.pi-lock:before {
|
1631 |
+
content: "\e95f";
|
1632 |
+
}
|
1633 |
+
|
1634 |
+
.pi-unlock:before {
|
1635 |
+
content: "\e960";
|
1636 |
+
}
|
1637 |
+
|
1638 |
+
.pi-tags:before {
|
1639 |
+
content: "\e95d";
|
1640 |
+
}
|
1641 |
+
|
1642 |
+
.pi-tag:before {
|
1643 |
+
content: "\e95e";
|
1644 |
+
}
|
1645 |
+
|
1646 |
+
.pi-power-off:before {
|
1647 |
+
content: "\e95c";
|
1648 |
+
}
|
1649 |
+
|
1650 |
+
.pi-save:before {
|
1651 |
+
content: "\e95b";
|
1652 |
+
}
|
1653 |
+
|
1654 |
+
.pi-question-circle:before {
|
1655 |
+
content: "\e959";
|
1656 |
+
}
|
1657 |
+
|
1658 |
+
.pi-question:before {
|
1659 |
+
content: "\e95a";
|
1660 |
+
}
|
1661 |
+
|
1662 |
+
.pi-copy:before {
|
1663 |
+
content: "\e957";
|
1664 |
+
}
|
1665 |
+
|
1666 |
+
.pi-file:before {
|
1667 |
+
content: "\e958";
|
1668 |
+
}
|
1669 |
+
|
1670 |
+
.pi-clone:before {
|
1671 |
+
content: "\e955";
|
1672 |
+
}
|
1673 |
+
|
1674 |
+
.pi-calendar-times:before {
|
1675 |
+
content: "\e952";
|
1676 |
+
}
|
1677 |
+
|
1678 |
+
.pi-calendar-minus:before {
|
1679 |
+
content: "\e953";
|
1680 |
+
}
|
1681 |
+
|
1682 |
+
.pi-calendar-plus:before {
|
1683 |
+
content: "\e954";
|
1684 |
+
}
|
1685 |
+
|
1686 |
+
.pi-ellipsis-v:before {
|
1687 |
+
content: "\e950";
|
1688 |
+
}
|
1689 |
+
|
1690 |
+
.pi-ellipsis-h:before {
|
1691 |
+
content: "\e951";
|
1692 |
+
}
|
1693 |
+
|
1694 |
+
.pi-bookmark:before {
|
1695 |
+
content: "\e94e";
|
1696 |
+
}
|
1697 |
+
|
1698 |
+
.pi-globe:before {
|
1699 |
+
content: "\e94f";
|
1700 |
+
}
|
1701 |
+
|
1702 |
+
.pi-replay:before {
|
1703 |
+
content: "\e94d";
|
1704 |
+
}
|
1705 |
+
|
1706 |
+
.pi-filter:before {
|
1707 |
+
content: "\e94c";
|
1708 |
+
}
|
1709 |
+
|
1710 |
+
.pi-print:before {
|
1711 |
+
content: "\e94b";
|
1712 |
+
}
|
1713 |
+
|
1714 |
+
.pi-align-right:before {
|
1715 |
+
content: "\e946";
|
1716 |
+
}
|
1717 |
+
|
1718 |
+
.pi-align-left:before {
|
1719 |
+
content: "\e947";
|
1720 |
+
}
|
1721 |
+
|
1722 |
+
.pi-align-center:before {
|
1723 |
+
content: "\e948";
|
1724 |
+
}
|
1725 |
+
|
1726 |
+
.pi-align-justify:before {
|
1727 |
+
content: "\e949";
|
1728 |
+
}
|
1729 |
+
|
1730 |
+
.pi-cog:before {
|
1731 |
+
content: "\e94a";
|
1732 |
+
}
|
1733 |
+
|
1734 |
+
.pi-cloud-download:before {
|
1735 |
+
content: "\e943";
|
1736 |
+
}
|
1737 |
+
|
1738 |
+
.pi-cloud-upload:before {
|
1739 |
+
content: "\e944";
|
1740 |
+
}
|
1741 |
+
|
1742 |
+
.pi-cloud:before {
|
1743 |
+
content: "\e945";
|
1744 |
+
}
|
1745 |
+
|
1746 |
+
.pi-pencil:before {
|
1747 |
+
content: "\e942";
|
1748 |
+
}
|
1749 |
+
|
1750 |
+
.pi-users:before {
|
1751 |
+
content: "\e941";
|
1752 |
+
}
|
1753 |
+
|
1754 |
+
.pi-clock:before {
|
1755 |
+
content: "\e940";
|
1756 |
+
}
|
1757 |
+
|
1758 |
+
.pi-user-minus:before {
|
1759 |
+
content: "\e93e";
|
1760 |
+
}
|
1761 |
+
|
1762 |
+
.pi-user-plus:before {
|
1763 |
+
content: "\e93f";
|
1764 |
+
}
|
1765 |
+
|
1766 |
+
.pi-trash:before {
|
1767 |
+
content: "\e93d";
|
1768 |
+
}
|
1769 |
+
|
1770 |
+
.pi-external-link:before {
|
1771 |
+
content: "\e93c";
|
1772 |
+
}
|
1773 |
+
|
1774 |
+
.pi-window-maximize:before {
|
1775 |
+
content: "\e93b";
|
1776 |
+
}
|
1777 |
+
|
1778 |
+
.pi-window-minimize:before {
|
1779 |
+
content: "\e93a";
|
1780 |
+
}
|
1781 |
+
|
1782 |
+
.pi-refresh:before {
|
1783 |
+
content: "\e938";
|
1784 |
+
}
|
1785 |
+
|
1786 |
+
.pi-user:before {
|
1787 |
+
content: "\e939";
|
1788 |
+
}
|
1789 |
+
|
1790 |
+
.pi-exclamation-triangle:before {
|
1791 |
+
content: "\e922";
|
1792 |
+
}
|
1793 |
+
|
1794 |
+
.pi-calendar:before {
|
1795 |
+
content: "\e927";
|
1796 |
+
}
|
1797 |
+
|
1798 |
+
.pi-chevron-circle-left:before {
|
1799 |
+
content: "\e928";
|
1800 |
+
}
|
1801 |
+
|
1802 |
+
.pi-chevron-circle-down:before {
|
1803 |
+
content: "\e929";
|
1804 |
+
}
|
1805 |
+
|
1806 |
+
.pi-chevron-circle-right:before {
|
1807 |
+
content: "\e92a";
|
1808 |
+
}
|
1809 |
+
|
1810 |
+
.pi-chevron-circle-up:before {
|
1811 |
+
content: "\e92b";
|
1812 |
+
}
|
1813 |
+
|
1814 |
+
.pi-angle-double-down:before {
|
1815 |
+
content: "\e92c";
|
1816 |
+
}
|
1817 |
+
|
1818 |
+
.pi-angle-double-left:before {
|
1819 |
+
content: "\e92d";
|
1820 |
+
}
|
1821 |
+
|
1822 |
+
.pi-angle-double-right:before {
|
1823 |
+
content: "\e92e";
|
1824 |
+
}
|
1825 |
+
|
1826 |
+
.pi-angle-double-up:before {
|
1827 |
+
content: "\e92f";
|
1828 |
+
}
|
1829 |
+
|
1830 |
+
.pi-angle-down:before {
|
1831 |
+
content: "\e930";
|
1832 |
+
}
|
1833 |
+
|
1834 |
+
.pi-angle-left:before {
|
1835 |
+
content: "\e931";
|
1836 |
+
}
|
1837 |
+
|
1838 |
+
.pi-angle-right:before {
|
1839 |
+
content: "\e932";
|
1840 |
+
}
|
1841 |
+
|
1842 |
+
.pi-angle-up:before {
|
1843 |
+
content: "\e933";
|
1844 |
+
}
|
1845 |
+
|
1846 |
+
.pi-upload:before {
|
1847 |
+
content: "\e934";
|
1848 |
+
}
|
1849 |
+
|
1850 |
+
.pi-download:before {
|
1851 |
+
content: "\e956";
|
1852 |
+
}
|
1853 |
+
|
1854 |
+
.pi-ban:before {
|
1855 |
+
content: "\e935";
|
1856 |
+
}
|
1857 |
+
|
1858 |
+
.pi-star-fill:before {
|
1859 |
+
content: "\e936";
|
1860 |
+
}
|
1861 |
+
|
1862 |
+
.pi-star:before {
|
1863 |
+
content: "\e937";
|
1864 |
+
}
|
1865 |
+
|
1866 |
+
.pi-chevron-left:before {
|
1867 |
+
content: "\e900";
|
1868 |
+
}
|
1869 |
+
|
1870 |
+
.pi-chevron-right:before {
|
1871 |
+
content: "\e901";
|
1872 |
+
}
|
1873 |
+
|
1874 |
+
.pi-chevron-down:before {
|
1875 |
+
content: "\e902";
|
1876 |
+
}
|
1877 |
+
|
1878 |
+
.pi-chevron-up:before {
|
1879 |
+
content: "\e903";
|
1880 |
+
}
|
1881 |
+
|
1882 |
+
.pi-caret-left:before {
|
1883 |
+
content: "\e904";
|
1884 |
+
}
|
1885 |
+
|
1886 |
+
.pi-caret-right:before {
|
1887 |
+
content: "\e905";
|
1888 |
+
}
|
1889 |
+
|
1890 |
+
.pi-caret-down:before {
|
1891 |
+
content: "\e906";
|
1892 |
+
}
|
1893 |
+
|
1894 |
+
.pi-caret-up:before {
|
1895 |
+
content: "\e907";
|
1896 |
+
}
|
1897 |
+
|
1898 |
+
.pi-search:before {
|
1899 |
+
content: "\e908";
|
1900 |
+
}
|
1901 |
+
|
1902 |
+
.pi-check:before {
|
1903 |
+
content: "\e909";
|
1904 |
+
}
|
1905 |
+
|
1906 |
+
.pi-check-circle:before {
|
1907 |
+
content: "\e90a";
|
1908 |
+
}
|
1909 |
+
|
1910 |
+
.pi-times:before {
|
1911 |
+
content: "\e90b";
|
1912 |
+
}
|
1913 |
+
|
1914 |
+
.pi-times-circle:before {
|
1915 |
+
content: "\e90c";
|
1916 |
+
}
|
1917 |
+
|
1918 |
+
.pi-plus:before {
|
1919 |
+
content: "\e90d";
|
1920 |
+
}
|
1921 |
+
|
1922 |
+
.pi-plus-circle:before {
|
1923 |
+
content: "\e90e";
|
1924 |
+
}
|
1925 |
+
|
1926 |
+
.pi-minus:before {
|
1927 |
+
content: "\e90f";
|
1928 |
+
}
|
1929 |
+
|
1930 |
+
.pi-minus-circle:before {
|
1931 |
+
content: "\e910";
|
1932 |
+
}
|
1933 |
+
|
1934 |
+
.pi-circle-on:before {
|
1935 |
+
content: "\e911";
|
1936 |
+
}
|
1937 |
+
|
1938 |
+
.pi-circle-off:before {
|
1939 |
+
content: "\e912";
|
1940 |
+
}
|
1941 |
+
|
1942 |
+
.pi-sort-down:before {
|
1943 |
+
content: "\e913";
|
1944 |
+
}
|
1945 |
+
|
1946 |
+
.pi-sort-up:before {
|
1947 |
+
content: "\e914";
|
1948 |
+
}
|
1949 |
+
|
1950 |
+
.pi-sort:before {
|
1951 |
+
content: "\e915";
|
1952 |
+
}
|
1953 |
+
|
1954 |
+
.pi-step-backward:before {
|
1955 |
+
content: "\e916";
|
1956 |
+
}
|
1957 |
+
|
1958 |
+
.pi-step-forward:before {
|
1959 |
+
content: "\e917";
|
1960 |
+
}
|
1961 |
+
|
1962 |
+
.pi-th-large:before {
|
1963 |
+
content: "\e918";
|
1964 |
+
}
|
1965 |
+
|
1966 |
+
.pi-arrow-down:before {
|
1967 |
+
content: "\e919";
|
1968 |
+
}
|
1969 |
+
|
1970 |
+
.pi-arrow-left:before {
|
1971 |
+
content: "\e91a";
|
1972 |
+
}
|
1973 |
+
|
1974 |
+
.pi-arrow-right:before {
|
1975 |
+
content: "\e91b";
|
1976 |
+
}
|
1977 |
+
|
1978 |
+
.pi-arrow-up:before {
|
1979 |
+
content: "\e91c";
|
1980 |
+
}
|
1981 |
+
|
1982 |
+
.pi-bars:before {
|
1983 |
+
content: "\e91d";
|
1984 |
+
}
|
1985 |
+
|
1986 |
+
.pi-arrow-circle-down:before {
|
1987 |
+
content: "\e91e";
|
1988 |
+
}
|
1989 |
+
|
1990 |
+
.pi-arrow-circle-left:before {
|
1991 |
+
content: "\e91f";
|
1992 |
+
}
|
1993 |
+
|
1994 |
+
.pi-arrow-circle-right:before {
|
1995 |
+
content: "\e920";
|
1996 |
+
}
|
1997 |
+
|
1998 |
+
.pi-arrow-circle-up:before {
|
1999 |
+
content: "\e921";
|
2000 |
+
}
|
2001 |
+
|
2002 |
+
.pi-info:before {
|
2003 |
+
content: "\e923";
|
2004 |
+
}
|
2005 |
+
|
2006 |
+
.pi-info-circle:before {
|
2007 |
+
content: "\e924";
|
2008 |
+
}
|
2009 |
+
|
2010 |
+
.pi-home:before {
|
2011 |
+
content: "\e925";
|
2012 |
+
}
|
2013 |
+
|
2014 |
+
.pi-spinner:before {
|
2015 |
+
content: "\e926";
|
2016 |
+
}
|
2017 |
+
@layer primevue, tailwind-utilities;
|
2018 |
+
|
2019 |
+
@layer tailwind-utilities {
|
2020 |
+
.container{
|
2021 |
+
width: 100%;
|
2022 |
+
}
|
2023 |
+
@media (min-width: 640px){
|
2024 |
+
|
2025 |
+
.container{
|
2026 |
+
max-width: 640px;
|
2027 |
+
}
|
2028 |
+
}
|
2029 |
+
@media (min-width: 768px){
|
2030 |
+
|
2031 |
+
.container{
|
2032 |
+
max-width: 768px;
|
2033 |
+
}
|
2034 |
+
}
|
2035 |
+
@media (min-width: 1024px){
|
2036 |
+
|
2037 |
+
.container{
|
2038 |
+
max-width: 1024px;
|
2039 |
+
}
|
2040 |
+
}
|
2041 |
+
@media (min-width: 1280px){
|
2042 |
+
|
2043 |
+
.container{
|
2044 |
+
max-width: 1280px;
|
2045 |
+
}
|
2046 |
+
}
|
2047 |
+
@media (min-width: 1536px){
|
2048 |
+
|
2049 |
+
.container{
|
2050 |
+
max-width: 1536px;
|
2051 |
+
}
|
2052 |
+
}
|
2053 |
+
@media (min-width: 1800px){
|
2054 |
+
|
2055 |
+
.container{
|
2056 |
+
max-width: 1800px;
|
2057 |
+
}
|
2058 |
+
}
|
2059 |
+
@media (min-width: 2500px){
|
2060 |
+
|
2061 |
+
.container{
|
2062 |
+
max-width: 2500px;
|
2063 |
+
}
|
2064 |
+
}
|
2065 |
+
@media (min-width: 3200px){
|
2066 |
+
|
2067 |
+
.container{
|
2068 |
+
max-width: 3200px;
|
2069 |
+
}
|
2070 |
+
}
|
2071 |
+
.pointer-events-none{
|
2072 |
+
pointer-events: none;
|
2073 |
+
}
|
2074 |
+
.pointer-events-auto{
|
2075 |
+
pointer-events: auto;
|
2076 |
+
}
|
2077 |
+
.\!visible{
|
2078 |
+
visibility: visible !important;
|
2079 |
+
}
|
2080 |
+
.visible{
|
2081 |
+
visibility: visible;
|
2082 |
+
}
|
2083 |
+
.invisible{
|
2084 |
+
visibility: hidden;
|
2085 |
+
}
|
2086 |
+
.collapse{
|
2087 |
+
visibility: collapse;
|
2088 |
+
}
|
2089 |
+
.static{
|
2090 |
+
position: static;
|
2091 |
+
}
|
2092 |
+
.fixed{
|
2093 |
+
position: fixed;
|
2094 |
+
}
|
2095 |
+
.absolute{
|
2096 |
+
position: absolute;
|
2097 |
+
}
|
2098 |
+
.relative{
|
2099 |
+
position: relative;
|
2100 |
+
}
|
2101 |
+
.inset-0{
|
2102 |
+
inset: 0px;
|
2103 |
+
}
|
2104 |
+
.-bottom-4{
|
2105 |
+
bottom: -1rem;
|
2106 |
+
}
|
2107 |
+
.-right-14{
|
2108 |
+
right: -3.5rem;
|
2109 |
+
}
|
2110 |
+
.-right-4{
|
2111 |
+
right: -1rem;
|
2112 |
+
}
|
2113 |
+
.bottom-\[10px\]{
|
2114 |
+
bottom: 10px;
|
2115 |
+
}
|
2116 |
+
.bottom-full{
|
2117 |
+
bottom: 100%;
|
2118 |
+
}
|
2119 |
+
.left-0{
|
2120 |
+
left: 0px;
|
2121 |
+
}
|
2122 |
+
.left-\[-350px\]{
|
2123 |
+
left: -350px;
|
2124 |
+
}
|
2125 |
+
.right-\[10px\]{
|
2126 |
+
right: 10px;
|
2127 |
+
}
|
2128 |
+
.top-0{
|
2129 |
+
top: 0px;
|
2130 |
+
}
|
2131 |
+
.top-\[50px\]{
|
2132 |
+
top: 50px;
|
2133 |
+
}
|
2134 |
+
.top-auto{
|
2135 |
+
top: auto;
|
2136 |
+
}
|
2137 |
+
.z-10{
|
2138 |
+
z-index: 10;
|
2139 |
+
}
|
2140 |
+
.z-\[1000\]{
|
2141 |
+
z-index: 1000;
|
2142 |
+
}
|
2143 |
+
.z-\[9999\]{
|
2144 |
+
z-index: 9999;
|
2145 |
+
}
|
2146 |
+
.col-span-full{
|
2147 |
+
grid-column: 1 / -1;
|
2148 |
+
}
|
2149 |
+
.row-span-full{
|
2150 |
+
grid-row: 1 / -1;
|
2151 |
+
}
|
2152 |
+
.m-0{
|
2153 |
+
margin: 0px;
|
2154 |
+
}
|
2155 |
+
.m-1{
|
2156 |
+
margin: 0.25rem;
|
2157 |
+
}
|
2158 |
+
.m-12{
|
2159 |
+
margin: 3rem;
|
2160 |
+
}
|
2161 |
+
.m-2{
|
2162 |
+
margin: 0.5rem;
|
2163 |
+
}
|
2164 |
+
.m-8{
|
2165 |
+
margin: 2rem;
|
2166 |
+
}
|
2167 |
+
.mx-1{
|
2168 |
+
margin-left: 0.25rem;
|
2169 |
+
margin-right: 0.25rem;
|
2170 |
+
}
|
2171 |
+
.mx-2{
|
2172 |
+
margin-left: 0.5rem;
|
2173 |
+
margin-right: 0.5rem;
|
2174 |
+
}
|
2175 |
+
.mx-6{
|
2176 |
+
margin-left: 1.5rem;
|
2177 |
+
margin-right: 1.5rem;
|
2178 |
+
}
|
2179 |
+
.my-0{
|
2180 |
+
margin-top: 0px;
|
2181 |
+
margin-bottom: 0px;
|
2182 |
+
}
|
2183 |
+
.my-1{
|
2184 |
+
margin-top: 0.25rem;
|
2185 |
+
margin-bottom: 0.25rem;
|
2186 |
+
}
|
2187 |
+
.my-2{
|
2188 |
+
margin-top: 0.5rem;
|
2189 |
+
margin-bottom: 0.5rem;
|
2190 |
+
}
|
2191 |
+
.my-2\.5{
|
2192 |
+
margin-top: 0.625rem;
|
2193 |
+
margin-bottom: 0.625rem;
|
2194 |
+
}
|
2195 |
+
.my-4{
|
2196 |
+
margin-top: 1rem;
|
2197 |
+
margin-bottom: 1rem;
|
2198 |
+
}
|
2199 |
+
.mb-2{
|
2200 |
+
margin-bottom: 0.5rem;
|
2201 |
+
}
|
2202 |
+
.mb-3{
|
2203 |
+
margin-bottom: 0.75rem;
|
2204 |
+
}
|
2205 |
+
.mb-4{
|
2206 |
+
margin-bottom: 1rem;
|
2207 |
+
}
|
2208 |
+
.mb-6{
|
2209 |
+
margin-bottom: 1.5rem;
|
2210 |
+
}
|
2211 |
+
.mb-7{
|
2212 |
+
margin-bottom: 1.75rem;
|
2213 |
+
}
|
2214 |
+
.ml-2{
|
2215 |
+
margin-left: 0.5rem;
|
2216 |
+
}
|
2217 |
+
.ml-\[-13px\]{
|
2218 |
+
margin-left: -13px;
|
2219 |
+
}
|
2220 |
+
.ml-auto{
|
2221 |
+
margin-left: auto;
|
2222 |
+
}
|
2223 |
+
.mr-1{
|
2224 |
+
margin-right: 0.25rem;
|
2225 |
+
}
|
2226 |
+
.mr-2{
|
2227 |
+
margin-right: 0.5rem;
|
2228 |
+
}
|
2229 |
+
.mt-0{
|
2230 |
+
margin-top: 0px;
|
2231 |
+
}
|
2232 |
+
.mt-1{
|
2233 |
+
margin-top: 0.25rem;
|
2234 |
+
}
|
2235 |
+
.mt-2{
|
2236 |
+
margin-top: 0.5rem;
|
2237 |
+
}
|
2238 |
+
.mt-24{
|
2239 |
+
margin-top: 6rem;
|
2240 |
+
}
|
2241 |
+
.mt-4{
|
2242 |
+
margin-top: 1rem;
|
2243 |
+
}
|
2244 |
+
.mt-5{
|
2245 |
+
margin-top: 1.25rem;
|
2246 |
+
}
|
2247 |
+
.mt-6{
|
2248 |
+
margin-top: 1.5rem;
|
2249 |
+
}
|
2250 |
+
.block{
|
2251 |
+
display: block;
|
2252 |
+
}
|
2253 |
+
.inline-block{
|
2254 |
+
display: inline-block;
|
2255 |
+
}
|
2256 |
+
.inline{
|
2257 |
+
display: inline;
|
2258 |
+
}
|
2259 |
+
.flex{
|
2260 |
+
display: flex;
|
2261 |
+
}
|
2262 |
+
.inline-flex{
|
2263 |
+
display: inline-flex;
|
2264 |
+
}
|
2265 |
+
.table{
|
2266 |
+
display: table;
|
2267 |
+
}
|
2268 |
+
.grid{
|
2269 |
+
display: grid;
|
2270 |
+
}
|
2271 |
+
.contents{
|
2272 |
+
display: contents;
|
2273 |
+
}
|
2274 |
+
.hidden{
|
2275 |
+
display: none;
|
2276 |
+
}
|
2277 |
+
.h-0{
|
2278 |
+
height: 0px;
|
2279 |
+
}
|
2280 |
+
.h-1{
|
2281 |
+
height: 0.25rem;
|
2282 |
+
}
|
2283 |
+
.h-1\/2{
|
2284 |
+
height: 50%;
|
2285 |
+
}
|
2286 |
+
.h-16{
|
2287 |
+
height: 4rem;
|
2288 |
+
}
|
2289 |
+
.h-6{
|
2290 |
+
height: 1.5rem;
|
2291 |
+
}
|
2292 |
+
.h-64{
|
2293 |
+
height: 16rem;
|
2294 |
+
}
|
2295 |
+
.h-8{
|
2296 |
+
height: 2rem;
|
2297 |
+
}
|
2298 |
+
.h-96{
|
2299 |
+
height: 26rem;
|
2300 |
+
}
|
2301 |
+
.h-\[22px\]{
|
2302 |
+
height: 22px;
|
2303 |
+
}
|
2304 |
+
.h-\[30rem\]{
|
2305 |
+
height: 30rem;
|
2306 |
+
}
|
2307 |
+
.h-\[var\(--comfy-topbar-height\)\]{
|
2308 |
+
height: var(--comfy-topbar-height);
|
2309 |
+
}
|
2310 |
+
.h-full{
|
2311 |
+
height: 100%;
|
2312 |
+
}
|
2313 |
+
.h-screen{
|
2314 |
+
height: 100vh;
|
2315 |
+
}
|
2316 |
+
.max-h-96{
|
2317 |
+
max-height: 26rem;
|
2318 |
+
}
|
2319 |
+
.max-h-full{
|
2320 |
+
max-height: 100%;
|
2321 |
+
}
|
2322 |
+
.min-h-52{
|
2323 |
+
min-height: 13rem;
|
2324 |
+
}
|
2325 |
+
.min-h-8{
|
2326 |
+
min-height: 2rem;
|
2327 |
+
}
|
2328 |
+
.min-h-full{
|
2329 |
+
min-height: 100%;
|
2330 |
+
}
|
2331 |
+
.min-h-screen{
|
2332 |
+
min-height: 100vh;
|
2333 |
+
}
|
2334 |
+
.w-1\/2{
|
2335 |
+
width: 50%;
|
2336 |
+
}
|
2337 |
+
.w-12{
|
2338 |
+
width: 3rem;
|
2339 |
+
}
|
2340 |
+
.w-14{
|
2341 |
+
width: 3.5rem;
|
2342 |
+
}
|
2343 |
+
.w-16{
|
2344 |
+
width: 4rem;
|
2345 |
+
}
|
2346 |
+
.w-28{
|
2347 |
+
width: 7rem;
|
2348 |
+
}
|
2349 |
+
.w-3\/12{
|
2350 |
+
width: 25%;
|
2351 |
+
}
|
2352 |
+
.w-44{
|
2353 |
+
width: 11rem;
|
2354 |
+
}
|
2355 |
+
.w-48{
|
2356 |
+
width: 12rem;
|
2357 |
+
}
|
2358 |
+
.w-6{
|
2359 |
+
width: 1.5rem;
|
2360 |
+
}
|
2361 |
+
.w-64{
|
2362 |
+
width: 16rem;
|
2363 |
+
}
|
2364 |
+
.w-8{
|
2365 |
+
width: 2rem;
|
2366 |
+
}
|
2367 |
+
.w-\[22px\]{
|
2368 |
+
width: 22px;
|
2369 |
+
}
|
2370 |
+
.w-\[600px\]{
|
2371 |
+
width: 600px;
|
2372 |
+
}
|
2373 |
+
.w-auto{
|
2374 |
+
width: auto;
|
2375 |
+
}
|
2376 |
+
.w-fit{
|
2377 |
+
width: -moz-fit-content;
|
2378 |
+
width: fit-content;
|
2379 |
+
}
|
2380 |
+
.w-full{
|
2381 |
+
width: 100%;
|
2382 |
+
}
|
2383 |
+
.w-screen{
|
2384 |
+
width: 100vw;
|
2385 |
+
}
|
2386 |
+
.min-w-0{
|
2387 |
+
min-width: 0px;
|
2388 |
+
}
|
2389 |
+
.min-w-110{
|
2390 |
+
min-width: 32rem;
|
2391 |
+
}
|
2392 |
+
.min-w-32{
|
2393 |
+
min-width: 8rem;
|
2394 |
+
}
|
2395 |
+
.min-w-84{
|
2396 |
+
min-width: 22rem;
|
2397 |
+
}
|
2398 |
+
.min-w-96{
|
2399 |
+
min-width: 26rem;
|
2400 |
+
}
|
2401 |
+
.min-w-full{
|
2402 |
+
min-width: 100%;
|
2403 |
+
}
|
2404 |
+
.max-w-110{
|
2405 |
+
max-width: 32rem;
|
2406 |
+
}
|
2407 |
+
.max-w-48{
|
2408 |
+
max-width: 12rem;
|
2409 |
+
}
|
2410 |
+
.max-w-64{
|
2411 |
+
max-width: 16rem;
|
2412 |
+
}
|
2413 |
+
.max-w-\[150px\]{
|
2414 |
+
max-width: 150px;
|
2415 |
+
}
|
2416 |
+
.max-w-\[600px\]{
|
2417 |
+
max-width: 600px;
|
2418 |
+
}
|
2419 |
+
.max-w-full{
|
2420 |
+
max-width: 100%;
|
2421 |
+
}
|
2422 |
+
.max-w-screen-sm{
|
2423 |
+
max-width: 640px;
|
2424 |
+
}
|
2425 |
+
.flex-1{
|
2426 |
+
flex: 1 1 0%;
|
2427 |
+
}
|
2428 |
+
.flex-shrink-0{
|
2429 |
+
flex-shrink: 0;
|
2430 |
+
}
|
2431 |
+
.shrink-0{
|
2432 |
+
flex-shrink: 0;
|
2433 |
+
}
|
2434 |
+
.flex-grow{
|
2435 |
+
flex-grow: 1;
|
2436 |
+
}
|
2437 |
+
.grow{
|
2438 |
+
flex-grow: 1;
|
2439 |
+
}
|
2440 |
+
.border-collapse{
|
2441 |
+
border-collapse: collapse;
|
2442 |
+
}
|
2443 |
+
.-translate-y-40{
|
2444 |
+
--tw-translate-y: -10rem;
|
2445 |
+
transform: translate(var(--tw-translate-x), var(--tw-translate-y)) rotate(var(--tw-rotate)) skewX(var(--tw-skew-x)) skewY(var(--tw-skew-y)) scaleX(var(--tw-scale-x)) scaleY(var(--tw-scale-y));
|
2446 |
+
}
|
2447 |
+
.scale-75{
|
2448 |
+
--tw-scale-x: .75;
|
2449 |
+
--tw-scale-y: .75;
|
2450 |
+
transform: translate(var(--tw-translate-x), var(--tw-translate-y)) rotate(var(--tw-rotate)) skewX(var(--tw-skew-x)) skewY(var(--tw-skew-y)) scaleX(var(--tw-scale-x)) scaleY(var(--tw-scale-y));
|
2451 |
+
}
|
2452 |
+
.transform{
|
2453 |
+
transform: translate(var(--tw-translate-x), var(--tw-translate-y)) rotate(var(--tw-rotate)) skewX(var(--tw-skew-x)) skewY(var(--tw-skew-y)) scaleX(var(--tw-scale-x)) scaleY(var(--tw-scale-y));
|
2454 |
+
}
|
2455 |
+
.cursor-move{
|
2456 |
+
cursor: move;
|
2457 |
+
}
|
2458 |
+
.cursor-pointer{
|
2459 |
+
cursor: pointer;
|
2460 |
+
}
|
2461 |
+
.select-none{
|
2462 |
+
-webkit-user-select: none;
|
2463 |
+
-moz-user-select: none;
|
2464 |
+
user-select: none;
|
2465 |
+
}
|
2466 |
+
.resize{
|
2467 |
+
resize: both;
|
2468 |
+
}
|
2469 |
+
.list-inside{
|
2470 |
+
list-style-position: inside;
|
2471 |
+
}
|
2472 |
+
.list-disc{
|
2473 |
+
list-style-type: disc;
|
2474 |
+
}
|
2475 |
+
.grid-cols-2{
|
2476 |
+
grid-template-columns: repeat(2, minmax(0, 1fr));
|
2477 |
+
}
|
2478 |
+
.flex-row{
|
2479 |
+
flex-direction: row;
|
2480 |
+
}
|
2481 |
+
.flex-row-reverse{
|
2482 |
+
flex-direction: row-reverse;
|
2483 |
+
}
|
2484 |
+
.flex-col{
|
2485 |
+
flex-direction: column;
|
2486 |
+
}
|
2487 |
+
.flex-wrap{
|
2488 |
+
flex-wrap: wrap;
|
2489 |
+
}
|
2490 |
+
.flex-nowrap{
|
2491 |
+
flex-wrap: nowrap;
|
2492 |
+
}
|
2493 |
+
.content-center{
|
2494 |
+
align-content: center;
|
2495 |
+
}
|
2496 |
+
.items-center{
|
2497 |
+
align-items: center;
|
2498 |
+
}
|
2499 |
+
.justify-end{
|
2500 |
+
justify-content: flex-end;
|
2501 |
+
}
|
2502 |
+
.justify-center{
|
2503 |
+
justify-content: center;
|
2504 |
+
}
|
2505 |
+
.justify-between{
|
2506 |
+
justify-content: space-between;
|
2507 |
+
}
|
2508 |
+
.justify-around{
|
2509 |
+
justify-content: space-around;
|
2510 |
+
}
|
2511 |
+
.justify-evenly{
|
2512 |
+
justify-content: space-evenly;
|
2513 |
+
}
|
2514 |
+
.gap-0{
|
2515 |
+
gap: 0px;
|
2516 |
+
}
|
2517 |
+
.gap-1{
|
2518 |
+
gap: 0.25rem;
|
2519 |
+
}
|
2520 |
+
.gap-2{
|
2521 |
+
gap: 0.5rem;
|
2522 |
+
}
|
2523 |
+
.gap-3{
|
2524 |
+
gap: 0.75rem;
|
2525 |
+
}
|
2526 |
+
.gap-4{
|
2527 |
+
gap: 1rem;
|
2528 |
+
}
|
2529 |
+
.gap-6{
|
2530 |
+
gap: 1.5rem;
|
2531 |
+
}
|
2532 |
+
.gap-8{
|
2533 |
+
gap: 2rem;
|
2534 |
+
}
|
2535 |
+
.space-x-1 > :not([hidden]) ~ :not([hidden]){
|
2536 |
+
--tw-space-x-reverse: 0;
|
2537 |
+
margin-right: calc(0.25rem * var(--tw-space-x-reverse));
|
2538 |
+
margin-left: calc(0.25rem * calc(1 - var(--tw-space-x-reverse)));
|
2539 |
+
}
|
2540 |
+
.space-y-1 > :not([hidden]) ~ :not([hidden]){
|
2541 |
+
--tw-space-y-reverse: 0;
|
2542 |
+
margin-top: calc(0.25rem * calc(1 - var(--tw-space-y-reverse)));
|
2543 |
+
margin-bottom: calc(0.25rem * var(--tw-space-y-reverse));
|
2544 |
+
}
|
2545 |
+
.space-y-2 > :not([hidden]) ~ :not([hidden]){
|
2546 |
+
--tw-space-y-reverse: 0;
|
2547 |
+
margin-top: calc(0.5rem * calc(1 - var(--tw-space-y-reverse)));
|
2548 |
+
margin-bottom: calc(0.5rem * var(--tw-space-y-reverse));
|
2549 |
+
}
|
2550 |
+
.space-y-4 > :not([hidden]) ~ :not([hidden]){
|
2551 |
+
--tw-space-y-reverse: 0;
|
2552 |
+
margin-top: calc(1rem * calc(1 - var(--tw-space-y-reverse)));
|
2553 |
+
margin-bottom: calc(1rem * var(--tw-space-y-reverse));
|
2554 |
+
}
|
2555 |
+
.place-self-end{
|
2556 |
+
place-self: end;
|
2557 |
+
}
|
2558 |
+
.justify-self-end{
|
2559 |
+
justify-self: end;
|
2560 |
+
}
|
2561 |
+
.overflow-auto{
|
2562 |
+
overflow: auto;
|
2563 |
+
}
|
2564 |
+
.overflow-hidden{
|
2565 |
+
overflow: hidden;
|
2566 |
+
}
|
2567 |
+
.overflow-y-auto{
|
2568 |
+
overflow-y: auto;
|
2569 |
+
}
|
2570 |
+
.overflow-x-hidden{
|
2571 |
+
overflow-x: hidden;
|
2572 |
+
}
|
2573 |
+
.truncate{
|
2574 |
+
overflow: hidden;
|
2575 |
+
text-overflow: ellipsis;
|
2576 |
+
white-space: nowrap;
|
2577 |
+
}
|
2578 |
+
.text-ellipsis{
|
2579 |
+
text-overflow: ellipsis;
|
2580 |
+
}
|
2581 |
+
.whitespace-nowrap{
|
2582 |
+
white-space: nowrap;
|
2583 |
+
}
|
2584 |
+
.whitespace-pre-line{
|
2585 |
+
white-space: pre-line;
|
2586 |
+
}
|
2587 |
+
.text-wrap{
|
2588 |
+
text-wrap: wrap;
|
2589 |
+
}
|
2590 |
+
.text-nowrap{
|
2591 |
+
text-wrap: nowrap;
|
2592 |
+
}
|
2593 |
+
.rounded{
|
2594 |
+
border-radius: 0.25rem;
|
2595 |
+
}
|
2596 |
+
.rounded-lg{
|
2597 |
+
border-radius: 0.5rem;
|
2598 |
+
}
|
2599 |
+
.rounded-none{
|
2600 |
+
border-radius: 0px;
|
2601 |
+
}
|
2602 |
+
.rounded-t-lg{
|
2603 |
+
border-top-left-radius: 0.5rem;
|
2604 |
+
border-top-right-radius: 0.5rem;
|
2605 |
+
}
|
2606 |
+
.border{
|
2607 |
+
border-width: 1px;
|
2608 |
+
}
|
2609 |
+
.border-0{
|
2610 |
+
border-width: 0px;
|
2611 |
+
}
|
2612 |
+
.border-x-0{
|
2613 |
+
border-left-width: 0px;
|
2614 |
+
border-right-width: 0px;
|
2615 |
+
}
|
2616 |
+
.border-y{
|
2617 |
+
border-top-width: 1px;
|
2618 |
+
border-bottom-width: 1px;
|
2619 |
+
}
|
2620 |
+
.border-b{
|
2621 |
+
border-bottom-width: 1px;
|
2622 |
+
}
|
2623 |
+
.border-l{
|
2624 |
+
border-left-width: 1px;
|
2625 |
+
}
|
2626 |
+
.border-r{
|
2627 |
+
border-right-width: 1px;
|
2628 |
+
}
|
2629 |
+
.border-t-0{
|
2630 |
+
border-top-width: 0px;
|
2631 |
+
}
|
2632 |
+
.border-solid{
|
2633 |
+
border-style: solid;
|
2634 |
+
}
|
2635 |
+
.border-hidden{
|
2636 |
+
border-style: hidden;
|
2637 |
+
}
|
2638 |
+
.border-none{
|
2639 |
+
border-style: none;
|
2640 |
+
}
|
2641 |
+
.border-neutral-700{
|
2642 |
+
--tw-border-opacity: 1;
|
2643 |
+
border-color: rgb(64 64 64 / var(--tw-border-opacity));
|
2644 |
+
}
|
2645 |
+
.bg-\[var\(--comfy-menu-bg\)\]{
|
2646 |
+
background-color: var(--comfy-menu-bg);
|
2647 |
+
}
|
2648 |
+
.bg-\[var\(--p-tree-background\)\]{
|
2649 |
+
background-color: var(--p-tree-background);
|
2650 |
+
}
|
2651 |
+
.bg-black{
|
2652 |
+
--tw-bg-opacity: 1;
|
2653 |
+
background-color: rgb(0 0 0 / var(--tw-bg-opacity));
|
2654 |
+
}
|
2655 |
+
.bg-blue-500{
|
2656 |
+
--tw-bg-opacity: 1;
|
2657 |
+
background-color: rgb(66 153 225 / var(--tw-bg-opacity));
|
2658 |
+
}
|
2659 |
+
.bg-gray-100{
|
2660 |
+
--tw-bg-opacity: 1;
|
2661 |
+
background-color: rgb(243 246 250 / var(--tw-bg-opacity));
|
2662 |
+
}
|
2663 |
+
.bg-gray-800{
|
2664 |
+
--tw-bg-opacity: 1;
|
2665 |
+
background-color: rgb(45 55 72 / var(--tw-bg-opacity));
|
2666 |
+
}
|
2667 |
+
.bg-green-500{
|
2668 |
+
--tw-bg-opacity: 1;
|
2669 |
+
background-color: rgb(150 206 76 / var(--tw-bg-opacity));
|
2670 |
+
}
|
2671 |
+
.bg-neutral-300{
|
2672 |
+
--tw-bg-opacity: 1;
|
2673 |
+
background-color: rgb(212 212 212 / var(--tw-bg-opacity));
|
2674 |
+
}
|
2675 |
+
.bg-neutral-700{
|
2676 |
+
--tw-bg-opacity: 1;
|
2677 |
+
background-color: rgb(64 64 64 / var(--tw-bg-opacity));
|
2678 |
+
}
|
2679 |
+
.bg-neutral-800{
|
2680 |
+
--tw-bg-opacity: 1;
|
2681 |
+
background-color: rgb(38 38 38 / var(--tw-bg-opacity));
|
2682 |
+
}
|
2683 |
+
.bg-neutral-900{
|
2684 |
+
--tw-bg-opacity: 1;
|
2685 |
+
background-color: rgb(23 23 23 / var(--tw-bg-opacity));
|
2686 |
+
}
|
2687 |
+
.bg-red-500{
|
2688 |
+
--tw-bg-opacity: 1;
|
2689 |
+
background-color: rgb(239 68 68 / var(--tw-bg-opacity));
|
2690 |
+
}
|
2691 |
+
.bg-red-700{
|
2692 |
+
--tw-bg-opacity: 1;
|
2693 |
+
background-color: rgb(185 28 28 / var(--tw-bg-opacity));
|
2694 |
+
}
|
2695 |
+
.bg-transparent{
|
2696 |
+
background-color: transparent;
|
2697 |
+
}
|
2698 |
+
.bg-opacity-50{
|
2699 |
+
--tw-bg-opacity: 0.5;
|
2700 |
+
}
|
2701 |
+
.bg-\[url\(\'\/assets\/images\/Git-Logo-White\.svg\'\)\]{
|
2702 |
+
background-image: url('../assets/images/Git-Logo-White.svg');
|
2703 |
+
}
|
2704 |
+
.bg-right-top{
|
2705 |
+
background-position: right top;
|
2706 |
+
}
|
2707 |
+
.bg-no-repeat{
|
2708 |
+
background-repeat: no-repeat;
|
2709 |
+
}
|
2710 |
+
.bg-origin-padding{
|
2711 |
+
background-origin: padding-box;
|
2712 |
+
}
|
2713 |
+
.object-contain{
|
2714 |
+
-o-object-fit: contain;
|
2715 |
+
object-fit: contain;
|
2716 |
+
}
|
2717 |
+
.object-cover{
|
2718 |
+
-o-object-fit: cover;
|
2719 |
+
object-fit: cover;
|
2720 |
+
}
|
2721 |
+
.p-0{
|
2722 |
+
padding: 0px;
|
2723 |
+
}
|
2724 |
+
.p-1{
|
2725 |
+
padding: 0.25rem;
|
2726 |
+
}
|
2727 |
+
.p-2{
|
2728 |
+
padding: 0.5rem;
|
2729 |
+
}
|
2730 |
+
.p-3{
|
2731 |
+
padding: 0.75rem;
|
2732 |
+
}
|
2733 |
+
.p-4{
|
2734 |
+
padding: 1rem;
|
2735 |
+
}
|
2736 |
+
.p-5{
|
2737 |
+
padding: 1.25rem;
|
2738 |
+
}
|
2739 |
+
.p-6{
|
2740 |
+
padding: 1.5rem;
|
2741 |
+
}
|
2742 |
+
.p-8{
|
2743 |
+
padding: 2rem;
|
2744 |
+
}
|
2745 |
+
.px-0{
|
2746 |
+
padding-left: 0px;
|
2747 |
+
padding-right: 0px;
|
2748 |
+
}
|
2749 |
+
.px-10{
|
2750 |
+
padding-left: 2.5rem;
|
2751 |
+
padding-right: 2.5rem;
|
2752 |
+
}
|
2753 |
+
.px-2{
|
2754 |
+
padding-left: 0.5rem;
|
2755 |
+
padding-right: 0.5rem;
|
2756 |
+
}
|
2757 |
+
.px-4{
|
2758 |
+
padding-left: 1rem;
|
2759 |
+
padding-right: 1rem;
|
2760 |
+
}
|
2761 |
+
.py-0{
|
2762 |
+
padding-top: 0px;
|
2763 |
+
padding-bottom: 0px;
|
2764 |
+
}
|
2765 |
+
.py-1{
|
2766 |
+
padding-top: 0.25rem;
|
2767 |
+
padding-bottom: 0.25rem;
|
2768 |
+
}
|
2769 |
+
.pb-0{
|
2770 |
+
padding-bottom: 0px;
|
2771 |
+
}
|
2772 |
+
.pl-4{
|
2773 |
+
padding-left: 1rem;
|
2774 |
+
}
|
2775 |
+
.pl-6{
|
2776 |
+
padding-left: 1.5rem;
|
2777 |
+
}
|
2778 |
+
.pr-0{
|
2779 |
+
padding-right: 0px;
|
2780 |
+
}
|
2781 |
+
.pr-2{
|
2782 |
+
padding-right: 0.5rem;
|
2783 |
+
}
|
2784 |
+
.pt-2{
|
2785 |
+
padding-top: 0.5rem;
|
2786 |
+
}
|
2787 |
+
.pt-4{
|
2788 |
+
padding-top: 1rem;
|
2789 |
+
}
|
2790 |
+
.pt-6{
|
2791 |
+
padding-top: 1.5rem;
|
2792 |
+
}
|
2793 |
+
.pt-8{
|
2794 |
+
padding-top: 2rem;
|
2795 |
+
}
|
2796 |
+
.text-center{
|
2797 |
+
text-align: center;
|
2798 |
+
}
|
2799 |
+
.text-right{
|
2800 |
+
text-align: right;
|
2801 |
+
}
|
2802 |
+
.font-mono{
|
2803 |
+
font-family: ui-monospace, SFMono-Regular, Menlo, Monaco, Consolas, "Liberation Mono", "Courier New", monospace;
|
2804 |
+
}
|
2805 |
+
.font-sans{
|
2806 |
+
font-family: ui-sans-serif, system-ui, sans-serif, "Apple Color Emoji", "Segoe UI Emoji", "Segoe UI Symbol", "Noto Color Emoji";
|
2807 |
+
}
|
2808 |
+
.text-2xl{
|
2809 |
+
font-size: 1.5rem;
|
2810 |
+
}
|
2811 |
+
.text-3xl{
|
2812 |
+
font-size: 1.875rem;
|
2813 |
+
}
|
2814 |
+
.text-4xl{
|
2815 |
+
font-size: 2.25rem;
|
2816 |
+
}
|
2817 |
+
.text-lg{
|
2818 |
+
font-size: 1.125rem;
|
2819 |
+
}
|
2820 |
+
.text-sm{
|
2821 |
+
font-size: 0.875rem;
|
2822 |
+
}
|
2823 |
+
.text-xl{
|
2824 |
+
font-size: 1.25rem;
|
2825 |
+
}
|
2826 |
+
.text-xs{
|
2827 |
+
font-size: 0.75rem;
|
2828 |
+
}
|
2829 |
+
.font-bold{
|
2830 |
+
font-weight: 700;
|
2831 |
+
}
|
2832 |
+
.font-light{
|
2833 |
+
font-weight: 300;
|
2834 |
+
}
|
2835 |
+
.font-medium{
|
2836 |
+
font-weight: 500;
|
2837 |
+
}
|
2838 |
+
.font-normal{
|
2839 |
+
font-weight: 400;
|
2840 |
+
}
|
2841 |
+
.font-semibold{
|
2842 |
+
font-weight: 600;
|
2843 |
+
}
|
2844 |
+
.uppercase{
|
2845 |
+
text-transform: uppercase;
|
2846 |
+
}
|
2847 |
+
.italic{
|
2848 |
+
font-style: italic;
|
2849 |
+
}
|
2850 |
+
.text-blue-400{
|
2851 |
+
--tw-text-opacity: 1;
|
2852 |
+
color: rgb(99 179 237 / var(--tw-text-opacity));
|
2853 |
+
}
|
2854 |
+
.text-gray-400{
|
2855 |
+
--tw-text-opacity: 1;
|
2856 |
+
color: rgb(203 213 224 / var(--tw-text-opacity));
|
2857 |
+
}
|
2858 |
+
.text-green-500{
|
2859 |
+
--tw-text-opacity: 1;
|
2860 |
+
color: rgb(150 206 76 / var(--tw-text-opacity));
|
2861 |
+
}
|
2862 |
+
.text-highlight{
|
2863 |
+
color: var(--p-primary-color);
|
2864 |
+
}
|
2865 |
+
.text-muted{
|
2866 |
+
color: var(--p-text-muted-color);
|
2867 |
+
}
|
2868 |
+
.text-neutral-100{
|
2869 |
+
--tw-text-opacity: 1;
|
2870 |
+
color: rgb(245 245 245 / var(--tw-text-opacity));
|
2871 |
+
}
|
2872 |
+
.text-neutral-200{
|
2873 |
+
--tw-text-opacity: 1;
|
2874 |
+
color: rgb(229 229 229 / var(--tw-text-opacity));
|
2875 |
+
}
|
2876 |
+
.text-neutral-300{
|
2877 |
+
--tw-text-opacity: 1;
|
2878 |
+
color: rgb(212 212 212 / var(--tw-text-opacity));
|
2879 |
+
}
|
2880 |
+
.text-neutral-400{
|
2881 |
+
--tw-text-opacity: 1;
|
2882 |
+
color: rgb(163 163 163 / var(--tw-text-opacity));
|
2883 |
+
}
|
2884 |
+
.text-neutral-800{
|
2885 |
+
--tw-text-opacity: 1;
|
2886 |
+
color: rgb(38 38 38 / var(--tw-text-opacity));
|
2887 |
+
}
|
2888 |
+
.text-neutral-900{
|
2889 |
+
--tw-text-opacity: 1;
|
2890 |
+
color: rgb(23 23 23 / var(--tw-text-opacity));
|
2891 |
+
}
|
2892 |
+
.text-red-500{
|
2893 |
+
--tw-text-opacity: 1;
|
2894 |
+
color: rgb(239 68 68 / var(--tw-text-opacity));
|
2895 |
+
}
|
2896 |
+
.underline{
|
2897 |
+
text-decoration-line: underline;
|
2898 |
+
}
|
2899 |
+
.no-underline{
|
2900 |
+
text-decoration-line: none;
|
2901 |
+
}
|
2902 |
+
.antialiased{
|
2903 |
+
-webkit-font-smoothing: antialiased;
|
2904 |
+
-moz-osx-font-smoothing: grayscale;
|
2905 |
+
}
|
2906 |
+
.opacity-0{
|
2907 |
+
opacity: 0;
|
2908 |
+
}
|
2909 |
+
.opacity-100{
|
2910 |
+
opacity: 1;
|
2911 |
+
}
|
2912 |
+
.opacity-15{
|
2913 |
+
opacity: 0.15;
|
2914 |
+
}
|
2915 |
+
.opacity-25{
|
2916 |
+
opacity: 0.25;
|
2917 |
+
}
|
2918 |
+
.opacity-40{
|
2919 |
+
opacity: 0.4;
|
2920 |
+
}
|
2921 |
+
.opacity-50{
|
2922 |
+
opacity: 0.5;
|
2923 |
+
}
|
2924 |
+
.opacity-65{
|
2925 |
+
opacity: 0.65;
|
2926 |
+
}
|
2927 |
+
.opacity-75{
|
2928 |
+
opacity: 0.75;
|
2929 |
+
}
|
2930 |
+
.shadow-lg{
|
2931 |
+
--tw-shadow: 0 10px 15px -3px rgb(0 0 0 / 0.1), 0 4px 6px -4px rgb(0 0 0 / 0.1);
|
2932 |
+
--tw-shadow-colored: 0 10px 15px -3px var(--tw-shadow-color), 0 4px 6px -4px var(--tw-shadow-color);
|
2933 |
+
box-shadow: var(--tw-ring-offset-shadow, 0 0 #0000), var(--tw-ring-shadow, 0 0 #0000), var(--tw-shadow);
|
2934 |
+
}
|
2935 |
+
.outline{
|
2936 |
+
outline-style: solid;
|
2937 |
+
}
|
2938 |
+
.blur{
|
2939 |
+
--tw-blur: blur(8px);
|
2940 |
+
filter: var(--tw-blur) var(--tw-brightness) var(--tw-contrast) var(--tw-grayscale) var(--tw-hue-rotate) var(--tw-invert) var(--tw-saturate) var(--tw-sepia) var(--tw-drop-shadow);
|
2941 |
+
}
|
2942 |
+
.drop-shadow{
|
2943 |
+
--tw-drop-shadow: drop-shadow(0 1px 2px rgb(0 0 0 / 0.1)) drop-shadow(0 1px 1px rgb(0 0 0 / 0.06));
|
2944 |
+
filter: var(--tw-blur) var(--tw-brightness) var(--tw-contrast) var(--tw-grayscale) var(--tw-hue-rotate) var(--tw-invert) var(--tw-saturate) var(--tw-sepia) var(--tw-drop-shadow);
|
2945 |
+
}
|
2946 |
+
.invert{
|
2947 |
+
--tw-invert: invert(100%);
|
2948 |
+
filter: var(--tw-blur) var(--tw-brightness) var(--tw-contrast) var(--tw-grayscale) var(--tw-hue-rotate) var(--tw-invert) var(--tw-saturate) var(--tw-sepia) var(--tw-drop-shadow);
|
2949 |
+
}
|
2950 |
+
.filter{
|
2951 |
+
filter: var(--tw-blur) var(--tw-brightness) var(--tw-contrast) var(--tw-grayscale) var(--tw-hue-rotate) var(--tw-invert) var(--tw-saturate) var(--tw-sepia) var(--tw-drop-shadow);
|
2952 |
+
}
|
2953 |
+
.backdrop-filter{
|
2954 |
+
-webkit-backdrop-filter: var(--tw-backdrop-blur) var(--tw-backdrop-brightness) var(--tw-backdrop-contrast) var(--tw-backdrop-grayscale) var(--tw-backdrop-hue-rotate) var(--tw-backdrop-invert) var(--tw-backdrop-opacity) var(--tw-backdrop-saturate) var(--tw-backdrop-sepia);
|
2955 |
+
backdrop-filter: var(--tw-backdrop-blur) var(--tw-backdrop-brightness) var(--tw-backdrop-contrast) var(--tw-backdrop-grayscale) var(--tw-backdrop-hue-rotate) var(--tw-backdrop-invert) var(--tw-backdrop-opacity) var(--tw-backdrop-saturate) var(--tw-backdrop-sepia);
|
2956 |
+
}
|
2957 |
+
.transition{
|
2958 |
+
transition-property: color, background-color, border-color, text-decoration-color, fill, stroke, opacity, box-shadow, transform, filter, -webkit-backdrop-filter;
|
2959 |
+
transition-property: color, background-color, border-color, text-decoration-color, fill, stroke, opacity, box-shadow, transform, filter, backdrop-filter;
|
2960 |
+
transition-property: color, background-color, border-color, text-decoration-color, fill, stroke, opacity, box-shadow, transform, filter, backdrop-filter, -webkit-backdrop-filter;
|
2961 |
+
transition-timing-function: cubic-bezier(0.4, 0, 0.2, 1);
|
2962 |
+
transition-duration: 150ms;
|
2963 |
+
}
|
2964 |
+
.transition-all{
|
2965 |
+
transition-property: all;
|
2966 |
+
transition-timing-function: cubic-bezier(0.4, 0, 0.2, 1);
|
2967 |
+
transition-duration: 150ms;
|
2968 |
+
}
|
2969 |
+
.transition-opacity{
|
2970 |
+
transition-property: opacity;
|
2971 |
+
transition-timing-function: cubic-bezier(0.4, 0, 0.2, 1);
|
2972 |
+
transition-duration: 150ms;
|
2973 |
+
}
|
2974 |
+
.duration-100{
|
2975 |
+
transition-duration: 100ms;
|
2976 |
+
}
|
2977 |
+
.duration-200{
|
2978 |
+
transition-duration: 200ms;
|
2979 |
+
}
|
2980 |
+
.duration-300{
|
2981 |
+
transition-duration: 300ms;
|
2982 |
+
}
|
2983 |
+
.ease-in{
|
2984 |
+
transition-timing-function: cubic-bezier(0.4, 0, 1, 1);
|
2985 |
+
}
|
2986 |
+
.ease-in-out{
|
2987 |
+
transition-timing-function: cubic-bezier(0.4, 0, 0.2, 1);
|
2988 |
+
}
|
2989 |
+
.ease-out{
|
2990 |
+
transition-timing-function: cubic-bezier(0, 0, 0.2, 1);
|
2991 |
+
}
|
2992 |
+
.content-\[\'\'\]{
|
2993 |
+
--tw-content: '';
|
2994 |
+
content: var(--tw-content);
|
2995 |
+
}
|
2996 |
+
}
|
2997 |
+
|
2998 |
+
:root {
|
2999 |
+
--fg-color: #000;
|
3000 |
+
--bg-color: #fff;
|
3001 |
+
--comfy-menu-bg: #353535;
|
3002 |
+
--comfy-menu-secondary-bg: #292929;
|
3003 |
+
--comfy-topbar-height: 2.5rem;
|
3004 |
+
--comfy-input-bg: #222;
|
3005 |
+
--input-text: #ddd;
|
3006 |
+
--descrip-text: #999;
|
3007 |
+
--drag-text: #ccc;
|
3008 |
+
--error-text: #ff4444;
|
3009 |
+
--border-color: #4e4e4e;
|
3010 |
+
--tr-even-bg-color: #222;
|
3011 |
+
--tr-odd-bg-color: #353535;
|
3012 |
+
--primary-bg: #236692;
|
3013 |
+
--primary-fg: #ffffff;
|
3014 |
+
--primary-hover-bg: #3485bb;
|
3015 |
+
--primary-hover-fg: #ffffff;
|
3016 |
+
--content-bg: #e0e0e0;
|
3017 |
+
--content-fg: #000;
|
3018 |
+
--content-hover-bg: #adadad;
|
3019 |
+
--content-hover-fg: #000;
|
3020 |
+
}
|
3021 |
+
|
3022 |
+
@media (prefers-color-scheme: dark) {
|
3023 |
+
:root {
|
3024 |
+
--fg-color: #fff;
|
3025 |
+
--bg-color: #202020;
|
3026 |
+
--content-bg: #4e4e4e;
|
3027 |
+
--content-fg: #fff;
|
3028 |
+
--content-hover-bg: #222;
|
3029 |
+
--content-hover-fg: #fff;
|
3030 |
+
}
|
3031 |
+
}
|
3032 |
+
|
3033 |
+
body {
|
3034 |
+
width: 100vw;
|
3035 |
+
height: 100vh;
|
3036 |
+
margin: 0;
|
3037 |
+
overflow: hidden;
|
3038 |
+
grid-template-columns: auto 1fr auto;
|
3039 |
+
grid-template-rows: auto 1fr auto;
|
3040 |
+
background: var(--bg-color) var(--bg-img);
|
3041 |
+
color: var(--fg-color);
|
3042 |
+
min-height: -webkit-fill-available;
|
3043 |
+
max-height: -webkit-fill-available;
|
3044 |
+
min-width: -webkit-fill-available;
|
3045 |
+
max-width: -webkit-fill-available;
|
3046 |
+
font-family: Arial, sans-serif;
|
3047 |
+
}
|
3048 |
+
|
3049 |
+
/**
|
3050 |
+
+------------------+------------------+------------------+
|
3051 |
+
| |
|
3052 |
+
| .comfyui-body- |
|
3053 |
+
| top |
|
3054 |
+
| (spans all cols) |
|
3055 |
+
| |
|
3056 |
+
+------------------+------------------+------------------+
|
3057 |
+
| | | |
|
3058 |
+
| .comfyui-body- | #graph-canvas | .comfyui-body- |
|
3059 |
+
| left | | right |
|
3060 |
+
| | | |
|
3061 |
+
| | | |
|
3062 |
+
+------------------+------------------+------------------+
|
3063 |
+
| |
|
3064 |
+
| .comfyui-body- |
|
3065 |
+
| bottom |
|
3066 |
+
| (spans all cols) |
|
3067 |
+
| |
|
3068 |
+
+------------------+------------------+------------------+
|
3069 |
+
*/
|
3070 |
+
|
3071 |
+
.comfyui-body-top {
|
3072 |
+
order: -5;
|
3073 |
+
/* Span across all columns */
|
3074 |
+
grid-column: 1/-1;
|
3075 |
+
/* Position at the first row */
|
3076 |
+
grid-row: 1;
|
3077 |
+
/* Top menu bar dropdown needs to be above of graph canvas splitter overlay which is z-index: 999 */
|
3078 |
+
/* Top menu bar z-index needs to be higher than bottom menu bar z-index as by default
|
3079 |
+
pysssss's image feed is located at body-bottom, and it can overlap with the queue button, which
|
3080 |
+
is located in body-top. */
|
3081 |
+
z-index: 1001;
|
3082 |
+
display: flex;
|
3083 |
+
flex-direction: column;
|
3084 |
+
}
|
3085 |
+
|
3086 |
+
.comfyui-body-left {
|
3087 |
+
order: -4;
|
3088 |
+
/* Position in the first column */
|
3089 |
+
grid-column: 1;
|
3090 |
+
/* Position below the top element */
|
3091 |
+
grid-row: 2;
|
3092 |
+
z-index: 10;
|
3093 |
+
display: flex;
|
3094 |
+
}
|
3095 |
+
|
3096 |
+
.graph-canvas-container {
|
3097 |
+
width: 100%;
|
3098 |
+
height: 100%;
|
3099 |
+
order: -3;
|
3100 |
+
grid-column: 2;
|
3101 |
+
grid-row: 2;
|
3102 |
+
position: relative;
|
3103 |
+
overflow: hidden;
|
3104 |
+
}
|
3105 |
+
|
3106 |
+
#graph-canvas {
|
3107 |
+
width: 100%;
|
3108 |
+
height: 100%;
|
3109 |
+
touch-action: none;
|
3110 |
+
}
|
3111 |
+
|
3112 |
+
.comfyui-body-right {
|
3113 |
+
order: -2;
|
3114 |
+
z-index: 10;
|
3115 |
+
grid-column: 3;
|
3116 |
+
grid-row: 2;
|
3117 |
+
}
|
3118 |
+
|
3119 |
+
.comfyui-body-bottom {
|
3120 |
+
order: 4;
|
3121 |
+
/* Span across all columns */
|
3122 |
+
grid-column: 1/-1;
|
3123 |
+
grid-row: 3;
|
3124 |
+
/* Bottom menu bar dropdown needs to be above of graph canvas splitter overlay which is z-index: 999 */
|
3125 |
+
z-index: 1000;
|
3126 |
+
display: flex;
|
3127 |
+
flex-direction: column;
|
3128 |
+
}
|
3129 |
+
|
3130 |
+
.comfy-multiline-input {
|
3131 |
+
background-color: var(--comfy-input-bg);
|
3132 |
+
color: var(--input-text);
|
3133 |
+
overflow: hidden;
|
3134 |
+
overflow-y: auto;
|
3135 |
+
padding: 2px;
|
3136 |
+
resize: none;
|
3137 |
+
border: none;
|
3138 |
+
box-sizing: border-box;
|
3139 |
+
font-size: var(--comfy-textarea-font-size);
|
3140 |
+
}
|
3141 |
+
|
3142 |
+
.comfy-markdown {
|
3143 |
+
/* We assign the textarea and the Tiptap editor to the same CSS grid area to stack them on top of one another. */
|
3144 |
+
display: grid;
|
3145 |
+
}
|
3146 |
+
|
3147 |
+
.comfy-markdown > textarea {
|
3148 |
+
grid-area: 1 / 1 / 2 / 2;
|
3149 |
+
}
|
3150 |
+
|
3151 |
+
.comfy-markdown .tiptap {
|
3152 |
+
grid-area: 1 / 1 / 2 / 2;
|
3153 |
+
background-color: var(--comfy-input-bg);
|
3154 |
+
color: var(--input-text);
|
3155 |
+
overflow: hidden;
|
3156 |
+
overflow-y: auto;
|
3157 |
+
resize: none;
|
3158 |
+
border: none;
|
3159 |
+
box-sizing: border-box;
|
3160 |
+
font-size: var(--comfy-textarea-font-size);
|
3161 |
+
height: 100%;
|
3162 |
+
padding: 0.5em;
|
3163 |
+
}
|
3164 |
+
|
3165 |
+
.comfy-markdown.editing .tiptap {
|
3166 |
+
display: none;
|
3167 |
+
}
|
3168 |
+
|
3169 |
+
.comfy-markdown .tiptap :first-child {
|
3170 |
+
margin-top: 0;
|
3171 |
+
}
|
3172 |
+
|
3173 |
+
.comfy-markdown .tiptap :last-child {
|
3174 |
+
margin-bottom: 0;
|
3175 |
+
}
|
3176 |
+
|
3177 |
+
.comfy-markdown .tiptap blockquote {
|
3178 |
+
border-left: medium solid;
|
3179 |
+
margin-left: 1em;
|
3180 |
+
padding-left: 0.5em;
|
3181 |
+
}
|
3182 |
+
|
3183 |
+
.comfy-markdown .tiptap pre {
|
3184 |
+
border: thin dotted;
|
3185 |
+
border-radius: 0.5em;
|
3186 |
+
margin: 0.5em;
|
3187 |
+
padding: 0.5em;
|
3188 |
+
}
|
3189 |
+
|
3190 |
+
.comfy-markdown .tiptap table {
|
3191 |
+
border-collapse: collapse;
|
3192 |
+
}
|
3193 |
+
|
3194 |
+
.comfy-markdown .tiptap th {
|
3195 |
+
text-align: left;
|
3196 |
+
background: var(--comfy-menu-bg);
|
3197 |
+
}
|
3198 |
+
|
3199 |
+
.comfy-markdown .tiptap th,
|
3200 |
+
.comfy-markdown .tiptap td {
|
3201 |
+
padding: 0.5em;
|
3202 |
+
border: thin solid;
|
3203 |
+
}
|
3204 |
+
|
3205 |
+
.comfy-modal {
|
3206 |
+
display: none; /* Hidden by default */
|
3207 |
+
position: fixed; /* Stay in place */
|
3208 |
+
z-index: 100; /* Sit on top */
|
3209 |
+
padding: 30px 30px 10px 30px;
|
3210 |
+
background-color: var(--comfy-menu-bg); /* Modal background */
|
3211 |
+
color: var(--error-text);
|
3212 |
+
box-shadow: 0 0 20px #888888;
|
3213 |
+
border-radius: 10px;
|
3214 |
+
top: 50%;
|
3215 |
+
left: 50%;
|
3216 |
+
max-width: 80vw;
|
3217 |
+
max-height: 80vh;
|
3218 |
+
transform: translate(-50%, -50%);
|
3219 |
+
overflow: hidden;
|
3220 |
+
justify-content: center;
|
3221 |
+
font-family: monospace;
|
3222 |
+
font-size: 15px;
|
3223 |
+
}
|
3224 |
+
|
3225 |
+
.comfy-modal-content {
|
3226 |
+
display: flex;
|
3227 |
+
flex-direction: column;
|
3228 |
+
}
|
3229 |
+
|
3230 |
+
.comfy-modal p {
|
3231 |
+
overflow: auto;
|
3232 |
+
white-space: pre-line; /* This will respect line breaks */
|
3233 |
+
margin-bottom: 20px; /* Add some margin between the text and the close button*/
|
3234 |
+
}
|
3235 |
+
|
3236 |
+
.comfy-modal select,
|
3237 |
+
.comfy-modal input[type='button'],
|
3238 |
+
.comfy-modal input[type='checkbox'] {
|
3239 |
+
margin: 3px 3px 3px 4px;
|
3240 |
+
}
|
3241 |
+
|
3242 |
+
.comfy-menu {
|
3243 |
+
font-size: 15px;
|
3244 |
+
position: absolute;
|
3245 |
+
top: 50%;
|
3246 |
+
right: 0;
|
3247 |
+
text-align: center;
|
3248 |
+
z-index: 999;
|
3249 |
+
width: 190px;
|
3250 |
+
display: flex;
|
3251 |
+
flex-direction: column;
|
3252 |
+
align-items: center;
|
3253 |
+
color: var(--descrip-text);
|
3254 |
+
background-color: var(--comfy-menu-bg);
|
3255 |
+
font-family: sans-serif;
|
3256 |
+
padding: 10px;
|
3257 |
+
border-radius: 0 8px 8px 8px;
|
3258 |
+
box-shadow: 3px 3px 8px rgba(0, 0, 0, 0.4);
|
3259 |
+
}
|
3260 |
+
|
3261 |
+
.comfy-menu-header {
|
3262 |
+
display: flex;
|
3263 |
+
}
|
3264 |
+
|
3265 |
+
.comfy-menu-actions {
|
3266 |
+
display: flex;
|
3267 |
+
gap: 3px;
|
3268 |
+
align-items: center;
|
3269 |
+
height: 20px;
|
3270 |
+
position: relative;
|
3271 |
+
top: -1px;
|
3272 |
+
font-size: 22px;
|
3273 |
+
}
|
3274 |
+
|
3275 |
+
.comfy-menu .comfy-menu-actions button {
|
3276 |
+
background-color: rgba(0, 0, 0, 0);
|
3277 |
+
padding: 0;
|
3278 |
+
border: none;
|
3279 |
+
cursor: pointer;
|
3280 |
+
font-size: inherit;
|
3281 |
+
}
|
3282 |
+
|
3283 |
+
.comfy-menu .comfy-menu-actions .comfy-settings-btn {
|
3284 |
+
font-size: 0.6em;
|
3285 |
+
}
|
3286 |
+
|
3287 |
+
button.comfy-close-menu-btn {
|
3288 |
+
font-size: 1em;
|
3289 |
+
line-height: 12px;
|
3290 |
+
color: #ccc;
|
3291 |
+
position: relative;
|
3292 |
+
top: -1px;
|
3293 |
+
}
|
3294 |
+
|
3295 |
+
.comfy-menu-queue-size {
|
3296 |
+
flex: auto;
|
3297 |
+
}
|
3298 |
+
|
3299 |
+
.comfy-menu button,
|
3300 |
+
.comfy-modal button {
|
3301 |
+
font-size: 20px;
|
3302 |
+
}
|
3303 |
+
|
3304 |
+
.comfy-menu-btns {
|
3305 |
+
margin-bottom: 10px;
|
3306 |
+
width: 100%;
|
3307 |
+
}
|
3308 |
+
|
3309 |
+
.comfy-menu-btns button {
|
3310 |
+
font-size: 10px;
|
3311 |
+
width: 50%;
|
3312 |
+
color: var(--descrip-text) !important;
|
3313 |
+
}
|
3314 |
+
|
3315 |
+
.comfy-menu > button {
|
3316 |
+
width: 100%;
|
3317 |
+
}
|
3318 |
+
|
3319 |
+
.comfy-btn,
|
3320 |
+
.comfy-menu > button,
|
3321 |
+
.comfy-menu-btns button,
|
3322 |
+
.comfy-menu .comfy-list button,
|
3323 |
+
.comfy-modal button {
|
3324 |
+
color: var(--input-text);
|
3325 |
+
background-color: var(--comfy-input-bg);
|
3326 |
+
border-radius: 8px;
|
3327 |
+
border-color: var(--border-color);
|
3328 |
+
border-style: solid;
|
3329 |
+
margin-top: 2px;
|
3330 |
+
}
|
3331 |
+
|
3332 |
+
.comfy-btn:hover:not(:disabled),
|
3333 |
+
.comfy-menu > button:hover,
|
3334 |
+
.comfy-menu-btns button:hover,
|
3335 |
+
.comfy-menu .comfy-list button:hover,
|
3336 |
+
.comfy-modal button:hover,
|
3337 |
+
.comfy-menu-actions button:hover {
|
3338 |
+
filter: brightness(1.2);
|
3339 |
+
will-change: transform;
|
3340 |
+
cursor: pointer;
|
3341 |
+
}
|
3342 |
+
|
3343 |
+
span.drag-handle {
|
3344 |
+
width: 10px;
|
3345 |
+
height: 20px;
|
3346 |
+
display: inline-block;
|
3347 |
+
overflow: hidden;
|
3348 |
+
line-height: 5px;
|
3349 |
+
padding: 3px 4px;
|
3350 |
+
cursor: move;
|
3351 |
+
vertical-align: middle;
|
3352 |
+
margin-top: -0.4em;
|
3353 |
+
margin-left: -0.2em;
|
3354 |
+
font-size: 12px;
|
3355 |
+
font-family: sans-serif;
|
3356 |
+
letter-spacing: 2px;
|
3357 |
+
color: var(--drag-text);
|
3358 |
+
text-shadow: 1px 0 1px black;
|
3359 |
+
touch-action: none;
|
3360 |
+
}
|
3361 |
+
|
3362 |
+
span.drag-handle::after {
|
3363 |
+
content: '.. .. ..';
|
3364 |
+
}
|
3365 |
+
|
3366 |
+
.comfy-queue-btn {
|
3367 |
+
width: 100%;
|
3368 |
+
}
|
3369 |
+
|
3370 |
+
.comfy-list {
|
3371 |
+
color: var(--descrip-text);
|
3372 |
+
background-color: var(--comfy-menu-bg);
|
3373 |
+
margin-bottom: 10px;
|
3374 |
+
border-color: var(--border-color);
|
3375 |
+
border-style: solid;
|
3376 |
+
}
|
3377 |
+
|
3378 |
+
.comfy-list-items {
|
3379 |
+
overflow-y: scroll;
|
3380 |
+
max-height: 100px;
|
3381 |
+
min-height: 25px;
|
3382 |
+
background-color: var(--comfy-input-bg);
|
3383 |
+
padding: 5px;
|
3384 |
+
}
|
3385 |
+
|
3386 |
+
.comfy-list h4 {
|
3387 |
+
min-width: 160px;
|
3388 |
+
margin: 0;
|
3389 |
+
padding: 3px;
|
3390 |
+
font-weight: normal;
|
3391 |
+
}
|
3392 |
+
|
3393 |
+
.comfy-list-items button {
|
3394 |
+
font-size: 10px;
|
3395 |
+
}
|
3396 |
+
|
3397 |
+
.comfy-list-actions {
|
3398 |
+
margin: 5px;
|
3399 |
+
display: flex;
|
3400 |
+
gap: 5px;
|
3401 |
+
justify-content: center;
|
3402 |
+
}
|
3403 |
+
|
3404 |
+
.comfy-list-actions button {
|
3405 |
+
font-size: 12px;
|
3406 |
+
}
|
3407 |
+
|
3408 |
+
button.comfy-queue-btn {
|
3409 |
+
margin: 6px 0 !important;
|
3410 |
+
}
|
3411 |
+
|
3412 |
+
.comfy-modal.comfy-settings,
|
3413 |
+
.comfy-modal.comfy-manage-templates {
|
3414 |
+
text-align: center;
|
3415 |
+
font-family: sans-serif;
|
3416 |
+
color: var(--descrip-text);
|
3417 |
+
z-index: 99;
|
3418 |
+
}
|
3419 |
+
|
3420 |
+
.comfy-modal.comfy-settings input[type='range'] {
|
3421 |
+
vertical-align: middle;
|
3422 |
+
}
|
3423 |
+
|
3424 |
+
.comfy-modal.comfy-settings input[type='range'] + input[type='number'] {
|
3425 |
+
width: 3.5em;
|
3426 |
+
}
|
3427 |
+
|
3428 |
+
.comfy-modal input,
|
3429 |
+
.comfy-modal select {
|
3430 |
+
color: var(--input-text);
|
3431 |
+
background-color: var(--comfy-input-bg);
|
3432 |
+
border-radius: 8px;
|
3433 |
+
border-color: var(--border-color);
|
3434 |
+
border-style: solid;
|
3435 |
+
font-size: inherit;
|
3436 |
+
}
|
3437 |
+
|
3438 |
+
.comfy-tooltip-indicator {
|
3439 |
+
text-decoration: underline;
|
3440 |
+
text-decoration-style: dashed;
|
3441 |
+
}
|
3442 |
+
|
3443 |
+
@media only screen and (max-height: 850px) {
|
3444 |
+
.comfy-menu {
|
3445 |
+
top: 0 !important;
|
3446 |
+
bottom: 0 !important;
|
3447 |
+
left: auto !important;
|
3448 |
+
right: 0 !important;
|
3449 |
+
border-radius: 0;
|
3450 |
+
}
|
3451 |
+
|
3452 |
+
.comfy-menu span.drag-handle {
|
3453 |
+
display: none;
|
3454 |
+
}
|
3455 |
+
|
3456 |
+
.comfy-menu-queue-size {
|
3457 |
+
flex: unset;
|
3458 |
+
}
|
3459 |
+
|
3460 |
+
.comfy-menu-header {
|
3461 |
+
justify-content: space-between;
|
3462 |
+
}
|
3463 |
+
.comfy-menu-actions {
|
3464 |
+
gap: 10px;
|
3465 |
+
font-size: 28px;
|
3466 |
+
}
|
3467 |
+
}
|
3468 |
+
|
3469 |
+
/* Input popup */
|
3470 |
+
|
3471 |
+
.graphdialog {
|
3472 |
+
min-height: 1em;
|
3473 |
+
background-color: var(--comfy-menu-bg);
|
3474 |
+
}
|
3475 |
+
|
3476 |
+
.graphdialog .name {
|
3477 |
+
font-size: 14px;
|
3478 |
+
font-family: sans-serif;
|
3479 |
+
color: var(--descrip-text);
|
3480 |
+
}
|
3481 |
+
|
3482 |
+
.graphdialog button {
|
3483 |
+
margin-top: unset;
|
3484 |
+
vertical-align: unset;
|
3485 |
+
height: 1.6em;
|
3486 |
+
padding-right: 8px;
|
3487 |
+
}
|
3488 |
+
|
3489 |
+
.graphdialog input,
|
3490 |
+
.graphdialog textarea,
|
3491 |
+
.graphdialog select {
|
3492 |
+
background-color: var(--comfy-input-bg);
|
3493 |
+
border: 2px solid;
|
3494 |
+
border-color: var(--border-color);
|
3495 |
+
color: var(--input-text);
|
3496 |
+
border-radius: 12px 0 0 12px;
|
3497 |
+
}
|
3498 |
+
|
3499 |
+
/* Dialogs */
|
3500 |
+
|
3501 |
+
dialog {
|
3502 |
+
box-shadow: 0 0 20px #888888;
|
3503 |
+
}
|
3504 |
+
|
3505 |
+
dialog::backdrop {
|
3506 |
+
background: rgba(0, 0, 0, 0.5);
|
3507 |
+
}
|
3508 |
+
|
3509 |
+
.comfy-dialog.comfyui-dialog.comfy-modal {
|
3510 |
+
top: 0;
|
3511 |
+
left: 0;
|
3512 |
+
right: 0;
|
3513 |
+
bottom: 0;
|
3514 |
+
transform: none;
|
3515 |
+
}
|
3516 |
+
|
3517 |
+
.comfy-dialog.comfy-modal {
|
3518 |
+
font-family: Arial, sans-serif;
|
3519 |
+
border-color: var(--bg-color);
|
3520 |
+
box-shadow: none;
|
3521 |
+
border: 2px solid var(--border-color);
|
3522 |
+
}
|
3523 |
+
|
3524 |
+
.comfy-dialog .comfy-modal-content {
|
3525 |
+
flex-direction: row;
|
3526 |
+
flex-wrap: wrap;
|
3527 |
+
gap: 10px;
|
3528 |
+
color: var(--fg-color);
|
3529 |
+
}
|
3530 |
+
|
3531 |
+
.comfy-dialog .comfy-modal-content h3 {
|
3532 |
+
margin-top: 0;
|
3533 |
+
}
|
3534 |
+
|
3535 |
+
.comfy-dialog .comfy-modal-content > p {
|
3536 |
+
width: 100%;
|
3537 |
+
}
|
3538 |
+
|
3539 |
+
.comfy-dialog .comfy-modal-content > .comfyui-button {
|
3540 |
+
flex: 1;
|
3541 |
+
justify-content: center;
|
3542 |
+
}
|
3543 |
+
|
3544 |
+
#comfy-settings-dialog {
|
3545 |
+
padding: 0;
|
3546 |
+
width: 41rem;
|
3547 |
+
}
|
3548 |
+
|
3549 |
+
#comfy-settings-dialog tr > td:first-child {
|
3550 |
+
text-align: right;
|
3551 |
+
}
|
3552 |
+
|
3553 |
+
#comfy-settings-dialog tbody button,
|
3554 |
+
#comfy-settings-dialog table > button {
|
3555 |
+
background-color: var(--bg-color);
|
3556 |
+
border: 1px var(--border-color) solid;
|
3557 |
+
border-radius: 0;
|
3558 |
+
color: var(--input-text);
|
3559 |
+
font-size: 1rem;
|
3560 |
+
padding: 0.5rem;
|
3561 |
+
}
|
3562 |
+
|
3563 |
+
#comfy-settings-dialog button:hover {
|
3564 |
+
background-color: var(--tr-odd-bg-color);
|
3565 |
+
}
|
3566 |
+
|
3567 |
+
/* General CSS for tables */
|
3568 |
+
|
3569 |
+
.comfy-table {
|
3570 |
+
border-collapse: collapse;
|
3571 |
+
color: var(--input-text);
|
3572 |
+
font-family: Arial, sans-serif;
|
3573 |
+
width: 100%;
|
3574 |
+
}
|
3575 |
+
|
3576 |
+
.comfy-table caption {
|
3577 |
+
position: sticky;
|
3578 |
+
top: 0;
|
3579 |
+
background-color: var(--bg-color);
|
3580 |
+
color: var(--input-text);
|
3581 |
+
font-size: 1rem;
|
3582 |
+
font-weight: bold;
|
3583 |
+
padding: 8px;
|
3584 |
+
text-align: center;
|
3585 |
+
border-bottom: 1px solid var(--border-color);
|
3586 |
+
}
|
3587 |
+
|
3588 |
+
.comfy-table caption .comfy-btn {
|
3589 |
+
position: absolute;
|
3590 |
+
top: -2px;
|
3591 |
+
right: 0;
|
3592 |
+
bottom: 0;
|
3593 |
+
cursor: pointer;
|
3594 |
+
border: none;
|
3595 |
+
height: 100%;
|
3596 |
+
border-radius: 0;
|
3597 |
+
aspect-ratio: 1/1;
|
3598 |
+
-webkit-user-select: none;
|
3599 |
+
-moz-user-select: none;
|
3600 |
+
user-select: none;
|
3601 |
+
font-size: 20px;
|
3602 |
+
}
|
3603 |
+
|
3604 |
+
.comfy-table caption .comfy-btn:focus {
|
3605 |
+
outline: none;
|
3606 |
+
}
|
3607 |
+
|
3608 |
+
.comfy-table tr:nth-child(even) {
|
3609 |
+
background-color: var(--tr-even-bg-color);
|
3610 |
+
}
|
3611 |
+
|
3612 |
+
.comfy-table tr:nth-child(odd) {
|
3613 |
+
background-color: var(--tr-odd-bg-color);
|
3614 |
+
}
|
3615 |
+
|
3616 |
+
.comfy-table td,
|
3617 |
+
.comfy-table th {
|
3618 |
+
border: 1px solid var(--border-color);
|
3619 |
+
padding: 8px;
|
3620 |
+
}
|
3621 |
+
|
3622 |
+
/* Context menu */
|
3623 |
+
|
3624 |
+
.litegraph .dialog {
|
3625 |
+
z-index: 1;
|
3626 |
+
font-family: Arial, sans-serif;
|
3627 |
+
}
|
3628 |
+
|
3629 |
+
.litegraph .litemenu-entry.has_submenu {
|
3630 |
+
position: relative;
|
3631 |
+
padding-right: 20px;
|
3632 |
+
}
|
3633 |
+
|
3634 |
+
.litemenu-entry.has_submenu::after {
|
3635 |
+
content: '>';
|
3636 |
+
position: absolute;
|
3637 |
+
top: 0;
|
3638 |
+
right: 2px;
|
3639 |
+
}
|
3640 |
+
|
3641 |
+
.litegraph.litecontextmenu,
|
3642 |
+
.litegraph.litecontextmenu.dark {
|
3643 |
+
z-index: 9999 !important;
|
3644 |
+
background-color: var(--comfy-menu-bg) !important;
|
3645 |
+
}
|
3646 |
+
|
3647 |
+
.litegraph.litecontextmenu
|
3648 |
+
.litemenu-entry:hover:not(.disabled):not(.separator) {
|
3649 |
+
background-color: var(--comfy-menu-hover-bg, var(--border-color)) !important;
|
3650 |
+
color: var(--fg-color);
|
3651 |
+
}
|
3652 |
+
|
3653 |
+
.litegraph.litecontextmenu .litemenu-entry.submenu,
|
3654 |
+
.litegraph.litecontextmenu.dark .litemenu-entry.submenu {
|
3655 |
+
background-color: var(--comfy-menu-bg) !important;
|
3656 |
+
color: var(--input-text);
|
3657 |
+
}
|
3658 |
+
|
3659 |
+
.litegraph.litecontextmenu input {
|
3660 |
+
background-color: var(--comfy-input-bg) !important;
|
3661 |
+
color: var(--input-text) !important;
|
3662 |
+
}
|
3663 |
+
|
3664 |
+
.comfy-context-menu-filter {
|
3665 |
+
box-sizing: border-box;
|
3666 |
+
border: 1px solid #999;
|
3667 |
+
margin: 0 0 5px 5px;
|
3668 |
+
width: calc(100% - 10px);
|
3669 |
+
}
|
3670 |
+
|
3671 |
+
.comfy-img-preview {
|
3672 |
+
pointer-events: none;
|
3673 |
+
overflow: hidden;
|
3674 |
+
display: flex;
|
3675 |
+
flex-wrap: wrap;
|
3676 |
+
align-content: flex-start;
|
3677 |
+
justify-content: center;
|
3678 |
+
}
|
3679 |
+
|
3680 |
+
.comfy-img-preview img {
|
3681 |
+
-o-object-fit: contain;
|
3682 |
+
object-fit: contain;
|
3683 |
+
width: var(--comfy-img-preview-width);
|
3684 |
+
height: var(--comfy-img-preview-height);
|
3685 |
+
}
|
3686 |
+
|
3687 |
+
.comfy-missing-nodes li button {
|
3688 |
+
font-size: 12px;
|
3689 |
+
margin-left: 5px;
|
3690 |
+
}
|
3691 |
+
|
3692 |
+
/* Search box */
|
3693 |
+
|
3694 |
+
.litegraph.litesearchbox {
|
3695 |
+
z-index: 9999 !important;
|
3696 |
+
background-color: var(--comfy-menu-bg) !important;
|
3697 |
+
overflow: hidden;
|
3698 |
+
display: block;
|
3699 |
+
}
|
3700 |
+
|
3701 |
+
.litegraph.litesearchbox input,
|
3702 |
+
.litegraph.litesearchbox select {
|
3703 |
+
background-color: var(--comfy-input-bg) !important;
|
3704 |
+
color: var(--input-text);
|
3705 |
+
}
|
3706 |
+
|
3707 |
+
.litegraph.lite-search-item {
|
3708 |
+
color: var(--input-text);
|
3709 |
+
background-color: var(--comfy-input-bg);
|
3710 |
+
filter: brightness(80%);
|
3711 |
+
will-change: transform;
|
3712 |
+
padding-left: 0.2em;
|
3713 |
+
}
|
3714 |
+
|
3715 |
+
.litegraph.lite-search-item.generic_type {
|
3716 |
+
color: var(--input-text);
|
3717 |
+
filter: brightness(50%);
|
3718 |
+
will-change: transform;
|
3719 |
+
}
|
3720 |
+
|
3721 |
+
@media only screen and (max-width: 450px) {
|
3722 |
+
#comfy-settings-dialog .comfy-table tbody {
|
3723 |
+
display: grid;
|
3724 |
+
}
|
3725 |
+
#comfy-settings-dialog .comfy-table tr {
|
3726 |
+
display: grid;
|
3727 |
+
}
|
3728 |
+
#comfy-settings-dialog tr > td:first-child {
|
3729 |
+
text-align: center;
|
3730 |
+
border-bottom: none;
|
3731 |
+
padding-bottom: 0;
|
3732 |
+
}
|
3733 |
+
#comfy-settings-dialog tr > td:not(:first-child) {
|
3734 |
+
text-align: center;
|
3735 |
+
border-top: none;
|
3736 |
+
}
|
3737 |
+
}
|
3738 |
+
|
3739 |
+
audio.comfy-audio.empty-audio-widget {
|
3740 |
+
display: none;
|
3741 |
+
}
|
3742 |
+
|
3743 |
+
#vue-app {
|
3744 |
+
position: absolute;
|
3745 |
+
top: 0;
|
3746 |
+
left: 0;
|
3747 |
+
width: 100%;
|
3748 |
+
height: 100%;
|
3749 |
+
pointer-events: none;
|
3750 |
+
}
|
3751 |
+
|
3752 |
+
/* Set auto complete panel's width as it is not accessible within vue-root */
|
3753 |
+
.p-autocomplete-overlay {
|
3754 |
+
max-width: 25vw;
|
3755 |
+
}
|
3756 |
+
|
3757 |
+
.p-tree-node-content {
|
3758 |
+
padding: var(--comfy-tree-explorer-item-padding) !important;
|
3759 |
+
}
|
3760 |
+
|
3761 |
+
/* Load3d styles */
|
3762 |
+
.comfy-load-3d,
|
3763 |
+
.comfy-load-3d-animation,
|
3764 |
+
.comfy-preview-3d,
|
3765 |
+
.comfy-preview-3d-animation{
|
3766 |
+
display: flex;
|
3767 |
+
flex-direction: column;
|
3768 |
+
background: transparent;
|
3769 |
+
flex: 1;
|
3770 |
+
position: relative;
|
3771 |
+
overflow: hidden;
|
3772 |
+
}
|
3773 |
+
|
3774 |
+
.comfy-load-3d canvas,
|
3775 |
+
.comfy-load-3d-animation canvas,
|
3776 |
+
.comfy-preview-3d canvas,
|
3777 |
+
.comfy-preview-3d-animation canvas{
|
3778 |
+
display: flex;
|
3779 |
+
width: 100% !important;
|
3780 |
+
height: 100% !important;
|
3781 |
+
}
|
3782 |
+
|
3783 |
+
/* End of Load3d styles */
|
3784 |
+
|
3785 |
+
/* [Desktop] Electron window specific styles */
|
3786 |
+
.app-drag {
|
3787 |
+
app-region: drag;
|
3788 |
+
}
|
3789 |
+
|
3790 |
+
.no-drag {
|
3791 |
+
app-region: no-drag;
|
3792 |
+
}
|
3793 |
+
|
3794 |
+
.window-actions-spacer {
|
3795 |
+
width: calc(100vw - env(titlebar-area-width, 100vw));
|
3796 |
+
}
|
3797 |
+
/* End of [Desktop] Electron window specific styles */
|
3798 |
+
.hover\:bg-neutral-700:hover{
|
3799 |
+
--tw-bg-opacity: 1;
|
3800 |
+
background-color: rgb(64 64 64 / var(--tw-bg-opacity));
|
3801 |
+
}
|
3802 |
+
.hover\:bg-opacity-75:hover{
|
3803 |
+
--tw-bg-opacity: 0.75;
|
3804 |
+
}
|
3805 |
+
.hover\:text-blue-300:hover{
|
3806 |
+
--tw-text-opacity: 1;
|
3807 |
+
color: rgb(144 205 244 / var(--tw-text-opacity));
|
3808 |
+
}
|
3809 |
+
.hover\:opacity-100:hover{
|
3810 |
+
opacity: 1;
|
3811 |
+
}
|
3812 |
+
@media (prefers-reduced-motion: no-preference){
|
3813 |
+
|
3814 |
+
.motion-safe\:w-0{
|
3815 |
+
width: 0px;
|
3816 |
+
}
|
3817 |
+
|
3818 |
+
.motion-safe\:opacity-0{
|
3819 |
+
opacity: 0;
|
3820 |
+
}
|
3821 |
+
|
3822 |
+
.group\/sidebar-tab:focus-within .motion-safe\:group-focus-within\/sidebar-tab\:w-auto{
|
3823 |
+
width: auto;
|
3824 |
+
}
|
3825 |
+
|
3826 |
+
.group\/sidebar-tab:focus-within .motion-safe\:group-focus-within\/sidebar-tab\:opacity-100{
|
3827 |
+
opacity: 1;
|
3828 |
+
}
|
3829 |
+
|
3830 |
+
.group\/sidebar-tab:hover .motion-safe\:group-hover\/sidebar-tab\:w-auto{
|
3831 |
+
width: auto;
|
3832 |
+
}
|
3833 |
+
|
3834 |
+
.group\/sidebar-tab:hover .motion-safe\:group-hover\/sidebar-tab\:opacity-100{
|
3835 |
+
opacity: 1;
|
3836 |
+
}
|
3837 |
+
|
3838 |
+
.group\/tree-node:hover .motion-safe\:group-hover\/tree-node\:opacity-100{
|
3839 |
+
opacity: 1;
|
3840 |
+
}
|
3841 |
+
}
|
3842 |
+
@media not all and (min-width: 640px){
|
3843 |
+
|
3844 |
+
.max-sm\:hidden{
|
3845 |
+
display: none;
|
3846 |
+
}
|
3847 |
+
}
|
3848 |
+
@media (min-width: 768px){
|
3849 |
+
|
3850 |
+
.md\:flex{
|
3851 |
+
display: flex;
|
3852 |
+
}
|
3853 |
+
|
3854 |
+
.md\:hidden{
|
3855 |
+
display: none;
|
3856 |
+
}
|
3857 |
+
}
|
3858 |
+
@media (min-width: 1536px){
|
3859 |
+
|
3860 |
+
.\32xl\:mx-4{
|
3861 |
+
margin-left: 1rem;
|
3862 |
+
margin-right: 1rem;
|
3863 |
+
}
|
3864 |
+
|
3865 |
+
.\32xl\:w-64{
|
3866 |
+
width: 16rem;
|
3867 |
+
}
|
3868 |
+
|
3869 |
+
.\32xl\:max-w-full{
|
3870 |
+
max-width: 100%;
|
3871 |
+
}
|
3872 |
+
|
3873 |
+
.\32xl\:p-16{
|
3874 |
+
padding: 4rem;
|
3875 |
+
}
|
3876 |
+
|
3877 |
+
.\32xl\:p-4{
|
3878 |
+
padding: 1rem;
|
3879 |
+
}
|
3880 |
+
|
3881 |
+
.\32xl\:p-\[var\(--p-dialog-content-padding\)\]{
|
3882 |
+
padding: var(--p-dialog-content-padding);
|
3883 |
+
}
|
3884 |
+
|
3885 |
+
.\32xl\:p-\[var\(--p-dialog-header-padding\)\]{
|
3886 |
+
padding: var(--p-dialog-header-padding);
|
3887 |
+
}
|
3888 |
+
|
3889 |
+
.\32xl\:px-4{
|
3890 |
+
padding-left: 1rem;
|
3891 |
+
padding-right: 1rem;
|
3892 |
+
}
|
3893 |
+
|
3894 |
+
.\32xl\:text-sm{
|
3895 |
+
font-size: 0.875rem;
|
3896 |
+
}
|
3897 |
+
}
|
3898 |
+
@media (prefers-color-scheme: dark){
|
3899 |
+
|
3900 |
+
.dark\:bg-gray-800{
|
3901 |
+
--tw-bg-opacity: 1;
|
3902 |
+
background-color: rgb(45 55 72 / var(--tw-bg-opacity));
|
3903 |
+
}
|
3904 |
+
}
|
3905 |
+
|
3906 |
+
.global-dialog .p-dialog-header {
|
3907 |
+
padding: 0.5rem
|
3908 |
+
}
|
3909 |
+
@media (min-width: 1536px) {
|
3910 |
+
.global-dialog .p-dialog-header {
|
3911 |
+
padding: var(--p-dialog-header-padding)
|
3912 |
+
}
|
3913 |
+
}
|
3914 |
+
.global-dialog .p-dialog-header {
|
3915 |
+
padding-bottom: 0px
|
3916 |
+
}
|
3917 |
+
.global-dialog .p-dialog-content {
|
3918 |
+
padding: 0.5rem
|
3919 |
+
}
|
3920 |
+
@media (min-width: 1536px) {
|
3921 |
+
.global-dialog .p-dialog-content {
|
3922 |
+
padding: var(--p-dialog-content-padding)
|
3923 |
+
}
|
3924 |
+
}
|
3925 |
+
.global-dialog .p-dialog-content {
|
3926 |
+
padding-top: 0px
|
3927 |
+
}
|
3928 |
+
|
3929 |
+
.prompt-dialog-content[data-v-3df70997] {
|
3930 |
+
white-space: pre-wrap;
|
3931 |
+
}
|
3932 |
+
|
3933 |
+
.no-results-placeholder[data-v-f2b77816] .p-card {
|
3934 |
+
background-color: var(--surface-ground);
|
3935 |
+
text-align: center;
|
3936 |
+
box-shadow: unset;
|
3937 |
+
}
|
3938 |
+
.no-results-placeholder h3[data-v-f2b77816] {
|
3939 |
+
color: var(--text-color);
|
3940 |
+
margin-bottom: 0.5rem;
|
3941 |
+
}
|
3942 |
+
.no-results-placeholder p[data-v-f2b77816] {
|
3943 |
+
color: var(--text-color-secondary);
|
3944 |
+
margin-bottom: 1rem;
|
3945 |
+
}
|
3946 |
+
|
3947 |
+
.comfy-error-report[data-v-3faf7785] {
|
3948 |
+
display: flex;
|
3949 |
+
flex-direction: column;
|
3950 |
+
gap: 1rem;
|
3951 |
+
}
|
3952 |
+
.action-container[data-v-3faf7785] {
|
3953 |
+
display: flex;
|
3954 |
+
gap: 1rem;
|
3955 |
+
justify-content: flex-end;
|
3956 |
+
}
|
3957 |
+
.wrapper-pre[data-v-3faf7785] {
|
3958 |
+
white-space: pre-wrap;
|
3959 |
+
word-wrap: break-word;
|
3960 |
+
}
|
3961 |
+
|
3962 |
+
.comfy-missing-nodes[data-v-425cc3ac] {
|
3963 |
+
max-height: 300px;
|
3964 |
+
overflow-y: auto;
|
3965 |
+
}
|
3966 |
+
.node-hint[data-v-425cc3ac] {
|
3967 |
+
margin-left: 0.5rem;
|
3968 |
+
font-style: italic;
|
3969 |
+
color: var(--text-color-secondary);
|
3970 |
+
}
|
3971 |
+
[data-v-425cc3ac] .p-button {
|
3972 |
+
margin-left: auto;
|
3973 |
+
}
|
3974 |
+
|
3975 |
+
.comfy-missing-models[data-v-f8d63775] {
|
3976 |
+
max-height: 300px;
|
3977 |
+
overflow-y: auto;
|
3978 |
+
}
|
3979 |
+
|
3980 |
+
[data-v-53692f7e] .i-badge {
|
3981 |
+
|
3982 |
+
--tw-bg-opacity: 1;
|
3983 |
+
|
3984 |
+
background-color: rgb(150 206 76 / var(--tw-bg-opacity));
|
3985 |
+
|
3986 |
+
--tw-text-opacity: 1;
|
3987 |
+
|
3988 |
+
color: rgb(255 255 255 / var(--tw-text-opacity))
|
3989 |
+
}
|
3990 |
+
[data-v-53692f7e] .o-badge {
|
3991 |
+
|
3992 |
+
--tw-bg-opacity: 1;
|
3993 |
+
|
3994 |
+
background-color: rgb(239 68 68 / var(--tw-bg-opacity));
|
3995 |
+
|
3996 |
+
--tw-text-opacity: 1;
|
3997 |
+
|
3998 |
+
color: rgb(255 255 255 / var(--tw-text-opacity))
|
3999 |
+
}
|
4000 |
+
[data-v-53692f7e] .c-badge {
|
4001 |
+
|
4002 |
+
--tw-bg-opacity: 1;
|
4003 |
+
|
4004 |
+
background-color: rgb(66 153 225 / var(--tw-bg-opacity));
|
4005 |
+
|
4006 |
+
--tw-text-opacity: 1;
|
4007 |
+
|
4008 |
+
color: rgb(255 255 255 / var(--tw-text-opacity))
|
4009 |
+
}
|
4010 |
+
[data-v-53692f7e] .s-badge {
|
4011 |
+
|
4012 |
+
--tw-bg-opacity: 1;
|
4013 |
+
|
4014 |
+
background-color: rgb(234 179 8 / var(--tw-bg-opacity))
|
4015 |
+
}
|
4016 |
+
|
4017 |
+
[data-v-b3ab067d] .p-inputtext {
|
4018 |
+
--p-form-field-padding-x: 0.625rem;
|
4019 |
+
}
|
4020 |
+
.p-button.p-inputicon[data-v-b3ab067d] {
|
4021 |
+
width: auto;
|
4022 |
+
border-style: none;
|
4023 |
+
padding: 0px;
|
4024 |
+
}
|
4025 |
+
|
4026 |
+
.form-input[data-v-1451da7b] .input-slider .p-inputnumber input,
|
4027 |
+
.form-input[data-v-1451da7b] .input-slider .slider-part {
|
4028 |
+
|
4029 |
+
width: 5rem
|
4030 |
+
}
|
4031 |
+
.form-input[data-v-1451da7b] .p-inputtext,
|
4032 |
+
.form-input[data-v-1451da7b] .p-select {
|
4033 |
+
|
4034 |
+
width: 11rem
|
4035 |
+
}
|
4036 |
+
|
4037 |
+
.settings-tab-panels {
|
4038 |
+
padding-top: 0px !important;
|
4039 |
+
}
|
4040 |
+
|
4041 |
+
.settings-container[data-v-2e21278f] {
|
4042 |
+
display: flex;
|
4043 |
+
height: 70vh;
|
4044 |
+
width: 60vw;
|
4045 |
+
max-width: 1024px;
|
4046 |
+
overflow: hidden;
|
4047 |
+
}
|
4048 |
+
@media (max-width: 768px) {
|
4049 |
+
.settings-container[data-v-2e21278f] {
|
4050 |
+
flex-direction: column;
|
4051 |
+
height: auto;
|
4052 |
+
width: 80vw;
|
4053 |
+
}
|
4054 |
+
.settings-sidebar[data-v-2e21278f] {
|
4055 |
+
width: 100%;
|
4056 |
+
}
|
4057 |
+
.settings-content[data-v-2e21278f] {
|
4058 |
+
height: 350px;
|
4059 |
+
}
|
4060 |
+
}
|
4061 |
+
|
4062 |
+
/* Show a separator line above the Keybinding tab */
|
4063 |
+
/* This indicates the start of custom setting panels */
|
4064 |
+
.settings-sidebar[data-v-2e21278f] .p-listbox-option[aria-label='Keybinding'] {
|
4065 |
+
position: relative;
|
4066 |
+
}
|
4067 |
+
.settings-sidebar[data-v-2e21278f] .p-listbox-option[aria-label='Keybinding']::before {
|
4068 |
+
position: absolute;
|
4069 |
+
top: 0px;
|
4070 |
+
left: 0px;
|
4071 |
+
width: 100%;
|
4072 |
+
--tw-content: '';
|
4073 |
+
content: var(--tw-content);
|
4074 |
+
border-top: 1px solid var(--p-divider-border-color);
|
4075 |
+
}
|
4076 |
+
|
4077 |
+
.pi-cog[data-v-43089afc] {
|
4078 |
+
font-size: 1.25rem;
|
4079 |
+
margin-right: 0.5rem;
|
4080 |
+
}
|
4081 |
+
.version-tag[data-v-43089afc] {
|
4082 |
+
margin-left: 0.5rem;
|
4083 |
+
}
|
4084 |
+
|
4085 |
+
.p-card[data-v-ffc83afa] {
|
4086 |
+
--p-card-body-padding: 10px 0 0 0;
|
4087 |
+
overflow: hidden;
|
4088 |
+
}
|
4089 |
+
[data-v-ffc83afa] .p-card-subtitle {
|
4090 |
+
text-align: center;
|
4091 |
+
}
|
4092 |
+
|
4093 |
+
.carousel[data-v-d9962275] {
|
4094 |
+
width: 66vw;
|
4095 |
+
}
|
4096 |
+
/**
|
4097 |
+
* Copyright (c) 2014 The xterm.js authors. All rights reserved.
|
4098 |
+
* Copyright (c) 2012-2013, Christopher Jeffrey (MIT License)
|
4099 |
+
* https://github.com/chjj/term.js
|
4100 |
+
* @license MIT
|
4101 |
+
*
|
4102 |
+
* Permission is hereby granted, free of charge, to any person obtaining a copy
|
4103 |
+
* of this software and associated documentation files (the "Software"), to deal
|
4104 |
+
* in the Software without restriction, including without limitation the rights
|
4105 |
+
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
4106 |
+
* copies of the Software, and to permit persons to whom the Software is
|
4107 |
+
* furnished to do so, subject to the following conditions:
|
4108 |
+
*
|
4109 |
+
* The above copyright notice and this permission notice shall be included in
|
4110 |
+
* all copies or substantial portions of the Software.
|
4111 |
+
*
|
4112 |
+
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
4113 |
+
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
4114 |
+
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
4115 |
+
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
4116 |
+
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
4117 |
+
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
|
4118 |
+
* THE SOFTWARE.
|
4119 |
+
*
|
4120 |
+
* Originally forked from (with the author's permission):
|
4121 |
+
* Fabrice Bellard's javascript vt100 for jslinux:
|
4122 |
+
* http://bellard.org/jslinux/
|
4123 |
+
* Copyright (c) 2011 Fabrice Bellard
|
4124 |
+
* The original design remains. The terminal itself
|
4125 |
+
* has been extended to include xterm CSI codes, among
|
4126 |
+
* other features.
|
4127 |
+
*/
|
4128 |
+
|
4129 |
+
/**
|
4130 |
+
* Default styles for xterm.js
|
4131 |
+
*/
|
4132 |
+
|
4133 |
+
.xterm {
|
4134 |
+
cursor: text;
|
4135 |
+
position: relative;
|
4136 |
+
-moz-user-select: none;
|
4137 |
+
user-select: none;
|
4138 |
+
-ms-user-select: none;
|
4139 |
+
-webkit-user-select: none;
|
4140 |
+
}
|
4141 |
+
|
4142 |
+
.xterm.focus,
|
4143 |
+
.xterm:focus {
|
4144 |
+
outline: none;
|
4145 |
+
}
|
4146 |
+
|
4147 |
+
.xterm .xterm-helpers {
|
4148 |
+
position: absolute;
|
4149 |
+
top: 0;
|
4150 |
+
/**
|
4151 |
+
* The z-index of the helpers must be higher than the canvases in order for
|
4152 |
+
* IMEs to appear on top.
|
4153 |
+
*/
|
4154 |
+
z-index: 5;
|
4155 |
+
}
|
4156 |
+
|
4157 |
+
.xterm .xterm-helper-textarea {
|
4158 |
+
padding: 0;
|
4159 |
+
border: 0;
|
4160 |
+
margin: 0;
|
4161 |
+
/* Move textarea out of the screen to the far left, so that the cursor is not visible */
|
4162 |
+
position: absolute;
|
4163 |
+
opacity: 0;
|
4164 |
+
left: -9999em;
|
4165 |
+
top: 0;
|
4166 |
+
width: 0;
|
4167 |
+
height: 0;
|
4168 |
+
z-index: -5;
|
4169 |
+
/** Prevent wrapping so the IME appears against the textarea at the correct position */
|
4170 |
+
white-space: nowrap;
|
4171 |
+
overflow: hidden;
|
4172 |
+
resize: none;
|
4173 |
+
}
|
4174 |
+
|
4175 |
+
.xterm .composition-view {
|
4176 |
+
/* TODO: Composition position got messed up somewhere */
|
4177 |
+
background: #000;
|
4178 |
+
color: #FFF;
|
4179 |
+
display: none;
|
4180 |
+
position: absolute;
|
4181 |
+
white-space: nowrap;
|
4182 |
+
z-index: 1;
|
4183 |
+
}
|
4184 |
+
|
4185 |
+
.xterm .composition-view.active {
|
4186 |
+
display: block;
|
4187 |
+
}
|
4188 |
+
|
4189 |
+
.xterm .xterm-viewport {
|
4190 |
+
/* On OS X this is required in order for the scroll bar to appear fully opaque */
|
4191 |
+
background-color: #000;
|
4192 |
+
overflow-y: scroll;
|
4193 |
+
cursor: default;
|
4194 |
+
position: absolute;
|
4195 |
+
right: 0;
|
4196 |
+
left: 0;
|
4197 |
+
top: 0;
|
4198 |
+
bottom: 0;
|
4199 |
+
}
|
4200 |
+
|
4201 |
+
.xterm .xterm-screen {
|
4202 |
+
position: relative;
|
4203 |
+
}
|
4204 |
+
|
4205 |
+
.xterm .xterm-screen canvas {
|
4206 |
+
position: absolute;
|
4207 |
+
left: 0;
|
4208 |
+
top: 0;
|
4209 |
+
}
|
4210 |
+
|
4211 |
+
.xterm .xterm-scroll-area {
|
4212 |
+
visibility: hidden;
|
4213 |
+
}
|
4214 |
+
|
4215 |
+
.xterm-char-measure-element {
|
4216 |
+
display: inline-block;
|
4217 |
+
visibility: hidden;
|
4218 |
+
position: absolute;
|
4219 |
+
top: 0;
|
4220 |
+
left: -9999em;
|
4221 |
+
line-height: normal;
|
4222 |
+
}
|
4223 |
+
|
4224 |
+
.xterm.enable-mouse-events {
|
4225 |
+
/* When mouse events are enabled (eg. tmux), revert to the standard pointer cursor */
|
4226 |
+
cursor: default;
|
4227 |
+
}
|
4228 |
+
|
4229 |
+
.xterm.xterm-cursor-pointer,
|
4230 |
+
.xterm .xterm-cursor-pointer {
|
4231 |
+
cursor: pointer;
|
4232 |
+
}
|
4233 |
+
|
4234 |
+
.xterm.column-select.focus {
|
4235 |
+
/* Column selection mode */
|
4236 |
+
cursor: crosshair;
|
4237 |
+
}
|
4238 |
+
|
4239 |
+
.xterm .xterm-accessibility:not(.debug),
|
4240 |
+
.xterm .xterm-message {
|
4241 |
+
position: absolute;
|
4242 |
+
left: 0;
|
4243 |
+
top: 0;
|
4244 |
+
bottom: 0;
|
4245 |
+
right: 0;
|
4246 |
+
z-index: 10;
|
4247 |
+
color: transparent;
|
4248 |
+
pointer-events: none;
|
4249 |
+
}
|
4250 |
+
|
4251 |
+
.xterm .xterm-accessibility-tree:not(.debug) *::-moz-selection {
|
4252 |
+
color: transparent;
|
4253 |
+
}
|
4254 |
+
|
4255 |
+
.xterm .xterm-accessibility-tree:not(.debug) *::selection {
|
4256 |
+
color: transparent;
|
4257 |
+
}
|
4258 |
+
|
4259 |
+
.xterm .xterm-accessibility-tree {
|
4260 |
+
-webkit-user-select: text;
|
4261 |
+
-moz-user-select: text;
|
4262 |
+
user-select: text;
|
4263 |
+
white-space: pre;
|
4264 |
+
}
|
4265 |
+
|
4266 |
+
.xterm .live-region {
|
4267 |
+
position: absolute;
|
4268 |
+
left: -9999px;
|
4269 |
+
width: 1px;
|
4270 |
+
height: 1px;
|
4271 |
+
overflow: hidden;
|
4272 |
+
}
|
4273 |
+
|
4274 |
+
.xterm-dim {
|
4275 |
+
/* Dim should not apply to background, so the opacity of the foreground color is applied
|
4276 |
+
* explicitly in the generated class and reset to 1 here */
|
4277 |
+
opacity: 1 !important;
|
4278 |
+
}
|
4279 |
+
|
4280 |
+
.xterm-underline-1 { text-decoration: underline; }
|
4281 |
+
.xterm-underline-2 { -webkit-text-decoration: double underline; text-decoration: double underline; }
|
4282 |
+
.xterm-underline-3 { -webkit-text-decoration: wavy underline; text-decoration: wavy underline; }
|
4283 |
+
.xterm-underline-4 { -webkit-text-decoration: dotted underline; text-decoration: dotted underline; }
|
4284 |
+
.xterm-underline-5 { -webkit-text-decoration: dashed underline; text-decoration: dashed underline; }
|
4285 |
+
|
4286 |
+
.xterm-overline {
|
4287 |
+
text-decoration: overline;
|
4288 |
+
}
|
4289 |
+
|
4290 |
+
.xterm-overline.xterm-underline-1 { text-decoration: overline underline; }
|
4291 |
+
.xterm-overline.xterm-underline-2 { -webkit-text-decoration: overline double underline; text-decoration: overline double underline; }
|
4292 |
+
.xterm-overline.xterm-underline-3 { -webkit-text-decoration: overline wavy underline; text-decoration: overline wavy underline; }
|
4293 |
+
.xterm-overline.xterm-underline-4 { -webkit-text-decoration: overline dotted underline; text-decoration: overline dotted underline; }
|
4294 |
+
.xterm-overline.xterm-underline-5 { -webkit-text-decoration: overline dashed underline; text-decoration: overline dashed underline; }
|
4295 |
+
|
4296 |
+
.xterm-strikethrough {
|
4297 |
+
text-decoration: line-through;
|
4298 |
+
}
|
4299 |
+
|
4300 |
+
.xterm-screen .xterm-decoration-container .xterm-decoration {
|
4301 |
+
z-index: 6;
|
4302 |
+
position: absolute;
|
4303 |
+
}
|
4304 |
+
|
4305 |
+
.xterm-screen .xterm-decoration-container .xterm-decoration.xterm-decoration-top-layer {
|
4306 |
+
z-index: 7;
|
4307 |
+
}
|
4308 |
+
|
4309 |
+
.xterm-decoration-overview-ruler {
|
4310 |
+
z-index: 8;
|
4311 |
+
position: absolute;
|
4312 |
+
top: 0;
|
4313 |
+
right: 0;
|
4314 |
+
pointer-events: none;
|
4315 |
+
}
|
4316 |
+
|
4317 |
+
.xterm-decoration-top {
|
4318 |
+
z-index: 2;
|
4319 |
+
position: relative;
|
4320 |
+
}
|
4321 |
+
|
4322 |
+
[data-v-250ab9af] .p-terminal .xterm {
|
4323 |
+
overflow-x: auto;
|
4324 |
+
}
|
4325 |
+
[data-v-250ab9af] .p-terminal .xterm-screen {
|
4326 |
+
background-color: black;
|
4327 |
+
overflow-y: hidden;
|
4328 |
+
}
|
4329 |
+
|
4330 |
+
[data-v-90a7f075] .p-terminal .xterm {
|
4331 |
+
overflow-x: auto;
|
4332 |
+
}
|
4333 |
+
[data-v-90a7f075] .p-terminal .xterm-screen {
|
4334 |
+
background-color: black;
|
4335 |
+
overflow-y: hidden;
|
4336 |
+
}
|
4337 |
+
|
4338 |
+
[data-v-03daf1c8] .p-terminal .xterm {
|
4339 |
+
overflow-x: auto;
|
4340 |
+
}
|
4341 |
+
[data-v-03daf1c8] .p-terminal .xterm-screen {
|
4342 |
+
background-color: black;
|
4343 |
+
overflow-y: hidden;
|
4344 |
+
}
|
4345 |
+
.mdi.rotate270::before {
|
4346 |
+
transform: rotate(270deg);
|
4347 |
+
}
|
4348 |
+
|
4349 |
+
/* Generic */
|
4350 |
+
.comfyui-button {
|
4351 |
+
display: flex;
|
4352 |
+
align-items: center;
|
4353 |
+
gap: 0.5em;
|
4354 |
+
cursor: pointer;
|
4355 |
+
border: none;
|
4356 |
+
border-radius: 4px;
|
4357 |
+
padding: 4px 8px;
|
4358 |
+
box-sizing: border-box;
|
4359 |
+
margin: 0;
|
4360 |
+
transition: box-shadow 0.1s;
|
4361 |
+
}
|
4362 |
+
|
4363 |
+
.comfyui-button:active {
|
4364 |
+
box-shadow: inset 1px 1px 10px rgba(0, 0, 0, 0.5);
|
4365 |
+
}
|
4366 |
+
|
4367 |
+
.comfyui-button:disabled {
|
4368 |
+
opacity: 0.5;
|
4369 |
+
cursor: not-allowed;
|
4370 |
+
}
|
4371 |
+
.primary .comfyui-button,
|
4372 |
+
.primary.comfyui-button {
|
4373 |
+
background-color: var(--primary-bg) !important;
|
4374 |
+
color: var(--primary-fg) !important;
|
4375 |
+
}
|
4376 |
+
|
4377 |
+
.primary .comfyui-button:not(:disabled):hover,
|
4378 |
+
.primary.comfyui-button:not(:disabled):hover {
|
4379 |
+
background-color: var(--primary-hover-bg) !important;
|
4380 |
+
color: var(--primary-hover-fg) !important;
|
4381 |
+
}
|
4382 |
+
|
4383 |
+
/* Popup */
|
4384 |
+
.comfyui-popup {
|
4385 |
+
position: absolute;
|
4386 |
+
left: var(--left);
|
4387 |
+
right: var(--right);
|
4388 |
+
top: var(--top);
|
4389 |
+
bottom: var(--bottom);
|
4390 |
+
z-index: 2000;
|
4391 |
+
max-height: calc(100vh - var(--limit) - 10px);
|
4392 |
+
box-shadow: 3px 3px 5px 0px rgba(0, 0, 0, 0.3);
|
4393 |
+
}
|
4394 |
+
|
4395 |
+
.comfyui-popup:not(.open) {
|
4396 |
+
display: none;
|
4397 |
+
}
|
4398 |
+
|
4399 |
+
.comfyui-popup.right.open {
|
4400 |
+
border-top-left-radius: 4px;
|
4401 |
+
border-bottom-right-radius: 4px;
|
4402 |
+
border-bottom-left-radius: 4px;
|
4403 |
+
overflow: hidden;
|
4404 |
+
}
|
4405 |
+
/* Split button */
|
4406 |
+
.comfyui-split-button {
|
4407 |
+
position: relative;
|
4408 |
+
display: flex;
|
4409 |
+
}
|
4410 |
+
|
4411 |
+
.comfyui-split-primary {
|
4412 |
+
flex: auto;
|
4413 |
+
}
|
4414 |
+
|
4415 |
+
.comfyui-split-primary .comfyui-button {
|
4416 |
+
border-top-right-radius: 0;
|
4417 |
+
border-bottom-right-radius: 0;
|
4418 |
+
border-right: 1px solid var(--comfy-menu-bg);
|
4419 |
+
width: 100%;
|
4420 |
+
}
|
4421 |
+
|
4422 |
+
.comfyui-split-arrow .comfyui-button {
|
4423 |
+
border-top-left-radius: 0;
|
4424 |
+
border-bottom-left-radius: 0;
|
4425 |
+
padding-left: 2px;
|
4426 |
+
padding-right: 2px;
|
4427 |
+
}
|
4428 |
+
|
4429 |
+
.comfyui-split-button-popup {
|
4430 |
+
white-space: nowrap;
|
4431 |
+
background-color: var(--content-bg);
|
4432 |
+
color: var(--content-fg);
|
4433 |
+
display: flex;
|
4434 |
+
flex-direction: column;
|
4435 |
+
overflow: auto;
|
4436 |
+
}
|
4437 |
+
|
4438 |
+
.comfyui-split-button-popup.hover {
|
4439 |
+
z-index: 2001;
|
4440 |
+
}
|
4441 |
+
.comfyui-split-button-popup > .comfyui-button {
|
4442 |
+
border: none;
|
4443 |
+
background-color: transparent;
|
4444 |
+
color: var(--fg-color);
|
4445 |
+
padding: 8px 12px 8px 8px;
|
4446 |
+
}
|
4447 |
+
|
4448 |
+
.comfyui-split-button-popup > .comfyui-button:not(:disabled):hover {
|
4449 |
+
background-color: var(--comfy-input-bg);
|
4450 |
+
}
|
4451 |
+
|
4452 |
+
/* Button group */
|
4453 |
+
.comfyui-button-group {
|
4454 |
+
display: flex;
|
4455 |
+
border-radius: 4px;
|
4456 |
+
overflow: hidden;
|
4457 |
+
}
|
4458 |
+
|
4459 |
+
.comfyui-button-group:empty {
|
4460 |
+
display: none;
|
4461 |
+
}
|
4462 |
+
.comfyui-button-group > .comfyui-button,
|
4463 |
+
.comfyui-button-group > .comfyui-button-wrapper > .comfyui-button {
|
4464 |
+
padding: 4px 10px;
|
4465 |
+
border-radius: 0;
|
4466 |
+
}
|
4467 |
+
|
4468 |
+
/* Menu */
|
4469 |
+
.comfyui-menu .mdi::before {
|
4470 |
+
font-size: 18px;
|
4471 |
+
}
|
4472 |
+
|
4473 |
+
.comfyui-menu .comfyui-button {
|
4474 |
+
background: var(--comfy-input-bg);
|
4475 |
+
color: var(--fg-color);
|
4476 |
+
white-space: nowrap;
|
4477 |
+
}
|
4478 |
+
|
4479 |
+
.comfyui-menu .comfyui-button:not(:disabled):hover {
|
4480 |
+
background: var(--border-color);
|
4481 |
+
color: var(--content-fg);
|
4482 |
+
}
|
4483 |
+
|
4484 |
+
.comfyui-menu .comfyui-split-button-popup > .comfyui-button {
|
4485 |
+
border-radius: 0;
|
4486 |
+
background-color: transparent;
|
4487 |
+
}
|
4488 |
+
|
4489 |
+
.comfyui-menu .comfyui-split-button-popup > .comfyui-button:not(:disabled):hover {
|
4490 |
+
background-color: var(--comfy-input-bg);
|
4491 |
+
}
|
4492 |
+
|
4493 |
+
.comfyui-menu .comfyui-split-button-popup.left {
|
4494 |
+
border-top-right-radius: 4px;
|
4495 |
+
border-bottom-left-radius: 4px;
|
4496 |
+
border-bottom-right-radius: 4px;
|
4497 |
+
}
|
4498 |
+
|
4499 |
+
.comfyui-menu .comfyui-button.popup-open {
|
4500 |
+
background-color: var(--content-bg);
|
4501 |
+
color: var(--content-fg);
|
4502 |
+
}
|
4503 |
+
|
4504 |
+
.comfyui-menu-push {
|
4505 |
+
margin-left: -0.8em;
|
4506 |
+
flex: auto;
|
4507 |
+
}
|
4508 |
+
|
4509 |
+
/** Send to workflow widget selection dialog */
|
4510 |
+
.comfy-widget-selection-dialog {
|
4511 |
+
border: none;
|
4512 |
+
}
|
4513 |
+
|
4514 |
+
.comfy-widget-selection-dialog div {
|
4515 |
+
color: var(--fg-color);
|
4516 |
+
font-family: Arial, Helvetica, sans-serif;
|
4517 |
+
}
|
4518 |
+
|
4519 |
+
.comfy-widget-selection-dialog h2 {
|
4520 |
+
margin-top: 0;
|
4521 |
+
}
|
4522 |
+
|
4523 |
+
.comfy-widget-selection-dialog section {
|
4524 |
+
width: -moz-fit-content;
|
4525 |
+
width: fit-content;
|
4526 |
+
display: flex;
|
4527 |
+
flex-direction: column;
|
4528 |
+
}
|
4529 |
+
|
4530 |
+
.comfy-widget-selection-item {
|
4531 |
+
display: flex;
|
4532 |
+
gap: 10px;
|
4533 |
+
align-items: center;
|
4534 |
+
}
|
4535 |
+
|
4536 |
+
.comfy-widget-selection-item span {
|
4537 |
+
margin-right: auto;
|
4538 |
+
}
|
4539 |
+
|
4540 |
+
.comfy-widget-selection-item span::before {
|
4541 |
+
content: '#' attr(data-id);
|
4542 |
+
opacity: 0.5;
|
4543 |
+
margin-right: 5px;
|
4544 |
+
}
|
4545 |
+
|
4546 |
+
.comfy-modal .comfy-widget-selection-item button {
|
4547 |
+
font-size: 1em;
|
4548 |
+
}
|
4549 |
+
|
4550 |
+
/***** Responsive *****/
|
4551 |
+
.lg.comfyui-menu .lt-lg-show {
|
4552 |
+
display: none !important;
|
4553 |
+
}
|
4554 |
+
.comfyui-menu:not(.lg) .nlg-hide {
|
4555 |
+
display: none !important;
|
4556 |
+
}
|
4557 |
+
/** Large screen */
|
4558 |
+
.lg.comfyui-menu>.comfyui-menu-mobile-collapse .comfyui-button span,
|
4559 |
+
.lg.comfyui-menu>.comfyui-menu-mobile-collapse.comfyui-button span {
|
4560 |
+
display: none;
|
4561 |
+
}
|
4562 |
+
.lg.comfyui-menu>.comfyui-menu-mobile-collapse .comfyui-popup .comfyui-button span {
|
4563 |
+
display: unset;
|
4564 |
+
}
|
4565 |
+
|
4566 |
+
/** Non large screen */
|
4567 |
+
.lt-lg.comfyui-menu {
|
4568 |
+
flex-wrap: wrap;
|
4569 |
+
}
|
4570 |
+
|
4571 |
+
.lt-lg.comfyui-menu > *:not(.comfyui-menu-mobile-collapse) {
|
4572 |
+
order: 1;
|
4573 |
+
}
|
4574 |
+
|
4575 |
+
.lt-lg.comfyui-menu > .comfyui-menu-mobile-collapse {
|
4576 |
+
order: 9999;
|
4577 |
+
width: 100%;
|
4578 |
+
}
|
4579 |
+
|
4580 |
+
.comfyui-body-bottom .lt-lg.comfyui-menu > .comfyui-menu-mobile-collapse {
|
4581 |
+
order: -1;
|
4582 |
+
}
|
4583 |
+
|
4584 |
+
.comfyui-body-bottom .lt-lg.comfyui-menu > .comfyui-menu-button {
|
4585 |
+
top: unset;
|
4586 |
+
bottom: 4px;
|
4587 |
+
}
|
4588 |
+
|
4589 |
+
.lt-lg.comfyui-menu > .comfyui-menu-mobile-collapse.comfyui-button-group {
|
4590 |
+
flex-wrap: wrap;
|
4591 |
+
}
|
4592 |
+
|
4593 |
+
.lt-lg.comfyui-menu > .comfyui-menu-mobile-collapse .comfyui-button,
|
4594 |
+
.lt-lg.comfyui-menu > .comfyui-menu-mobile-collapse.comfyui-button {
|
4595 |
+
padding: 10px;
|
4596 |
+
}
|
4597 |
+
.lt-lg.comfyui-menu > .comfyui-menu-mobile-collapse .comfyui-button,
|
4598 |
+
.lt-lg.comfyui-menu > .comfyui-menu-mobile-collapse .comfyui-button-wrapper {
|
4599 |
+
width: 100%;
|
4600 |
+
}
|
4601 |
+
|
4602 |
+
.lt-lg.comfyui-menu > .comfyui-menu-mobile-collapse .comfyui-popup {
|
4603 |
+
position: static;
|
4604 |
+
background-color: var(--comfy-input-bg);
|
4605 |
+
max-width: unset;
|
4606 |
+
max-height: 50vh;
|
4607 |
+
overflow: auto;
|
4608 |
+
}
|
4609 |
+
|
4610 |
+
.lt-lg.comfyui-menu:not(.expanded) > .comfyui-menu-mobile-collapse {
|
4611 |
+
display: none;
|
4612 |
+
}
|
4613 |
+
|
4614 |
+
.lt-lg .comfyui-menu-button {
|
4615 |
+
position: absolute;
|
4616 |
+
top: 4px;
|
4617 |
+
right: 8px;
|
4618 |
+
}
|
4619 |
+
|
4620 |
+
.lt-lg.comfyui-menu > .comfyui-menu-mobile-collapse .comfyui-view-list-popup {
|
4621 |
+
border-radius: 0;
|
4622 |
+
}
|
4623 |
+
|
4624 |
+
.lt-lg.comfyui-menu .comfyui-workflows-popup {
|
4625 |
+
width: 100vw;
|
4626 |
+
}
|
4627 |
+
|
4628 |
+
/** Small */
|
4629 |
+
.lt-md .comfyui-workflows-button-inner {
|
4630 |
+
width: unset !important;
|
4631 |
+
}
|
4632 |
+
.lt-md .comfyui-workflows-label {
|
4633 |
+
display: none;
|
4634 |
+
}
|
4635 |
+
|
4636 |
+
/** Extra small */
|
4637 |
+
.lt-sm .comfyui-interrupt-button {
|
4638 |
+
margin-right: 45px;
|
4639 |
+
}
|
4640 |
+
.comfyui-body-bottom .lt-sm.comfyui-menu > .comfyui-menu-button{
|
4641 |
+
bottom: 41px;
|
4642 |
+
}
|
4643 |
+
|
4644 |
+
|
4645 |
+
.editable-text[data-v-d670c40f] {
|
4646 |
+
display: inline;
|
4647 |
+
}
|
4648 |
+
.editable-text input[data-v-d670c40f] {
|
4649 |
+
width: 100%;
|
4650 |
+
box-sizing: border-box;
|
4651 |
+
}
|
4652 |
+
|
4653 |
+
.tree-node[data-v-654109c7] {
|
4654 |
+
width: 100%;
|
4655 |
+
display: flex;
|
4656 |
+
align-items: center;
|
4657 |
+
justify-content: space-between;
|
4658 |
+
}
|
4659 |
+
.leaf-count-badge[data-v-654109c7] {
|
4660 |
+
margin-left: 0.5rem;
|
4661 |
+
}
|
4662 |
+
.node-content[data-v-654109c7] {
|
4663 |
+
display: flex;
|
4664 |
+
align-items: center;
|
4665 |
+
flex-grow: 1;
|
4666 |
+
}
|
4667 |
+
.leaf-label[data-v-654109c7] {
|
4668 |
+
margin-left: 0.5rem;
|
4669 |
+
}
|
4670 |
+
[data-v-654109c7] .editable-text span {
|
4671 |
+
word-break: break-all;
|
4672 |
+
}
|
4673 |
+
|
4674 |
+
[data-v-976a6d58] .tree-explorer-node-label {
|
4675 |
+
width: 100%;
|
4676 |
+
display: flex;
|
4677 |
+
align-items: center;
|
4678 |
+
margin-left: var(--p-tree-node-gap);
|
4679 |
+
flex-grow: 1;
|
4680 |
+
}
|
4681 |
+
|
4682 |
+
/*
|
4683 |
+
* The following styles are necessary to avoid layout shift when dragging nodes over folders.
|
4684 |
+
* By setting the position to relative on the parent and using an absolutely positioned pseudo-element,
|
4685 |
+
* we can create a visual indicator for the drop target without affecting the layout of other elements.
|
4686 |
+
*/
|
4687 |
+
[data-v-976a6d58] .p-tree-node-content:has(.tree-folder) {
|
4688 |
+
position: relative;
|
4689 |
+
}
|
4690 |
+
[data-v-976a6d58] .p-tree-node-content:has(.tree-folder.can-drop)::after {
|
4691 |
+
content: '';
|
4692 |
+
position: absolute;
|
4693 |
+
top: 0;
|
4694 |
+
left: 0;
|
4695 |
+
right: 0;
|
4696 |
+
bottom: 0;
|
4697 |
+
border: 1px solid var(--p-content-color);
|
4698 |
+
pointer-events: none;
|
4699 |
+
}
|
4700 |
+
|
4701 |
+
[data-v-0061c432] .p-toolbar-end .p-button {
|
4702 |
+
|
4703 |
+
padding-top: 0.25rem;
|
4704 |
+
|
4705 |
+
padding-bottom: 0.25rem
|
4706 |
+
}
|
4707 |
+
@media (min-width: 1536px) {
|
4708 |
+
[data-v-0061c432] .p-toolbar-end .p-button {
|
4709 |
+
|
4710 |
+
padding-top: 0.5rem;
|
4711 |
+
|
4712 |
+
padding-bottom: 0.5rem
|
4713 |
+
}
|
4714 |
+
}
|
4715 |
+
[data-v-0061c432] .p-toolbar-start {
|
4716 |
+
|
4717 |
+
min-width: 0px;
|
4718 |
+
|
4719 |
+
flex: 1 1 0%;
|
4720 |
+
|
4721 |
+
overflow: hidden
|
4722 |
+
}
|
4723 |
+
|
4724 |
+
.model_preview[data-v-32e6c4d9] {
|
4725 |
+
background-color: var(--comfy-menu-bg);
|
4726 |
+
font-family: 'Open Sans', sans-serif;
|
4727 |
+
color: var(--descrip-text);
|
4728 |
+
border: 1px solid var(--descrip-text);
|
4729 |
+
min-width: 300px;
|
4730 |
+
max-width: 500px;
|
4731 |
+
width: -moz-fit-content;
|
4732 |
+
width: fit-content;
|
4733 |
+
height: -moz-fit-content;
|
4734 |
+
height: fit-content;
|
4735 |
+
z-index: 9999;
|
4736 |
+
border-radius: 12px;
|
4737 |
+
overflow: hidden;
|
4738 |
+
font-size: 12px;
|
4739 |
+
padding: 10px;
|
4740 |
+
}
|
4741 |
+
.model_preview_image[data-v-32e6c4d9] {
|
4742 |
+
margin: auto;
|
4743 |
+
width: -moz-fit-content;
|
4744 |
+
width: fit-content;
|
4745 |
+
}
|
4746 |
+
.model_preview_image img[data-v-32e6c4d9] {
|
4747 |
+
max-width: 100%;
|
4748 |
+
max-height: 150px;
|
4749 |
+
-o-object-fit: contain;
|
4750 |
+
object-fit: contain;
|
4751 |
+
}
|
4752 |
+
.model_preview_title[data-v-32e6c4d9] {
|
4753 |
+
font-weight: bold;
|
4754 |
+
text-align: center;
|
4755 |
+
font-size: 14px;
|
4756 |
+
}
|
4757 |
+
.model_preview_top_container[data-v-32e6c4d9] {
|
4758 |
+
text-align: center;
|
4759 |
+
line-height: 0.5;
|
4760 |
+
}
|
4761 |
+
.model_preview_filename[data-v-32e6c4d9],
|
4762 |
+
.model_preview_author[data-v-32e6c4d9],
|
4763 |
+
.model_preview_architecture[data-v-32e6c4d9] {
|
4764 |
+
display: inline-block;
|
4765 |
+
text-align: center;
|
4766 |
+
margin: 5px;
|
4767 |
+
font-size: 10px;
|
4768 |
+
}
|
4769 |
+
.model_preview_prefix[data-v-32e6c4d9] {
|
4770 |
+
font-weight: bold;
|
4771 |
+
}
|
4772 |
+
|
4773 |
+
.model-lib-model-icon-container[data-v-b45ea43e] {
|
4774 |
+
display: inline-block;
|
4775 |
+
position: relative;
|
4776 |
+
left: 0;
|
4777 |
+
height: 1.5rem;
|
4778 |
+
vertical-align: top;
|
4779 |
+
width: 0px;
|
4780 |
+
}
|
4781 |
+
.model-lib-model-icon[data-v-b45ea43e] {
|
4782 |
+
background-size: cover;
|
4783 |
+
background-position: center;
|
4784 |
+
display: inline-block;
|
4785 |
+
position: relative;
|
4786 |
+
left: -2.2rem;
|
4787 |
+
top: -0.1rem;
|
4788 |
+
height: 1.7rem;
|
4789 |
+
width: 1.7rem;
|
4790 |
+
vertical-align: top;
|
4791 |
+
}
|
4792 |
+
|
4793 |
+
[data-v-0bb2ac55] .pi-fake-spacer {
|
4794 |
+
height: 1px;
|
4795 |
+
width: 16px;
|
4796 |
+
}
|
4797 |
+
|
4798 |
+
.slot_row[data-v-d9792337] {
|
4799 |
+
padding: 2px;
|
4800 |
+
}
|
4801 |
+
|
4802 |
+
/* Original N-Sidebar styles */
|
4803 |
+
._sb_dot[data-v-d9792337] {
|
4804 |
+
width: 8px;
|
4805 |
+
height: 8px;
|
4806 |
+
border-radius: 50%;
|
4807 |
+
background-color: grey;
|
4808 |
+
}
|
4809 |
+
.node_header[data-v-d9792337] {
|
4810 |
+
line-height: 1;
|
4811 |
+
padding: 8px 13px 7px;
|
4812 |
+
margin-bottom: 5px;
|
4813 |
+
font-size: 15px;
|
4814 |
+
text-wrap: nowrap;
|
4815 |
+
overflow: hidden;
|
4816 |
+
display: flex;
|
4817 |
+
align-items: center;
|
4818 |
+
}
|
4819 |
+
.headdot[data-v-d9792337] {
|
4820 |
+
width: 10px;
|
4821 |
+
height: 10px;
|
4822 |
+
float: inline-start;
|
4823 |
+
margin-right: 8px;
|
4824 |
+
}
|
4825 |
+
.IMAGE[data-v-d9792337] {
|
4826 |
+
background-color: #64b5f6;
|
4827 |
+
}
|
4828 |
+
.VAE[data-v-d9792337] {
|
4829 |
+
background-color: #ff6e6e;
|
4830 |
+
}
|
4831 |
+
.LATENT[data-v-d9792337] {
|
4832 |
+
background-color: #ff9cf9;
|
4833 |
+
}
|
4834 |
+
.MASK[data-v-d9792337] {
|
4835 |
+
background-color: #81c784;
|
4836 |
+
}
|
4837 |
+
.CONDITIONING[data-v-d9792337] {
|
4838 |
+
background-color: #ffa931;
|
4839 |
+
}
|
4840 |
+
.CLIP[data-v-d9792337] {
|
4841 |
+
background-color: #ffd500;
|
4842 |
+
}
|
4843 |
+
.MODEL[data-v-d9792337] {
|
4844 |
+
background-color: #b39ddb;
|
4845 |
+
}
|
4846 |
+
.CONTROL_NET[data-v-d9792337] {
|
4847 |
+
background-color: #a5d6a7;
|
4848 |
+
}
|
4849 |
+
._sb_node_preview[data-v-d9792337] {
|
4850 |
+
background-color: var(--comfy-menu-bg);
|
4851 |
+
font-family: 'Open Sans', sans-serif;
|
4852 |
+
font-size: small;
|
4853 |
+
color: var(--descrip-text);
|
4854 |
+
border: 1px solid var(--descrip-text);
|
4855 |
+
min-width: 300px;
|
4856 |
+
width: -moz-min-content;
|
4857 |
+
width: min-content;
|
4858 |
+
height: -moz-fit-content;
|
4859 |
+
height: fit-content;
|
4860 |
+
z-index: 9999;
|
4861 |
+
border-radius: 12px;
|
4862 |
+
overflow: hidden;
|
4863 |
+
font-size: 12px;
|
4864 |
+
padding-bottom: 10px;
|
4865 |
+
}
|
4866 |
+
._sb_node_preview ._sb_description[data-v-d9792337] {
|
4867 |
+
margin: 10px;
|
4868 |
+
padding: 6px;
|
4869 |
+
background: var(--border-color);
|
4870 |
+
border-radius: 5px;
|
4871 |
+
font-style: italic;
|
4872 |
+
font-weight: 500;
|
4873 |
+
font-size: 0.9rem;
|
4874 |
+
word-break: break-word;
|
4875 |
+
}
|
4876 |
+
._sb_table[data-v-d9792337] {
|
4877 |
+
display: grid;
|
4878 |
+
|
4879 |
+
grid-column-gap: 10px;
|
4880 |
+
/* Spazio tra le colonne */
|
4881 |
+
width: 100%;
|
4882 |
+
/* Imposta la larghezza della tabella al 100% del contenitore */
|
4883 |
+
}
|
4884 |
+
._sb_row[data-v-d9792337] {
|
4885 |
+
display: grid;
|
4886 |
+
grid-template-columns: 10px 1fr 1fr 1fr 10px;
|
4887 |
+
grid-column-gap: 10px;
|
4888 |
+
align-items: center;
|
4889 |
+
padding-left: 9px;
|
4890 |
+
padding-right: 9px;
|
4891 |
+
}
|
4892 |
+
._sb_row_string[data-v-d9792337] {
|
4893 |
+
grid-template-columns: 10px 1fr 1fr 10fr 1fr;
|
4894 |
+
}
|
4895 |
+
._sb_col[data-v-d9792337] {
|
4896 |
+
border: 0px solid #000;
|
4897 |
+
display: flex;
|
4898 |
+
align-items: flex-end;
|
4899 |
+
flex-direction: row-reverse;
|
4900 |
+
flex-wrap: nowrap;
|
4901 |
+
align-content: flex-start;
|
4902 |
+
justify-content: flex-end;
|
4903 |
+
}
|
4904 |
+
._sb_inherit[data-v-d9792337] {
|
4905 |
+
display: inherit;
|
4906 |
+
}
|
4907 |
+
._long_field[data-v-d9792337] {
|
4908 |
+
background: var(--bg-color);
|
4909 |
+
border: 2px solid var(--border-color);
|
4910 |
+
margin: 5px 5px 0 5px;
|
4911 |
+
border-radius: 10px;
|
4912 |
+
line-height: 1.7;
|
4913 |
+
text-wrap: nowrap;
|
4914 |
+
}
|
4915 |
+
._sb_arrow[data-v-d9792337] {
|
4916 |
+
color: var(--fg-color);
|
4917 |
+
}
|
4918 |
+
._sb_preview_badge[data-v-d9792337] {
|
4919 |
+
text-align: center;
|
4920 |
+
background: var(--comfy-input-bg);
|
4921 |
+
font-weight: bold;
|
4922 |
+
color: var(--error-text);
|
4923 |
+
}
|
4924 |
+
|
4925 |
+
._content[data-v-c4279e6b] {
|
4926 |
+
|
4927 |
+
display: flex;
|
4928 |
+
|
4929 |
+
flex-direction: column
|
4930 |
+
}
|
4931 |
+
._content[data-v-c4279e6b] > :not([hidden]) ~ :not([hidden]) {
|
4932 |
+
|
4933 |
+
--tw-space-y-reverse: 0;
|
4934 |
+
|
4935 |
+
margin-top: calc(0.5rem * calc(1 - var(--tw-space-y-reverse)));
|
4936 |
+
|
4937 |
+
margin-bottom: calc(0.5rem * var(--tw-space-y-reverse))
|
4938 |
+
}
|
4939 |
+
._footer[data-v-c4279e6b] {
|
4940 |
+
|
4941 |
+
display: flex;
|
4942 |
+
|
4943 |
+
flex-direction: column;
|
4944 |
+
|
4945 |
+
align-items: flex-end;
|
4946 |
+
|
4947 |
+
padding-top: 1rem
|
4948 |
+
}
|
4949 |
+
|
4950 |
+
.node-lib-node-container[data-v-da9a8962] {
|
4951 |
+
height: 100%;
|
4952 |
+
width: 100%
|
4953 |
+
}
|
4954 |
+
|
4955 |
+
.p-selectbutton .p-button[data-v-bd06e12b] {
|
4956 |
+
padding: 0.5rem;
|
4957 |
+
}
|
4958 |
+
.p-selectbutton .p-button .pi[data-v-bd06e12b] {
|
4959 |
+
font-size: 1.5rem;
|
4960 |
+
}
|
4961 |
+
.field[data-v-bd06e12b] {
|
4962 |
+
display: flex;
|
4963 |
+
flex-direction: column;
|
4964 |
+
gap: 0.5rem;
|
4965 |
+
}
|
4966 |
+
.color-picker-container[data-v-bd06e12b] {
|
4967 |
+
display: flex;
|
4968 |
+
align-items: center;
|
4969 |
+
gap: 0.5rem;
|
4970 |
+
}
|
4971 |
+
|
4972 |
+
.scroll-container {
|
4973 |
+
&[data-v-ad33a347] {
|
4974 |
+
height: 100%;
|
4975 |
+
overflow-y: auto;
|
4976 |
+
|
4977 |
+
/* Firefox */
|
4978 |
+
scrollbar-width: none;
|
4979 |
+
}
|
4980 |
+
&[data-v-ad33a347]::-webkit-scrollbar {
|
4981 |
+
width: 1px;
|
4982 |
+
}
|
4983 |
+
&[data-v-ad33a347]::-webkit-scrollbar-thumb {
|
4984 |
+
background-color: transparent;
|
4985 |
+
}
|
4986 |
+
}
|
4987 |
+
|
4988 |
+
.comfy-image-wrap[data-v-a748ccd8] {
|
4989 |
+
display: contents;
|
4990 |
+
}
|
4991 |
+
.comfy-image-blur[data-v-a748ccd8] {
|
4992 |
+
position: absolute;
|
4993 |
+
top: 0;
|
4994 |
+
left: 0;
|
4995 |
+
width: 100%;
|
4996 |
+
height: 100%;
|
4997 |
+
-o-object-fit: cover;
|
4998 |
+
object-fit: cover;
|
4999 |
+
}
|
5000 |
+
.comfy-image-main[data-v-a748ccd8] {
|
5001 |
+
width: 100%;
|
5002 |
+
height: 100%;
|
5003 |
+
-o-object-fit: cover;
|
5004 |
+
object-fit: cover;
|
5005 |
+
-o-object-position: center;
|
5006 |
+
object-position: center;
|
5007 |
+
z-index: 1;
|
5008 |
+
}
|
5009 |
+
.contain .comfy-image-wrap[data-v-a748ccd8] {
|
5010 |
+
position: relative;
|
5011 |
+
width: 100%;
|
5012 |
+
height: 100%;
|
5013 |
+
}
|
5014 |
+
.contain .comfy-image-main[data-v-a748ccd8] {
|
5015 |
+
-o-object-fit: contain;
|
5016 |
+
object-fit: contain;
|
5017 |
+
-webkit-backdrop-filter: blur(10px);
|
5018 |
+
backdrop-filter: blur(10px);
|
5019 |
+
position: absolute;
|
5020 |
+
}
|
5021 |
+
.broken-image-placeholder[data-v-a748ccd8] {
|
5022 |
+
display: flex;
|
5023 |
+
flex-direction: column;
|
5024 |
+
align-items: center;
|
5025 |
+
justify-content: center;
|
5026 |
+
width: 100%;
|
5027 |
+
height: 100%;
|
5028 |
+
margin: 2rem;
|
5029 |
+
}
|
5030 |
+
.broken-image-placeholder i[data-v-a748ccd8] {
|
5031 |
+
font-size: 3rem;
|
5032 |
+
margin-bottom: 0.5rem;
|
5033 |
+
}
|
5034 |
+
|
5035 |
+
/* PrimeVue's galleria teleports the fullscreen gallery out of subtree so we
|
5036 |
+
cannot use scoped style here. */
|
5037 |
+
img.galleria-image {
|
5038 |
+
max-width: 100vw;
|
5039 |
+
max-height: 100vh;
|
5040 |
+
-o-object-fit: contain;
|
5041 |
+
object-fit: contain;
|
5042 |
+
}
|
5043 |
+
.p-galleria-close-button {
|
5044 |
+
/* Set z-index so the close button doesn't get hidden behind the image when image is large */
|
5045 |
+
z-index: 1;
|
5046 |
+
}
|
5047 |
+
|
5048 |
+
.result-container[data-v-2403edc6] {
|
5049 |
+
width: 100%;
|
5050 |
+
height: 100%;
|
5051 |
+
aspect-ratio: 1 / 1;
|
5052 |
+
overflow: hidden;
|
5053 |
+
position: relative;
|
5054 |
+
display: flex;
|
5055 |
+
justify-content: center;
|
5056 |
+
align-items: center;
|
5057 |
+
}
|
5058 |
+
.preview-mask[data-v-2403edc6] {
|
5059 |
+
position: absolute;
|
5060 |
+
left: 50%;
|
5061 |
+
top: 50%;
|
5062 |
+
transform: translate(-50%, -50%);
|
5063 |
+
display: flex;
|
5064 |
+
align-items: center;
|
5065 |
+
justify-content: center;
|
5066 |
+
opacity: 0;
|
5067 |
+
transition: opacity 0.3s ease;
|
5068 |
+
z-index: 1;
|
5069 |
+
}
|
5070 |
+
.result-container:hover .preview-mask[data-v-2403edc6] {
|
5071 |
+
opacity: 1;
|
5072 |
+
}
|
5073 |
+
|
5074 |
+
.task-result-preview[data-v-b676a511] {
|
5075 |
+
aspect-ratio: 1 / 1;
|
5076 |
+
overflow: hidden;
|
5077 |
+
display: flex;
|
5078 |
+
justify-content: center;
|
5079 |
+
align-items: center;
|
5080 |
+
width: 100%;
|
5081 |
+
height: 100%;
|
5082 |
+
}
|
5083 |
+
.task-result-preview i[data-v-b676a511],
|
5084 |
+
.task-result-preview span[data-v-b676a511] {
|
5085 |
+
font-size: 2rem;
|
5086 |
+
}
|
5087 |
+
.task-item[data-v-b676a511] {
|
5088 |
+
display: flex;
|
5089 |
+
flex-direction: column;
|
5090 |
+
border-radius: 4px;
|
5091 |
+
overflow: hidden;
|
5092 |
+
position: relative;
|
5093 |
+
}
|
5094 |
+
.task-item-details[data-v-b676a511] {
|
5095 |
+
position: absolute;
|
5096 |
+
bottom: 0;
|
5097 |
+
padding: 0.6rem;
|
5098 |
+
display: flex;
|
5099 |
+
justify-content: space-between;
|
5100 |
+
align-items: center;
|
5101 |
+
width: 100%;
|
5102 |
+
z-index: 1;
|
5103 |
+
}
|
5104 |
+
.task-node-link[data-v-b676a511] {
|
5105 |
+
padding: 2px;
|
5106 |
+
}
|
5107 |
+
|
5108 |
+
/* In dark mode, transparent background color for tags is not ideal for tags that
|
5109 |
+
are floating on top of images. */
|
5110 |
+
.tag-wrapper[data-v-b676a511] {
|
5111 |
+
background-color: var(--p-primary-contrast-color);
|
5112 |
+
border-radius: 6px;
|
5113 |
+
display: inline-flex;
|
5114 |
+
}
|
5115 |
+
.node-name-tag[data-v-b676a511] {
|
5116 |
+
word-break: break-all;
|
5117 |
+
}
|
5118 |
+
.status-tag-group[data-v-b676a511] {
|
5119 |
+
display: flex;
|
5120 |
+
flex-direction: column;
|
5121 |
+
}
|
5122 |
+
.progress-preview-img[data-v-b676a511] {
|
5123 |
+
width: 100%;
|
5124 |
+
height: 100%;
|
5125 |
+
-o-object-fit: cover;
|
5126 |
+
object-fit: cover;
|
5127 |
+
-o-object-position: center;
|
5128 |
+
object-position: center;
|
5129 |
+
}
|
merges.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
model.py
ADDED
@@ -0,0 +1,711 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#original code from https://github.com/genmoai/models under apache 2.0 license
|
2 |
+
#adapted to ComfyUI
|
3 |
+
|
4 |
+
from typing import List, Optional, Tuple, Union
|
5 |
+
from functools import partial
|
6 |
+
import math
|
7 |
+
|
8 |
+
import torch
|
9 |
+
import torch.nn as nn
|
10 |
+
import torch.nn.functional as F
|
11 |
+
from einops import rearrange
|
12 |
+
|
13 |
+
from comfy.ldm.modules.attention import optimized_attention
|
14 |
+
|
15 |
+
import comfy.ops
|
16 |
+
ops = comfy.ops.disable_weight_init
|
17 |
+
|
18 |
+
# import mochi_preview.dit.joint_model.context_parallel as cp
|
19 |
+
# from mochi_preview.vae.cp_conv import cp_pass_frames, gather_all_frames
|
20 |
+
|
21 |
+
|
22 |
+
def cast_tuple(t, length=1):
|
23 |
+
return t if isinstance(t, tuple) else ((t,) * length)
|
24 |
+
|
25 |
+
|
26 |
+
class GroupNormSpatial(ops.GroupNorm):
|
27 |
+
"""
|
28 |
+
GroupNorm applied per-frame.
|
29 |
+
"""
|
30 |
+
|
31 |
+
def forward(self, x: torch.Tensor, *, chunk_size: int = 8):
|
32 |
+
B, C, T, H, W = x.shape
|
33 |
+
x = rearrange(x, "B C T H W -> (B T) C H W")
|
34 |
+
# Run group norm in chunks.
|
35 |
+
output = torch.empty_like(x)
|
36 |
+
for b in range(0, B * T, chunk_size):
|
37 |
+
output[b : b + chunk_size] = super().forward(x[b : b + chunk_size])
|
38 |
+
return rearrange(output, "(B T) C H W -> B C T H W", B=B, T=T)
|
39 |
+
|
40 |
+
class PConv3d(ops.Conv3d):
|
41 |
+
def __init__(
|
42 |
+
self,
|
43 |
+
in_channels,
|
44 |
+
out_channels,
|
45 |
+
kernel_size: Union[int, Tuple[int, int, int]],
|
46 |
+
stride: Union[int, Tuple[int, int, int]],
|
47 |
+
causal: bool = True,
|
48 |
+
context_parallel: bool = True,
|
49 |
+
**kwargs,
|
50 |
+
):
|
51 |
+
self.causal = causal
|
52 |
+
self.context_parallel = context_parallel
|
53 |
+
kernel_size = cast_tuple(kernel_size, 3)
|
54 |
+
stride = cast_tuple(stride, 3)
|
55 |
+
height_pad = (kernel_size[1] - 1) // 2
|
56 |
+
width_pad = (kernel_size[2] - 1) // 2
|
57 |
+
|
58 |
+
super().__init__(
|
59 |
+
in_channels=in_channels,
|
60 |
+
out_channels=out_channels,
|
61 |
+
kernel_size=kernel_size,
|
62 |
+
stride=stride,
|
63 |
+
dilation=(1, 1, 1),
|
64 |
+
padding=(0, height_pad, width_pad),
|
65 |
+
**kwargs,
|
66 |
+
)
|
67 |
+
|
68 |
+
def forward(self, x: torch.Tensor):
|
69 |
+
# Compute padding amounts.
|
70 |
+
context_size = self.kernel_size[0] - 1
|
71 |
+
if self.causal:
|
72 |
+
pad_front = context_size
|
73 |
+
pad_back = 0
|
74 |
+
else:
|
75 |
+
pad_front = context_size // 2
|
76 |
+
pad_back = context_size - pad_front
|
77 |
+
|
78 |
+
# Apply padding.
|
79 |
+
assert self.padding_mode == "replicate" # DEBUG
|
80 |
+
mode = "constant" if self.padding_mode == "zeros" else self.padding_mode
|
81 |
+
x = F.pad(x, (0, 0, 0, 0, pad_front, pad_back), mode=mode)
|
82 |
+
return super().forward(x)
|
83 |
+
|
84 |
+
|
85 |
+
class Conv1x1(ops.Linear):
|
86 |
+
"""*1x1 Conv implemented with a linear layer."""
|
87 |
+
|
88 |
+
def __init__(self, in_features: int, out_features: int, *args, **kwargs):
|
89 |
+
super().__init__(in_features, out_features, *args, **kwargs)
|
90 |
+
|
91 |
+
def forward(self, x: torch.Tensor):
|
92 |
+
"""Forward pass.
|
93 |
+
|
94 |
+
Args:
|
95 |
+
x: Input tensor. Shape: [B, C, *] or [B, *, C].
|
96 |
+
|
97 |
+
Returns:
|
98 |
+
x: Output tensor. Shape: [B, C', *] or [B, *, C'].
|
99 |
+
"""
|
100 |
+
x = x.movedim(1, -1)
|
101 |
+
x = super().forward(x)
|
102 |
+
x = x.movedim(-1, 1)
|
103 |
+
return x
|
104 |
+
|
105 |
+
|
106 |
+
class DepthToSpaceTime(nn.Module):
|
107 |
+
def __init__(
|
108 |
+
self,
|
109 |
+
temporal_expansion: int,
|
110 |
+
spatial_expansion: int,
|
111 |
+
):
|
112 |
+
super().__init__()
|
113 |
+
self.temporal_expansion = temporal_expansion
|
114 |
+
self.spatial_expansion = spatial_expansion
|
115 |
+
|
116 |
+
# When printed, this module should show the temporal and spatial expansion factors.
|
117 |
+
def extra_repr(self):
|
118 |
+
return f"texp={self.temporal_expansion}, sexp={self.spatial_expansion}"
|
119 |
+
|
120 |
+
def forward(self, x: torch.Tensor):
|
121 |
+
"""Forward pass.
|
122 |
+
|
123 |
+
Args:
|
124 |
+
x: Input tensor. Shape: [B, C, T, H, W].
|
125 |
+
|
126 |
+
Returns:
|
127 |
+
x: Rearranged tensor. Shape: [B, C/(st*s*s), T*st, H*s, W*s].
|
128 |
+
"""
|
129 |
+
x = rearrange(
|
130 |
+
x,
|
131 |
+
"B (C st sh sw) T H W -> B C (T st) (H sh) (W sw)",
|
132 |
+
st=self.temporal_expansion,
|
133 |
+
sh=self.spatial_expansion,
|
134 |
+
sw=self.spatial_expansion,
|
135 |
+
)
|
136 |
+
|
137 |
+
# cp_rank, _ = cp.get_cp_rank_size()
|
138 |
+
if self.temporal_expansion > 1: # and cp_rank == 0:
|
139 |
+
# Drop the first self.temporal_expansion - 1 frames.
|
140 |
+
# This is because we always want the 3x3x3 conv filter to only apply
|
141 |
+
# to the first frame, and the first frame doesn't need to be repeated.
|
142 |
+
assert all(x.shape)
|
143 |
+
x = x[:, :, self.temporal_expansion - 1 :]
|
144 |
+
assert all(x.shape)
|
145 |
+
|
146 |
+
return x
|
147 |
+
|
148 |
+
|
149 |
+
def norm_fn(
|
150 |
+
in_channels: int,
|
151 |
+
affine: bool = True,
|
152 |
+
):
|
153 |
+
return GroupNormSpatial(affine=affine, num_groups=32, num_channels=in_channels)
|
154 |
+
|
155 |
+
|
156 |
+
class ResBlock(nn.Module):
|
157 |
+
"""Residual block that preserves the spatial dimensions."""
|
158 |
+
|
159 |
+
def __init__(
|
160 |
+
self,
|
161 |
+
channels: int,
|
162 |
+
*,
|
163 |
+
affine: bool = True,
|
164 |
+
attn_block: Optional[nn.Module] = None,
|
165 |
+
causal: bool = True,
|
166 |
+
prune_bottleneck: bool = False,
|
167 |
+
padding_mode: str,
|
168 |
+
bias: bool = True,
|
169 |
+
):
|
170 |
+
super().__init__()
|
171 |
+
self.channels = channels
|
172 |
+
|
173 |
+
assert causal
|
174 |
+
self.stack = nn.Sequential(
|
175 |
+
norm_fn(channels, affine=affine),
|
176 |
+
nn.SiLU(inplace=True),
|
177 |
+
PConv3d(
|
178 |
+
in_channels=channels,
|
179 |
+
out_channels=channels // 2 if prune_bottleneck else channels,
|
180 |
+
kernel_size=(3, 3, 3),
|
181 |
+
stride=(1, 1, 1),
|
182 |
+
padding_mode=padding_mode,
|
183 |
+
bias=bias,
|
184 |
+
causal=causal,
|
185 |
+
),
|
186 |
+
norm_fn(channels, affine=affine),
|
187 |
+
nn.SiLU(inplace=True),
|
188 |
+
PConv3d(
|
189 |
+
in_channels=channels // 2 if prune_bottleneck else channels,
|
190 |
+
out_channels=channels,
|
191 |
+
kernel_size=(3, 3, 3),
|
192 |
+
stride=(1, 1, 1),
|
193 |
+
padding_mode=padding_mode,
|
194 |
+
bias=bias,
|
195 |
+
causal=causal,
|
196 |
+
),
|
197 |
+
)
|
198 |
+
|
199 |
+
self.attn_block = attn_block if attn_block else nn.Identity()
|
200 |
+
|
201 |
+
def forward(self, x: torch.Tensor):
|
202 |
+
"""Forward pass.
|
203 |
+
|
204 |
+
Args:
|
205 |
+
x: Input tensor. Shape: [B, C, T, H, W].
|
206 |
+
"""
|
207 |
+
residual = x
|
208 |
+
x = self.stack(x)
|
209 |
+
x = x + residual
|
210 |
+
del residual
|
211 |
+
|
212 |
+
return self.attn_block(x)
|
213 |
+
|
214 |
+
|
215 |
+
class Attention(nn.Module):
|
216 |
+
def __init__(
|
217 |
+
self,
|
218 |
+
dim: int,
|
219 |
+
head_dim: int = 32,
|
220 |
+
qkv_bias: bool = False,
|
221 |
+
out_bias: bool = True,
|
222 |
+
qk_norm: bool = True,
|
223 |
+
) -> None:
|
224 |
+
super().__init__()
|
225 |
+
self.head_dim = head_dim
|
226 |
+
self.num_heads = dim // head_dim
|
227 |
+
self.qk_norm = qk_norm
|
228 |
+
|
229 |
+
self.qkv = nn.Linear(dim, 3 * dim, bias=qkv_bias)
|
230 |
+
self.out = nn.Linear(dim, dim, bias=out_bias)
|
231 |
+
|
232 |
+
def forward(
|
233 |
+
self,
|
234 |
+
x: torch.Tensor,
|
235 |
+
) -> torch.Tensor:
|
236 |
+
"""Compute temporal self-attention.
|
237 |
+
|
238 |
+
Args:
|
239 |
+
x: Input tensor. Shape: [B, C, T, H, W].
|
240 |
+
chunk_size: Chunk size for large tensors.
|
241 |
+
|
242 |
+
Returns:
|
243 |
+
x: Output tensor. Shape: [B, C, T, H, W].
|
244 |
+
"""
|
245 |
+
B, _, T, H, W = x.shape
|
246 |
+
|
247 |
+
if T == 1:
|
248 |
+
# No attention for single frame.
|
249 |
+
x = x.movedim(1, -1) # [B, C, T, H, W] -> [B, T, H, W, C]
|
250 |
+
qkv = self.qkv(x)
|
251 |
+
_, _, x = qkv.chunk(3, dim=-1) # Throw away queries and keys.
|
252 |
+
x = self.out(x)
|
253 |
+
return x.movedim(-1, 1) # [B, T, H, W, C] -> [B, C, T, H, W]
|
254 |
+
|
255 |
+
# 1D temporal attention.
|
256 |
+
x = rearrange(x, "B C t h w -> (B h w) t C")
|
257 |
+
qkv = self.qkv(x)
|
258 |
+
|
259 |
+
# Input: qkv with shape [B, t, 3 * num_heads * head_dim]
|
260 |
+
# Output: x with shape [B, num_heads, t, head_dim]
|
261 |
+
q, k, v = qkv.view(qkv.shape[0], qkv.shape[1], 3, self.num_heads, self.head_dim).transpose(1, 3).unbind(2)
|
262 |
+
|
263 |
+
if self.qk_norm:
|
264 |
+
q = F.normalize(q, p=2, dim=-1)
|
265 |
+
k = F.normalize(k, p=2, dim=-1)
|
266 |
+
|
267 |
+
x = optimized_attention(q, k, v, self.num_heads, skip_reshape=True)
|
268 |
+
|
269 |
+
assert x.size(0) == q.size(0)
|
270 |
+
|
271 |
+
x = self.out(x)
|
272 |
+
x = rearrange(x, "(B h w) t C -> B C t h w", B=B, h=H, w=W)
|
273 |
+
return x
|
274 |
+
|
275 |
+
|
276 |
+
class AttentionBlock(nn.Module):
|
277 |
+
def __init__(
|
278 |
+
self,
|
279 |
+
dim: int,
|
280 |
+
**attn_kwargs,
|
281 |
+
) -> None:
|
282 |
+
super().__init__()
|
283 |
+
self.norm = norm_fn(dim)
|
284 |
+
self.attn = Attention(dim, **attn_kwargs)
|
285 |
+
|
286 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
287 |
+
return x + self.attn(self.norm(x))
|
288 |
+
|
289 |
+
|
290 |
+
class CausalUpsampleBlock(nn.Module):
|
291 |
+
def __init__(
|
292 |
+
self,
|
293 |
+
in_channels: int,
|
294 |
+
out_channels: int,
|
295 |
+
num_res_blocks: int,
|
296 |
+
*,
|
297 |
+
temporal_expansion: int = 2,
|
298 |
+
spatial_expansion: int = 2,
|
299 |
+
**block_kwargs,
|
300 |
+
):
|
301 |
+
super().__init__()
|
302 |
+
|
303 |
+
blocks = []
|
304 |
+
for _ in range(num_res_blocks):
|
305 |
+
blocks.append(block_fn(in_channels, **block_kwargs))
|
306 |
+
self.blocks = nn.Sequential(*blocks)
|
307 |
+
|
308 |
+
self.temporal_expansion = temporal_expansion
|
309 |
+
self.spatial_expansion = spatial_expansion
|
310 |
+
|
311 |
+
# Change channels in the final convolution layer.
|
312 |
+
self.proj = Conv1x1(
|
313 |
+
in_channels,
|
314 |
+
out_channels * temporal_expansion * (spatial_expansion**2),
|
315 |
+
)
|
316 |
+
|
317 |
+
self.d2st = DepthToSpaceTime(
|
318 |
+
temporal_expansion=temporal_expansion, spatial_expansion=spatial_expansion
|
319 |
+
)
|
320 |
+
|
321 |
+
def forward(self, x):
|
322 |
+
x = self.blocks(x)
|
323 |
+
x = self.proj(x)
|
324 |
+
x = self.d2st(x)
|
325 |
+
return x
|
326 |
+
|
327 |
+
|
328 |
+
def block_fn(channels, *, affine: bool = True, has_attention: bool = False, **block_kwargs):
|
329 |
+
attn_block = AttentionBlock(channels) if has_attention else None
|
330 |
+
return ResBlock(channels, affine=affine, attn_block=attn_block, **block_kwargs)
|
331 |
+
|
332 |
+
|
333 |
+
class DownsampleBlock(nn.Module):
|
334 |
+
def __init__(
|
335 |
+
self,
|
336 |
+
in_channels: int,
|
337 |
+
out_channels: int,
|
338 |
+
num_res_blocks,
|
339 |
+
*,
|
340 |
+
temporal_reduction=2,
|
341 |
+
spatial_reduction=2,
|
342 |
+
**block_kwargs,
|
343 |
+
):
|
344 |
+
"""
|
345 |
+
Downsample block for the VAE encoder.
|
346 |
+
|
347 |
+
Args:
|
348 |
+
in_channels: Number of input channels.
|
349 |
+
out_channels: Number of output channels.
|
350 |
+
num_res_blocks: Number of residual blocks.
|
351 |
+
temporal_reduction: Temporal reduction factor.
|
352 |
+
spatial_reduction: Spatial reduction factor.
|
353 |
+
"""
|
354 |
+
super().__init__()
|
355 |
+
layers = []
|
356 |
+
|
357 |
+
# Change the channel count in the strided convolution.
|
358 |
+
# This lets the ResBlock have uniform channel count,
|
359 |
+
# as in ConvNeXt.
|
360 |
+
assert in_channels != out_channels
|
361 |
+
layers.append(
|
362 |
+
PConv3d(
|
363 |
+
in_channels=in_channels,
|
364 |
+
out_channels=out_channels,
|
365 |
+
kernel_size=(temporal_reduction, spatial_reduction, spatial_reduction),
|
366 |
+
stride=(temporal_reduction, spatial_reduction, spatial_reduction),
|
367 |
+
# First layer in each block always uses replicate padding
|
368 |
+
padding_mode="replicate",
|
369 |
+
bias=block_kwargs["bias"],
|
370 |
+
)
|
371 |
+
)
|
372 |
+
|
373 |
+
for _ in range(num_res_blocks):
|
374 |
+
layers.append(block_fn(out_channels, **block_kwargs))
|
375 |
+
|
376 |
+
self.layers = nn.Sequential(*layers)
|
377 |
+
|
378 |
+
def forward(self, x):
|
379 |
+
return self.layers(x)
|
380 |
+
|
381 |
+
|
382 |
+
def add_fourier_features(inputs: torch.Tensor, start=6, stop=8, step=1):
|
383 |
+
num_freqs = (stop - start) // step
|
384 |
+
assert inputs.ndim == 5
|
385 |
+
C = inputs.size(1)
|
386 |
+
|
387 |
+
# Create Base 2 Fourier features.
|
388 |
+
freqs = torch.arange(start, stop, step, dtype=inputs.dtype, device=inputs.device)
|
389 |
+
assert num_freqs == len(freqs)
|
390 |
+
w = torch.pow(2.0, freqs) * (2 * torch.pi) # [num_freqs]
|
391 |
+
C = inputs.shape[1]
|
392 |
+
w = w.repeat(C)[None, :, None, None, None] # [1, C * num_freqs, 1, 1, 1]
|
393 |
+
|
394 |
+
# Interleaved repeat of input channels to match w.
|
395 |
+
h = inputs.repeat_interleave(num_freqs, dim=1) # [B, C * num_freqs, T, H, W]
|
396 |
+
# Scale channels by frequency.
|
397 |
+
h = w * h
|
398 |
+
|
399 |
+
return torch.cat(
|
400 |
+
[
|
401 |
+
inputs,
|
402 |
+
torch.sin(h),
|
403 |
+
torch.cos(h),
|
404 |
+
],
|
405 |
+
dim=1,
|
406 |
+
)
|
407 |
+
|
408 |
+
|
409 |
+
class FourierFeatures(nn.Module):
|
410 |
+
def __init__(self, start: int = 6, stop: int = 8, step: int = 1):
|
411 |
+
super().__init__()
|
412 |
+
self.start = start
|
413 |
+
self.stop = stop
|
414 |
+
self.step = step
|
415 |
+
|
416 |
+
def forward(self, inputs):
|
417 |
+
"""Add Fourier features to inputs.
|
418 |
+
|
419 |
+
Args:
|
420 |
+
inputs: Input tensor. Shape: [B, C, T, H, W]
|
421 |
+
|
422 |
+
Returns:
|
423 |
+
h: Output tensor. Shape: [B, (1 + 2 * num_freqs) * C, T, H, W]
|
424 |
+
"""
|
425 |
+
return add_fourier_features(inputs, self.start, self.stop, self.step)
|
426 |
+
|
427 |
+
|
428 |
+
class Decoder(nn.Module):
|
429 |
+
def __init__(
|
430 |
+
self,
|
431 |
+
*,
|
432 |
+
out_channels: int = 3,
|
433 |
+
latent_dim: int,
|
434 |
+
base_channels: int,
|
435 |
+
channel_multipliers: List[int],
|
436 |
+
num_res_blocks: List[int],
|
437 |
+
temporal_expansions: Optional[List[int]] = None,
|
438 |
+
spatial_expansions: Optional[List[int]] = None,
|
439 |
+
has_attention: List[bool],
|
440 |
+
output_norm: bool = True,
|
441 |
+
nonlinearity: str = "silu",
|
442 |
+
output_nonlinearity: str = "silu",
|
443 |
+
causal: bool = True,
|
444 |
+
**block_kwargs,
|
445 |
+
):
|
446 |
+
super().__init__()
|
447 |
+
self.input_channels = latent_dim
|
448 |
+
self.base_channels = base_channels
|
449 |
+
self.channel_multipliers = channel_multipliers
|
450 |
+
self.num_res_blocks = num_res_blocks
|
451 |
+
self.output_nonlinearity = output_nonlinearity
|
452 |
+
assert nonlinearity == "silu"
|
453 |
+
assert causal
|
454 |
+
|
455 |
+
ch = [mult * base_channels for mult in channel_multipliers]
|
456 |
+
self.num_up_blocks = len(ch) - 1
|
457 |
+
assert len(num_res_blocks) == self.num_up_blocks + 2
|
458 |
+
|
459 |
+
blocks = []
|
460 |
+
|
461 |
+
first_block = [
|
462 |
+
ops.Conv3d(latent_dim, ch[-1], kernel_size=(1, 1, 1))
|
463 |
+
] # Input layer.
|
464 |
+
# First set of blocks preserve channel count.
|
465 |
+
for _ in range(num_res_blocks[-1]):
|
466 |
+
first_block.append(
|
467 |
+
block_fn(
|
468 |
+
ch[-1],
|
469 |
+
has_attention=has_attention[-1],
|
470 |
+
causal=causal,
|
471 |
+
**block_kwargs,
|
472 |
+
)
|
473 |
+
)
|
474 |
+
blocks.append(nn.Sequential(*first_block))
|
475 |
+
|
476 |
+
assert len(temporal_expansions) == len(spatial_expansions) == self.num_up_blocks
|
477 |
+
assert len(num_res_blocks) == len(has_attention) == self.num_up_blocks + 2
|
478 |
+
|
479 |
+
upsample_block_fn = CausalUpsampleBlock
|
480 |
+
|
481 |
+
for i in range(self.num_up_blocks):
|
482 |
+
block = upsample_block_fn(
|
483 |
+
ch[-i - 1],
|
484 |
+
ch[-i - 2],
|
485 |
+
num_res_blocks=num_res_blocks[-i - 2],
|
486 |
+
has_attention=has_attention[-i - 2],
|
487 |
+
temporal_expansion=temporal_expansions[-i - 1],
|
488 |
+
spatial_expansion=spatial_expansions[-i - 1],
|
489 |
+
causal=causal,
|
490 |
+
**block_kwargs,
|
491 |
+
)
|
492 |
+
blocks.append(block)
|
493 |
+
|
494 |
+
assert not output_norm
|
495 |
+
|
496 |
+
# Last block. Preserve channel count.
|
497 |
+
last_block = []
|
498 |
+
for _ in range(num_res_blocks[0]):
|
499 |
+
last_block.append(
|
500 |
+
block_fn(
|
501 |
+
ch[0], has_attention=has_attention[0], causal=causal, **block_kwargs
|
502 |
+
)
|
503 |
+
)
|
504 |
+
blocks.append(nn.Sequential(*last_block))
|
505 |
+
|
506 |
+
self.blocks = nn.ModuleList(blocks)
|
507 |
+
self.output_proj = Conv1x1(ch[0], out_channels)
|
508 |
+
|
509 |
+
def forward(self, x):
|
510 |
+
"""Forward pass.
|
511 |
+
|
512 |
+
Args:
|
513 |
+
x: Latent tensor. Shape: [B, input_channels, t, h, w]. Scaled [-1, 1].
|
514 |
+
|
515 |
+
Returns:
|
516 |
+
x: Reconstructed video tensor. Shape: [B, C, T, H, W]. Scaled to [-1, 1].
|
517 |
+
T + 1 = (t - 1) * 4.
|
518 |
+
H = h * 16, W = w * 16.
|
519 |
+
"""
|
520 |
+
for block in self.blocks:
|
521 |
+
x = block(x)
|
522 |
+
|
523 |
+
if self.output_nonlinearity == "silu":
|
524 |
+
x = F.silu(x, inplace=not self.training)
|
525 |
+
else:
|
526 |
+
assert (
|
527 |
+
not self.output_nonlinearity
|
528 |
+
) # StyleGAN3 omits the to-RGB nonlinearity.
|
529 |
+
|
530 |
+
return self.output_proj(x).contiguous()
|
531 |
+
|
532 |
+
class LatentDistribution:
|
533 |
+
def __init__(self, mean: torch.Tensor, logvar: torch.Tensor):
|
534 |
+
"""Initialize latent distribution.
|
535 |
+
|
536 |
+
Args:
|
537 |
+
mean: Mean of the distribution. Shape: [B, C, T, H, W].
|
538 |
+
logvar: Logarithm of variance of the distribution. Shape: [B, C, T, H, W].
|
539 |
+
"""
|
540 |
+
assert mean.shape == logvar.shape
|
541 |
+
self.mean = mean
|
542 |
+
self.logvar = logvar
|
543 |
+
|
544 |
+
def sample(self, temperature=1.0, generator: torch.Generator = None, noise=None):
|
545 |
+
if temperature == 0.0:
|
546 |
+
return self.mean
|
547 |
+
|
548 |
+
if noise is None:
|
549 |
+
noise = torch.randn(self.mean.shape, device=self.mean.device, dtype=self.mean.dtype, generator=generator)
|
550 |
+
else:
|
551 |
+
assert noise.device == self.mean.device
|
552 |
+
noise = noise.to(self.mean.dtype)
|
553 |
+
|
554 |
+
if temperature != 1.0:
|
555 |
+
raise NotImplementedError(f"Temperature {temperature} is not supported.")
|
556 |
+
|
557 |
+
# Just Gaussian sample with no scaling of variance.
|
558 |
+
return noise * torch.exp(self.logvar * 0.5) + self.mean
|
559 |
+
|
560 |
+
def mode(self):
|
561 |
+
return self.mean
|
562 |
+
|
563 |
+
class Encoder(nn.Module):
|
564 |
+
def __init__(
|
565 |
+
self,
|
566 |
+
*,
|
567 |
+
in_channels: int,
|
568 |
+
base_channels: int,
|
569 |
+
channel_multipliers: List[int],
|
570 |
+
num_res_blocks: List[int],
|
571 |
+
latent_dim: int,
|
572 |
+
temporal_reductions: List[int],
|
573 |
+
spatial_reductions: List[int],
|
574 |
+
prune_bottlenecks: List[bool],
|
575 |
+
has_attentions: List[bool],
|
576 |
+
affine: bool = True,
|
577 |
+
bias: bool = True,
|
578 |
+
input_is_conv_1x1: bool = False,
|
579 |
+
padding_mode: str,
|
580 |
+
):
|
581 |
+
super().__init__()
|
582 |
+
self.temporal_reductions = temporal_reductions
|
583 |
+
self.spatial_reductions = spatial_reductions
|
584 |
+
self.base_channels = base_channels
|
585 |
+
self.channel_multipliers = channel_multipliers
|
586 |
+
self.num_res_blocks = num_res_blocks
|
587 |
+
self.latent_dim = latent_dim
|
588 |
+
|
589 |
+
self.fourier_features = FourierFeatures()
|
590 |
+
ch = [mult * base_channels for mult in channel_multipliers]
|
591 |
+
num_down_blocks = len(ch) - 1
|
592 |
+
assert len(num_res_blocks) == num_down_blocks + 2
|
593 |
+
|
594 |
+
layers = (
|
595 |
+
[ops.Conv3d(in_channels, ch[0], kernel_size=(1, 1, 1), bias=True)]
|
596 |
+
if not input_is_conv_1x1
|
597 |
+
else [Conv1x1(in_channels, ch[0])]
|
598 |
+
)
|
599 |
+
|
600 |
+
assert len(prune_bottlenecks) == num_down_blocks + 2
|
601 |
+
assert len(has_attentions) == num_down_blocks + 2
|
602 |
+
block = partial(block_fn, padding_mode=padding_mode, affine=affine, bias=bias)
|
603 |
+
|
604 |
+
for _ in range(num_res_blocks[0]):
|
605 |
+
layers.append(block(ch[0], has_attention=has_attentions[0], prune_bottleneck=prune_bottlenecks[0]))
|
606 |
+
prune_bottlenecks = prune_bottlenecks[1:]
|
607 |
+
has_attentions = has_attentions[1:]
|
608 |
+
|
609 |
+
assert len(temporal_reductions) == len(spatial_reductions) == len(ch) - 1
|
610 |
+
for i in range(num_down_blocks):
|
611 |
+
layer = DownsampleBlock(
|
612 |
+
ch[i],
|
613 |
+
ch[i + 1],
|
614 |
+
num_res_blocks=num_res_blocks[i + 1],
|
615 |
+
temporal_reduction=temporal_reductions[i],
|
616 |
+
spatial_reduction=spatial_reductions[i],
|
617 |
+
prune_bottleneck=prune_bottlenecks[i],
|
618 |
+
has_attention=has_attentions[i],
|
619 |
+
affine=affine,
|
620 |
+
bias=bias,
|
621 |
+
padding_mode=padding_mode,
|
622 |
+
)
|
623 |
+
|
624 |
+
layers.append(layer)
|
625 |
+
|
626 |
+
# Additional blocks.
|
627 |
+
for _ in range(num_res_blocks[-1]):
|
628 |
+
layers.append(block(ch[-1], has_attention=has_attentions[-1], prune_bottleneck=prune_bottlenecks[-1]))
|
629 |
+
|
630 |
+
self.layers = nn.Sequential(*layers)
|
631 |
+
|
632 |
+
# Output layers.
|
633 |
+
self.output_norm = norm_fn(ch[-1])
|
634 |
+
self.output_proj = Conv1x1(ch[-1], 2 * latent_dim, bias=False)
|
635 |
+
|
636 |
+
@property
|
637 |
+
def temporal_downsample(self):
|
638 |
+
return math.prod(self.temporal_reductions)
|
639 |
+
|
640 |
+
@property
|
641 |
+
def spatial_downsample(self):
|
642 |
+
return math.prod(self.spatial_reductions)
|
643 |
+
|
644 |
+
def forward(self, x) -> LatentDistribution:
|
645 |
+
"""Forward pass.
|
646 |
+
|
647 |
+
Args:
|
648 |
+
x: Input video tensor. Shape: [B, C, T, H, W]. Scaled to [-1, 1]
|
649 |
+
|
650 |
+
Returns:
|
651 |
+
means: Latent tensor. Shape: [B, latent_dim, t, h, w]. Scaled [-1, 1].
|
652 |
+
h = H // 8, w = W // 8, t - 1 = (T - 1) // 6
|
653 |
+
logvar: Shape: [B, latent_dim, t, h, w].
|
654 |
+
"""
|
655 |
+
assert x.ndim == 5, f"Expected 5D input, got {x.shape}"
|
656 |
+
x = self.fourier_features(x)
|
657 |
+
|
658 |
+
x = self.layers(x)
|
659 |
+
|
660 |
+
x = self.output_norm(x)
|
661 |
+
x = F.silu(x, inplace=True)
|
662 |
+
x = self.output_proj(x)
|
663 |
+
|
664 |
+
means, logvar = torch.chunk(x, 2, dim=1)
|
665 |
+
|
666 |
+
assert means.ndim == 5
|
667 |
+
assert logvar.shape == means.shape
|
668 |
+
assert means.size(1) == self.latent_dim
|
669 |
+
|
670 |
+
return LatentDistribution(means, logvar)
|
671 |
+
|
672 |
+
|
673 |
+
class VideoVAE(nn.Module):
|
674 |
+
def __init__(self):
|
675 |
+
super().__init__()
|
676 |
+
self.encoder = Encoder(
|
677 |
+
in_channels=15,
|
678 |
+
base_channels=64,
|
679 |
+
channel_multipliers=[1, 2, 4, 6],
|
680 |
+
num_res_blocks=[3, 3, 4, 6, 3],
|
681 |
+
latent_dim=12,
|
682 |
+
temporal_reductions=[1, 2, 3],
|
683 |
+
spatial_reductions=[2, 2, 2],
|
684 |
+
prune_bottlenecks=[False, False, False, False, False],
|
685 |
+
has_attentions=[False, True, True, True, True],
|
686 |
+
affine=True,
|
687 |
+
bias=True,
|
688 |
+
input_is_conv_1x1=True,
|
689 |
+
padding_mode="replicate"
|
690 |
+
)
|
691 |
+
self.decoder = Decoder(
|
692 |
+
out_channels=3,
|
693 |
+
base_channels=128,
|
694 |
+
channel_multipliers=[1, 2, 4, 6],
|
695 |
+
temporal_expansions=[1, 2, 3],
|
696 |
+
spatial_expansions=[2, 2, 2],
|
697 |
+
num_res_blocks=[3, 3, 4, 6, 3],
|
698 |
+
latent_dim=12,
|
699 |
+
has_attention=[False, False, False, False, False],
|
700 |
+
padding_mode="replicate",
|
701 |
+
output_norm=False,
|
702 |
+
nonlinearity="silu",
|
703 |
+
output_nonlinearity="silu",
|
704 |
+
causal=True,
|
705 |
+
)
|
706 |
+
|
707 |
+
def encode(self, x):
|
708 |
+
return self.encoder(x).mode()
|
709 |
+
|
710 |
+
def decode(self, x):
|
711 |
+
return self.decoder(x)
|
pixel_norm.py
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from torch import nn
|
3 |
+
|
4 |
+
|
5 |
+
class PixelNorm(nn.Module):
|
6 |
+
def __init__(self, dim=1, eps=1e-8):
|
7 |
+
super(PixelNorm, self).__init__()
|
8 |
+
self.dim = dim
|
9 |
+
self.eps = eps
|
10 |
+
|
11 |
+
def forward(self, x):
|
12 |
+
return x / torch.sqrt(torch.mean(x**2, dim=self.dim, keepdim=True) + self.eps)
|
put_taesd_encoder_pth_and_taesd_decoder_pth_here
ADDED
File without changes
|
put_vae_here
ADDED
File without changes
|
vae (1)/causal_conv3d.py
ADDED
@@ -0,0 +1,64 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Tuple, Union
|
2 |
+
|
3 |
+
import torch
|
4 |
+
import torch.nn as nn
|
5 |
+
import comfy.ops
|
6 |
+
ops = comfy.ops.disable_weight_init
|
7 |
+
|
8 |
+
|
9 |
+
class CausalConv3d(nn.Module):
|
10 |
+
def __init__(
|
11 |
+
self,
|
12 |
+
in_channels,
|
13 |
+
out_channels,
|
14 |
+
kernel_size: int = 3,
|
15 |
+
stride: Union[int, Tuple[int]] = 1,
|
16 |
+
dilation: int = 1,
|
17 |
+
groups: int = 1,
|
18 |
+
**kwargs,
|
19 |
+
):
|
20 |
+
super().__init__()
|
21 |
+
|
22 |
+
self.in_channels = in_channels
|
23 |
+
self.out_channels = out_channels
|
24 |
+
|
25 |
+
kernel_size = (kernel_size, kernel_size, kernel_size)
|
26 |
+
self.time_kernel_size = kernel_size[0]
|
27 |
+
|
28 |
+
dilation = (dilation, 1, 1)
|
29 |
+
|
30 |
+
height_pad = kernel_size[1] // 2
|
31 |
+
width_pad = kernel_size[2] // 2
|
32 |
+
padding = (0, height_pad, width_pad)
|
33 |
+
|
34 |
+
self.conv = ops.Conv3d(
|
35 |
+
in_channels,
|
36 |
+
out_channels,
|
37 |
+
kernel_size,
|
38 |
+
stride=stride,
|
39 |
+
dilation=dilation,
|
40 |
+
padding=padding,
|
41 |
+
padding_mode="zeros",
|
42 |
+
groups=groups,
|
43 |
+
)
|
44 |
+
|
45 |
+
def forward(self, x, causal: bool = True):
|
46 |
+
if causal:
|
47 |
+
first_frame_pad = x[:, :, :1, :, :].repeat(
|
48 |
+
(1, 1, self.time_kernel_size - 1, 1, 1)
|
49 |
+
)
|
50 |
+
x = torch.concatenate((first_frame_pad, x), dim=2)
|
51 |
+
else:
|
52 |
+
first_frame_pad = x[:, :, :1, :, :].repeat(
|
53 |
+
(1, 1, (self.time_kernel_size - 1) // 2, 1, 1)
|
54 |
+
)
|
55 |
+
last_frame_pad = x[:, :, -1:, :, :].repeat(
|
56 |
+
(1, 1, (self.time_kernel_size - 1) // 2, 1, 1)
|
57 |
+
)
|
58 |
+
x = torch.concatenate((first_frame_pad, x, last_frame_pad), dim=2)
|
59 |
+
x = self.conv(x)
|
60 |
+
return x
|
61 |
+
|
62 |
+
@property
|
63 |
+
def weight(self):
|
64 |
+
return self.conv.weight
|
vae (1)/causal_video_autoencoder.py
ADDED
@@ -0,0 +1,907 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from torch import nn
|
3 |
+
from functools import partial
|
4 |
+
import math
|
5 |
+
from einops import rearrange
|
6 |
+
from typing import Optional, Tuple, Union
|
7 |
+
from .conv_nd_factory import make_conv_nd, make_linear_nd
|
8 |
+
from .pixel_norm import PixelNorm
|
9 |
+
from ..model import PixArtAlphaCombinedTimestepSizeEmbeddings
|
10 |
+
import comfy.ops
|
11 |
+
ops = comfy.ops.disable_weight_init
|
12 |
+
|
13 |
+
class Encoder(nn.Module):
|
14 |
+
r"""
|
15 |
+
The `Encoder` layer of a variational autoencoder that encodes its input into a latent representation.
|
16 |
+
|
17 |
+
Args:
|
18 |
+
dims (`int` or `Tuple[int, int]`, *optional*, defaults to 3):
|
19 |
+
The number of dimensions to use in convolutions.
|
20 |
+
in_channels (`int`, *optional*, defaults to 3):
|
21 |
+
The number of input channels.
|
22 |
+
out_channels (`int`, *optional*, defaults to 3):
|
23 |
+
The number of output channels.
|
24 |
+
blocks (`List[Tuple[str, int]]`, *optional*, defaults to `[("res_x", 1)]`):
|
25 |
+
The blocks to use. Each block is a tuple of the block name and the number of layers.
|
26 |
+
base_channels (`int`, *optional*, defaults to 128):
|
27 |
+
The number of output channels for the first convolutional layer.
|
28 |
+
norm_num_groups (`int`, *optional*, defaults to 32):
|
29 |
+
The number of groups for normalization.
|
30 |
+
patch_size (`int`, *optional*, defaults to 1):
|
31 |
+
The patch size to use. Should be a power of 2.
|
32 |
+
norm_layer (`str`, *optional*, defaults to `group_norm`):
|
33 |
+
The normalization layer to use. Can be either `group_norm` or `pixel_norm`.
|
34 |
+
latent_log_var (`str`, *optional*, defaults to `per_channel`):
|
35 |
+
The number of channels for the log variance. Can be either `per_channel`, `uniform`, or `none`.
|
36 |
+
"""
|
37 |
+
|
38 |
+
def __init__(
|
39 |
+
self,
|
40 |
+
dims: Union[int, Tuple[int, int]] = 3,
|
41 |
+
in_channels: int = 3,
|
42 |
+
out_channels: int = 3,
|
43 |
+
blocks=[("res_x", 1)],
|
44 |
+
base_channels: int = 128,
|
45 |
+
norm_num_groups: int = 32,
|
46 |
+
patch_size: Union[int, Tuple[int]] = 1,
|
47 |
+
norm_layer: str = "group_norm", # group_norm, pixel_norm
|
48 |
+
latent_log_var: str = "per_channel",
|
49 |
+
):
|
50 |
+
super().__init__()
|
51 |
+
self.patch_size = patch_size
|
52 |
+
self.norm_layer = norm_layer
|
53 |
+
self.latent_channels = out_channels
|
54 |
+
self.latent_log_var = latent_log_var
|
55 |
+
self.blocks_desc = blocks
|
56 |
+
|
57 |
+
in_channels = in_channels * patch_size**2
|
58 |
+
output_channel = base_channels
|
59 |
+
|
60 |
+
self.conv_in = make_conv_nd(
|
61 |
+
dims=dims,
|
62 |
+
in_channels=in_channels,
|
63 |
+
out_channels=output_channel,
|
64 |
+
kernel_size=3,
|
65 |
+
stride=1,
|
66 |
+
padding=1,
|
67 |
+
causal=True,
|
68 |
+
)
|
69 |
+
|
70 |
+
self.down_blocks = nn.ModuleList([])
|
71 |
+
|
72 |
+
for block_name, block_params in blocks:
|
73 |
+
input_channel = output_channel
|
74 |
+
if isinstance(block_params, int):
|
75 |
+
block_params = {"num_layers": block_params}
|
76 |
+
|
77 |
+
if block_name == "res_x":
|
78 |
+
block = UNetMidBlock3D(
|
79 |
+
dims=dims,
|
80 |
+
in_channels=input_channel,
|
81 |
+
num_layers=block_params["num_layers"],
|
82 |
+
resnet_eps=1e-6,
|
83 |
+
resnet_groups=norm_num_groups,
|
84 |
+
norm_layer=norm_layer,
|
85 |
+
)
|
86 |
+
elif block_name == "res_x_y":
|
87 |
+
output_channel = block_params.get("multiplier", 2) * output_channel
|
88 |
+
block = ResnetBlock3D(
|
89 |
+
dims=dims,
|
90 |
+
in_channels=input_channel,
|
91 |
+
out_channels=output_channel,
|
92 |
+
eps=1e-6,
|
93 |
+
groups=norm_num_groups,
|
94 |
+
norm_layer=norm_layer,
|
95 |
+
)
|
96 |
+
elif block_name == "compress_time":
|
97 |
+
block = make_conv_nd(
|
98 |
+
dims=dims,
|
99 |
+
in_channels=input_channel,
|
100 |
+
out_channels=output_channel,
|
101 |
+
kernel_size=3,
|
102 |
+
stride=(2, 1, 1),
|
103 |
+
causal=True,
|
104 |
+
)
|
105 |
+
elif block_name == "compress_space":
|
106 |
+
block = make_conv_nd(
|
107 |
+
dims=dims,
|
108 |
+
in_channels=input_channel,
|
109 |
+
out_channels=output_channel,
|
110 |
+
kernel_size=3,
|
111 |
+
stride=(1, 2, 2),
|
112 |
+
causal=True,
|
113 |
+
)
|
114 |
+
elif block_name == "compress_all":
|
115 |
+
block = make_conv_nd(
|
116 |
+
dims=dims,
|
117 |
+
in_channels=input_channel,
|
118 |
+
out_channels=output_channel,
|
119 |
+
kernel_size=3,
|
120 |
+
stride=(2, 2, 2),
|
121 |
+
causal=True,
|
122 |
+
)
|
123 |
+
elif block_name == "compress_all_x_y":
|
124 |
+
output_channel = block_params.get("multiplier", 2) * output_channel
|
125 |
+
block = make_conv_nd(
|
126 |
+
dims=dims,
|
127 |
+
in_channels=input_channel,
|
128 |
+
out_channels=output_channel,
|
129 |
+
kernel_size=3,
|
130 |
+
stride=(2, 2, 2),
|
131 |
+
causal=True,
|
132 |
+
)
|
133 |
+
else:
|
134 |
+
raise ValueError(f"unknown block: {block_name}")
|
135 |
+
|
136 |
+
self.down_blocks.append(block)
|
137 |
+
|
138 |
+
# out
|
139 |
+
if norm_layer == "group_norm":
|
140 |
+
self.conv_norm_out = nn.GroupNorm(
|
141 |
+
num_channels=output_channel, num_groups=norm_num_groups, eps=1e-6
|
142 |
+
)
|
143 |
+
elif norm_layer == "pixel_norm":
|
144 |
+
self.conv_norm_out = PixelNorm()
|
145 |
+
elif norm_layer == "layer_norm":
|
146 |
+
self.conv_norm_out = LayerNorm(output_channel, eps=1e-6)
|
147 |
+
|
148 |
+
self.conv_act = nn.SiLU()
|
149 |
+
|
150 |
+
conv_out_channels = out_channels
|
151 |
+
if latent_log_var == "per_channel":
|
152 |
+
conv_out_channels *= 2
|
153 |
+
elif latent_log_var == "uniform":
|
154 |
+
conv_out_channels += 1
|
155 |
+
elif latent_log_var != "none":
|
156 |
+
raise ValueError(f"Invalid latent_log_var: {latent_log_var}")
|
157 |
+
self.conv_out = make_conv_nd(
|
158 |
+
dims, output_channel, conv_out_channels, 3, padding=1, causal=True
|
159 |
+
)
|
160 |
+
|
161 |
+
self.gradient_checkpointing = False
|
162 |
+
|
163 |
+
def forward(self, sample: torch.FloatTensor) -> torch.FloatTensor:
|
164 |
+
r"""The forward method of the `Encoder` class."""
|
165 |
+
|
166 |
+
sample = patchify(sample, patch_size_hw=self.patch_size, patch_size_t=1)
|
167 |
+
sample = self.conv_in(sample)
|
168 |
+
|
169 |
+
checkpoint_fn = (
|
170 |
+
partial(torch.utils.checkpoint.checkpoint, use_reentrant=False)
|
171 |
+
if self.gradient_checkpointing and self.training
|
172 |
+
else lambda x: x
|
173 |
+
)
|
174 |
+
|
175 |
+
for down_block in self.down_blocks:
|
176 |
+
sample = checkpoint_fn(down_block)(sample)
|
177 |
+
|
178 |
+
sample = self.conv_norm_out(sample)
|
179 |
+
sample = self.conv_act(sample)
|
180 |
+
sample = self.conv_out(sample)
|
181 |
+
|
182 |
+
if self.latent_log_var == "uniform":
|
183 |
+
last_channel = sample[:, -1:, ...]
|
184 |
+
num_dims = sample.dim()
|
185 |
+
|
186 |
+
if num_dims == 4:
|
187 |
+
# For shape (B, C, H, W)
|
188 |
+
repeated_last_channel = last_channel.repeat(
|
189 |
+
1, sample.shape[1] - 2, 1, 1
|
190 |
+
)
|
191 |
+
sample = torch.cat([sample, repeated_last_channel], dim=1)
|
192 |
+
elif num_dims == 5:
|
193 |
+
# For shape (B, C, F, H, W)
|
194 |
+
repeated_last_channel = last_channel.repeat(
|
195 |
+
1, sample.shape[1] - 2, 1, 1, 1
|
196 |
+
)
|
197 |
+
sample = torch.cat([sample, repeated_last_channel], dim=1)
|
198 |
+
else:
|
199 |
+
raise ValueError(f"Invalid input shape: {sample.shape}")
|
200 |
+
|
201 |
+
return sample
|
202 |
+
|
203 |
+
|
204 |
+
class Decoder(nn.Module):
|
205 |
+
r"""
|
206 |
+
The `Decoder` layer of a variational autoencoder that decodes its latent representation into an output sample.
|
207 |
+
|
208 |
+
Args:
|
209 |
+
dims (`int` or `Tuple[int, int]`, *optional*, defaults to 3):
|
210 |
+
The number of dimensions to use in convolutions.
|
211 |
+
in_channels (`int`, *optional*, defaults to 3):
|
212 |
+
The number of input channels.
|
213 |
+
out_channels (`int`, *optional*, defaults to 3):
|
214 |
+
The number of output channels.
|
215 |
+
blocks (`List[Tuple[str, int]]`, *optional*, defaults to `[("res_x", 1)]`):
|
216 |
+
The blocks to use. Each block is a tuple of the block name and the number of layers.
|
217 |
+
base_channels (`int`, *optional*, defaults to 128):
|
218 |
+
The number of output channels for the first convolutional layer.
|
219 |
+
norm_num_groups (`int`, *optional*, defaults to 32):
|
220 |
+
The number of groups for normalization.
|
221 |
+
patch_size (`int`, *optional*, defaults to 1):
|
222 |
+
The patch size to use. Should be a power of 2.
|
223 |
+
norm_layer (`str`, *optional*, defaults to `group_norm`):
|
224 |
+
The normalization layer to use. Can be either `group_norm` or `pixel_norm`.
|
225 |
+
causal (`bool`, *optional*, defaults to `True`):
|
226 |
+
Whether to use causal convolutions or not.
|
227 |
+
"""
|
228 |
+
|
229 |
+
def __init__(
|
230 |
+
self,
|
231 |
+
dims,
|
232 |
+
in_channels: int = 3,
|
233 |
+
out_channels: int = 3,
|
234 |
+
blocks=[("res_x", 1)],
|
235 |
+
base_channels: int = 128,
|
236 |
+
layers_per_block: int = 2,
|
237 |
+
norm_num_groups: int = 32,
|
238 |
+
patch_size: int = 1,
|
239 |
+
norm_layer: str = "group_norm",
|
240 |
+
causal: bool = True,
|
241 |
+
timestep_conditioning: bool = False,
|
242 |
+
):
|
243 |
+
super().__init__()
|
244 |
+
self.patch_size = patch_size
|
245 |
+
self.layers_per_block = layers_per_block
|
246 |
+
out_channels = out_channels * patch_size**2
|
247 |
+
self.causal = causal
|
248 |
+
self.blocks_desc = blocks
|
249 |
+
|
250 |
+
# Compute output channel to be product of all channel-multiplier blocks
|
251 |
+
output_channel = base_channels
|
252 |
+
for block_name, block_params in list(reversed(blocks)):
|
253 |
+
block_params = block_params if isinstance(block_params, dict) else {}
|
254 |
+
if block_name == "res_x_y":
|
255 |
+
output_channel = output_channel * block_params.get("multiplier", 2)
|
256 |
+
if block_name == "compress_all":
|
257 |
+
output_channel = output_channel * block_params.get("multiplier", 1)
|
258 |
+
|
259 |
+
self.conv_in = make_conv_nd(
|
260 |
+
dims,
|
261 |
+
in_channels,
|
262 |
+
output_channel,
|
263 |
+
kernel_size=3,
|
264 |
+
stride=1,
|
265 |
+
padding=1,
|
266 |
+
causal=True,
|
267 |
+
)
|
268 |
+
|
269 |
+
self.up_blocks = nn.ModuleList([])
|
270 |
+
|
271 |
+
for block_name, block_params in list(reversed(blocks)):
|
272 |
+
input_channel = output_channel
|
273 |
+
if isinstance(block_params, int):
|
274 |
+
block_params = {"num_layers": block_params}
|
275 |
+
|
276 |
+
if block_name == "res_x":
|
277 |
+
block = UNetMidBlock3D(
|
278 |
+
dims=dims,
|
279 |
+
in_channels=input_channel,
|
280 |
+
num_layers=block_params["num_layers"],
|
281 |
+
resnet_eps=1e-6,
|
282 |
+
resnet_groups=norm_num_groups,
|
283 |
+
norm_layer=norm_layer,
|
284 |
+
inject_noise=block_params.get("inject_noise", False),
|
285 |
+
timestep_conditioning=timestep_conditioning,
|
286 |
+
)
|
287 |
+
elif block_name == "attn_res_x":
|
288 |
+
block = UNetMidBlock3D(
|
289 |
+
dims=dims,
|
290 |
+
in_channels=input_channel,
|
291 |
+
num_layers=block_params["num_layers"],
|
292 |
+
resnet_groups=norm_num_groups,
|
293 |
+
norm_layer=norm_layer,
|
294 |
+
inject_noise=block_params.get("inject_noise", False),
|
295 |
+
timestep_conditioning=timestep_conditioning,
|
296 |
+
attention_head_dim=block_params["attention_head_dim"],
|
297 |
+
)
|
298 |
+
elif block_name == "res_x_y":
|
299 |
+
output_channel = output_channel // block_params.get("multiplier", 2)
|
300 |
+
block = ResnetBlock3D(
|
301 |
+
dims=dims,
|
302 |
+
in_channels=input_channel,
|
303 |
+
out_channels=output_channel,
|
304 |
+
eps=1e-6,
|
305 |
+
groups=norm_num_groups,
|
306 |
+
norm_layer=norm_layer,
|
307 |
+
inject_noise=block_params.get("inject_noise", False),
|
308 |
+
timestep_conditioning=False,
|
309 |
+
)
|
310 |
+
elif block_name == "compress_time":
|
311 |
+
block = DepthToSpaceUpsample(
|
312 |
+
dims=dims, in_channels=input_channel, stride=(2, 1, 1)
|
313 |
+
)
|
314 |
+
elif block_name == "compress_space":
|
315 |
+
block = DepthToSpaceUpsample(
|
316 |
+
dims=dims, in_channels=input_channel, stride=(1, 2, 2)
|
317 |
+
)
|
318 |
+
elif block_name == "compress_all":
|
319 |
+
output_channel = output_channel // block_params.get("multiplier", 1)
|
320 |
+
block = DepthToSpaceUpsample(
|
321 |
+
dims=dims,
|
322 |
+
in_channels=input_channel,
|
323 |
+
stride=(2, 2, 2),
|
324 |
+
residual=block_params.get("residual", False),
|
325 |
+
out_channels_reduction_factor=block_params.get("multiplier", 1),
|
326 |
+
)
|
327 |
+
else:
|
328 |
+
raise ValueError(f"unknown layer: {block_name}")
|
329 |
+
|
330 |
+
self.up_blocks.append(block)
|
331 |
+
|
332 |
+
if norm_layer == "group_norm":
|
333 |
+
self.conv_norm_out = nn.GroupNorm(
|
334 |
+
num_channels=output_channel, num_groups=norm_num_groups, eps=1e-6
|
335 |
+
)
|
336 |
+
elif norm_layer == "pixel_norm":
|
337 |
+
self.conv_norm_out = PixelNorm()
|
338 |
+
elif norm_layer == "layer_norm":
|
339 |
+
self.conv_norm_out = LayerNorm(output_channel, eps=1e-6)
|
340 |
+
|
341 |
+
self.conv_act = nn.SiLU()
|
342 |
+
self.conv_out = make_conv_nd(
|
343 |
+
dims, output_channel, out_channels, 3, padding=1, causal=True
|
344 |
+
)
|
345 |
+
|
346 |
+
self.gradient_checkpointing = False
|
347 |
+
|
348 |
+
self.timestep_conditioning = timestep_conditioning
|
349 |
+
|
350 |
+
if timestep_conditioning:
|
351 |
+
self.timestep_scale_multiplier = nn.Parameter(
|
352 |
+
torch.tensor(1000.0, dtype=torch.float32)
|
353 |
+
)
|
354 |
+
self.last_time_embedder = PixArtAlphaCombinedTimestepSizeEmbeddings(
|
355 |
+
output_channel * 2, 0, operations=ops,
|
356 |
+
)
|
357 |
+
self.last_scale_shift_table = nn.Parameter(torch.empty(2, output_channel))
|
358 |
+
|
359 |
+
# def forward(self, sample: torch.FloatTensor, target_shape) -> torch.FloatTensor:
|
360 |
+
def forward(
|
361 |
+
self,
|
362 |
+
sample: torch.FloatTensor,
|
363 |
+
timestep: Optional[torch.Tensor] = None,
|
364 |
+
) -> torch.FloatTensor:
|
365 |
+
r"""The forward method of the `Decoder` class."""
|
366 |
+
batch_size = sample.shape[0]
|
367 |
+
|
368 |
+
sample = self.conv_in(sample, causal=self.causal)
|
369 |
+
|
370 |
+
checkpoint_fn = (
|
371 |
+
partial(torch.utils.checkpoint.checkpoint, use_reentrant=False)
|
372 |
+
if self.gradient_checkpointing and self.training
|
373 |
+
else lambda x: x
|
374 |
+
)
|
375 |
+
|
376 |
+
scaled_timestep = None
|
377 |
+
if self.timestep_conditioning:
|
378 |
+
assert (
|
379 |
+
timestep is not None
|
380 |
+
), "should pass timestep with timestep_conditioning=True"
|
381 |
+
scaled_timestep = timestep * self.timestep_scale_multiplier.to(dtype=sample.dtype, device=sample.device)
|
382 |
+
|
383 |
+
for up_block in self.up_blocks:
|
384 |
+
if self.timestep_conditioning and isinstance(up_block, UNetMidBlock3D):
|
385 |
+
sample = checkpoint_fn(up_block)(
|
386 |
+
sample, causal=self.causal, timestep=scaled_timestep
|
387 |
+
)
|
388 |
+
else:
|
389 |
+
sample = checkpoint_fn(up_block)(sample, causal=self.causal)
|
390 |
+
|
391 |
+
sample = self.conv_norm_out(sample)
|
392 |
+
|
393 |
+
if self.timestep_conditioning:
|
394 |
+
embedded_timestep = self.last_time_embedder(
|
395 |
+
timestep=scaled_timestep.flatten(),
|
396 |
+
resolution=None,
|
397 |
+
aspect_ratio=None,
|
398 |
+
batch_size=sample.shape[0],
|
399 |
+
hidden_dtype=sample.dtype,
|
400 |
+
)
|
401 |
+
embedded_timestep = embedded_timestep.view(
|
402 |
+
batch_size, embedded_timestep.shape[-1], 1, 1, 1
|
403 |
+
)
|
404 |
+
ada_values = self.last_scale_shift_table[
|
405 |
+
None, ..., None, None, None
|
406 |
+
].to(device=sample.device, dtype=sample.dtype) + embedded_timestep.reshape(
|
407 |
+
batch_size,
|
408 |
+
2,
|
409 |
+
-1,
|
410 |
+
embedded_timestep.shape[-3],
|
411 |
+
embedded_timestep.shape[-2],
|
412 |
+
embedded_timestep.shape[-1],
|
413 |
+
)
|
414 |
+
shift, scale = ada_values.unbind(dim=1)
|
415 |
+
sample = sample * (1 + scale) + shift
|
416 |
+
|
417 |
+
sample = self.conv_act(sample)
|
418 |
+
sample = self.conv_out(sample, causal=self.causal)
|
419 |
+
|
420 |
+
sample = unpatchify(sample, patch_size_hw=self.patch_size, patch_size_t=1)
|
421 |
+
|
422 |
+
return sample
|
423 |
+
|
424 |
+
|
425 |
+
class UNetMidBlock3D(nn.Module):
|
426 |
+
"""
|
427 |
+
A 3D UNet mid-block [`UNetMidBlock3D`] with multiple residual blocks.
|
428 |
+
|
429 |
+
Args:
|
430 |
+
in_channels (`int`): The number of input channels.
|
431 |
+
dropout (`float`, *optional*, defaults to 0.0): The dropout rate.
|
432 |
+
num_layers (`int`, *optional*, defaults to 1): The number of residual blocks.
|
433 |
+
resnet_eps (`float`, *optional*, 1e-6 ): The epsilon value for the resnet blocks.
|
434 |
+
resnet_groups (`int`, *optional*, defaults to 32):
|
435 |
+
The number of groups to use in the group normalization layers of the resnet blocks.
|
436 |
+
|
437 |
+
Returns:
|
438 |
+
`torch.FloatTensor`: The output of the last residual block, which is a tensor of shape `(batch_size,
|
439 |
+
in_channels, height, width)`.
|
440 |
+
|
441 |
+
"""
|
442 |
+
|
443 |
+
def __init__(
|
444 |
+
self,
|
445 |
+
dims: Union[int, Tuple[int, int]],
|
446 |
+
in_channels: int,
|
447 |
+
dropout: float = 0.0,
|
448 |
+
num_layers: int = 1,
|
449 |
+
resnet_eps: float = 1e-6,
|
450 |
+
resnet_groups: int = 32,
|
451 |
+
norm_layer: str = "group_norm",
|
452 |
+
inject_noise: bool = False,
|
453 |
+
timestep_conditioning: bool = False,
|
454 |
+
):
|
455 |
+
super().__init__()
|
456 |
+
resnet_groups = (
|
457 |
+
resnet_groups if resnet_groups is not None else min(in_channels // 4, 32)
|
458 |
+
)
|
459 |
+
|
460 |
+
self.timestep_conditioning = timestep_conditioning
|
461 |
+
|
462 |
+
if timestep_conditioning:
|
463 |
+
self.time_embedder = PixArtAlphaCombinedTimestepSizeEmbeddings(
|
464 |
+
in_channels * 4, 0, operations=ops,
|
465 |
+
)
|
466 |
+
|
467 |
+
self.res_blocks = nn.ModuleList(
|
468 |
+
[
|
469 |
+
ResnetBlock3D(
|
470 |
+
dims=dims,
|
471 |
+
in_channels=in_channels,
|
472 |
+
out_channels=in_channels,
|
473 |
+
eps=resnet_eps,
|
474 |
+
groups=resnet_groups,
|
475 |
+
dropout=dropout,
|
476 |
+
norm_layer=norm_layer,
|
477 |
+
inject_noise=inject_noise,
|
478 |
+
timestep_conditioning=timestep_conditioning,
|
479 |
+
)
|
480 |
+
for _ in range(num_layers)
|
481 |
+
]
|
482 |
+
)
|
483 |
+
|
484 |
+
def forward(
|
485 |
+
self, hidden_states: torch.FloatTensor, causal: bool = True, timestep: Optional[torch.Tensor] = None
|
486 |
+
) -> torch.FloatTensor:
|
487 |
+
timestep_embed = None
|
488 |
+
if self.timestep_conditioning:
|
489 |
+
assert (
|
490 |
+
timestep is not None
|
491 |
+
), "should pass timestep with timestep_conditioning=True"
|
492 |
+
batch_size = hidden_states.shape[0]
|
493 |
+
timestep_embed = self.time_embedder(
|
494 |
+
timestep=timestep.flatten(),
|
495 |
+
resolution=None,
|
496 |
+
aspect_ratio=None,
|
497 |
+
batch_size=batch_size,
|
498 |
+
hidden_dtype=hidden_states.dtype,
|
499 |
+
)
|
500 |
+
timestep_embed = timestep_embed.view(
|
501 |
+
batch_size, timestep_embed.shape[-1], 1, 1, 1
|
502 |
+
)
|
503 |
+
|
504 |
+
for resnet in self.res_blocks:
|
505 |
+
hidden_states = resnet(hidden_states, causal=causal, timestep=timestep_embed)
|
506 |
+
|
507 |
+
return hidden_states
|
508 |
+
|
509 |
+
|
510 |
+
class DepthToSpaceUpsample(nn.Module):
|
511 |
+
def __init__(
|
512 |
+
self, dims, in_channels, stride, residual=False, out_channels_reduction_factor=1
|
513 |
+
):
|
514 |
+
super().__init__()
|
515 |
+
self.stride = stride
|
516 |
+
self.out_channels = (
|
517 |
+
math.prod(stride) * in_channels // out_channels_reduction_factor
|
518 |
+
)
|
519 |
+
self.conv = make_conv_nd(
|
520 |
+
dims=dims,
|
521 |
+
in_channels=in_channels,
|
522 |
+
out_channels=self.out_channels,
|
523 |
+
kernel_size=3,
|
524 |
+
stride=1,
|
525 |
+
causal=True,
|
526 |
+
)
|
527 |
+
self.residual = residual
|
528 |
+
self.out_channels_reduction_factor = out_channels_reduction_factor
|
529 |
+
|
530 |
+
def forward(self, x, causal: bool = True, timestep: Optional[torch.Tensor] = None):
|
531 |
+
if self.residual:
|
532 |
+
# Reshape and duplicate the input to match the output shape
|
533 |
+
x_in = rearrange(
|
534 |
+
x,
|
535 |
+
"b (c p1 p2 p3) d h w -> b c (d p1) (h p2) (w p3)",
|
536 |
+
p1=self.stride[0],
|
537 |
+
p2=self.stride[1],
|
538 |
+
p3=self.stride[2],
|
539 |
+
)
|
540 |
+
num_repeat = math.prod(self.stride) // self.out_channels_reduction_factor
|
541 |
+
x_in = x_in.repeat(1, num_repeat, 1, 1, 1)
|
542 |
+
if self.stride[0] == 2:
|
543 |
+
x_in = x_in[:, :, 1:, :, :]
|
544 |
+
x = self.conv(x, causal=causal)
|
545 |
+
x = rearrange(
|
546 |
+
x,
|
547 |
+
"b (c p1 p2 p3) d h w -> b c (d p1) (h p2) (w p3)",
|
548 |
+
p1=self.stride[0],
|
549 |
+
p2=self.stride[1],
|
550 |
+
p3=self.stride[2],
|
551 |
+
)
|
552 |
+
if self.stride[0] == 2:
|
553 |
+
x = x[:, :, 1:, :, :]
|
554 |
+
if self.residual:
|
555 |
+
x = x + x_in
|
556 |
+
return x
|
557 |
+
|
558 |
+
class LayerNorm(nn.Module):
|
559 |
+
def __init__(self, dim, eps, elementwise_affine=True) -> None:
|
560 |
+
super().__init__()
|
561 |
+
self.norm = nn.LayerNorm(dim, eps=eps, elementwise_affine=elementwise_affine)
|
562 |
+
|
563 |
+
def forward(self, x):
|
564 |
+
x = rearrange(x, "b c d h w -> b d h w c")
|
565 |
+
x = self.norm(x)
|
566 |
+
x = rearrange(x, "b d h w c -> b c d h w")
|
567 |
+
return x
|
568 |
+
|
569 |
+
|
570 |
+
class ResnetBlock3D(nn.Module):
|
571 |
+
r"""
|
572 |
+
A Resnet block.
|
573 |
+
|
574 |
+
Parameters:
|
575 |
+
in_channels (`int`): The number of channels in the input.
|
576 |
+
out_channels (`int`, *optional*, default to be `None`):
|
577 |
+
The number of output channels for the first conv layer. If None, same as `in_channels`.
|
578 |
+
dropout (`float`, *optional*, defaults to `0.0`): The dropout probability to use.
|
579 |
+
groups (`int`, *optional*, default to `32`): The number of groups to use for the first normalization layer.
|
580 |
+
eps (`float`, *optional*, defaults to `1e-6`): The epsilon to use for the normalization.
|
581 |
+
"""
|
582 |
+
|
583 |
+
def __init__(
|
584 |
+
self,
|
585 |
+
dims: Union[int, Tuple[int, int]],
|
586 |
+
in_channels: int,
|
587 |
+
out_channels: Optional[int] = None,
|
588 |
+
dropout: float = 0.0,
|
589 |
+
groups: int = 32,
|
590 |
+
eps: float = 1e-6,
|
591 |
+
norm_layer: str = "group_norm",
|
592 |
+
inject_noise: bool = False,
|
593 |
+
timestep_conditioning: bool = False,
|
594 |
+
):
|
595 |
+
super().__init__()
|
596 |
+
self.in_channels = in_channels
|
597 |
+
out_channels = in_channels if out_channels is None else out_channels
|
598 |
+
self.out_channels = out_channels
|
599 |
+
self.inject_noise = inject_noise
|
600 |
+
|
601 |
+
if norm_layer == "group_norm":
|
602 |
+
self.norm1 = nn.GroupNorm(
|
603 |
+
num_groups=groups, num_channels=in_channels, eps=eps, affine=True
|
604 |
+
)
|
605 |
+
elif norm_layer == "pixel_norm":
|
606 |
+
self.norm1 = PixelNorm()
|
607 |
+
elif norm_layer == "layer_norm":
|
608 |
+
self.norm1 = LayerNorm(in_channels, eps=eps, elementwise_affine=True)
|
609 |
+
|
610 |
+
self.non_linearity = nn.SiLU()
|
611 |
+
|
612 |
+
self.conv1 = make_conv_nd(
|
613 |
+
dims,
|
614 |
+
in_channels,
|
615 |
+
out_channels,
|
616 |
+
kernel_size=3,
|
617 |
+
stride=1,
|
618 |
+
padding=1,
|
619 |
+
causal=True,
|
620 |
+
)
|
621 |
+
|
622 |
+
if inject_noise:
|
623 |
+
self.per_channel_scale1 = nn.Parameter(torch.zeros((in_channels, 1, 1)))
|
624 |
+
|
625 |
+
if norm_layer == "group_norm":
|
626 |
+
self.norm2 = nn.GroupNorm(
|
627 |
+
num_groups=groups, num_channels=out_channels, eps=eps, affine=True
|
628 |
+
)
|
629 |
+
elif norm_layer == "pixel_norm":
|
630 |
+
self.norm2 = PixelNorm()
|
631 |
+
elif norm_layer == "layer_norm":
|
632 |
+
self.norm2 = LayerNorm(out_channels, eps=eps, elementwise_affine=True)
|
633 |
+
|
634 |
+
self.dropout = torch.nn.Dropout(dropout)
|
635 |
+
|
636 |
+
self.conv2 = make_conv_nd(
|
637 |
+
dims,
|
638 |
+
out_channels,
|
639 |
+
out_channels,
|
640 |
+
kernel_size=3,
|
641 |
+
stride=1,
|
642 |
+
padding=1,
|
643 |
+
causal=True,
|
644 |
+
)
|
645 |
+
|
646 |
+
if inject_noise:
|
647 |
+
self.per_channel_scale2 = nn.Parameter(torch.zeros((in_channels, 1, 1)))
|
648 |
+
|
649 |
+
self.conv_shortcut = (
|
650 |
+
make_linear_nd(
|
651 |
+
dims=dims, in_channels=in_channels, out_channels=out_channels
|
652 |
+
)
|
653 |
+
if in_channels != out_channels
|
654 |
+
else nn.Identity()
|
655 |
+
)
|
656 |
+
|
657 |
+
self.norm3 = (
|
658 |
+
LayerNorm(in_channels, eps=eps, elementwise_affine=True)
|
659 |
+
if in_channels != out_channels
|
660 |
+
else nn.Identity()
|
661 |
+
)
|
662 |
+
|
663 |
+
self.timestep_conditioning = timestep_conditioning
|
664 |
+
|
665 |
+
if timestep_conditioning:
|
666 |
+
self.scale_shift_table = nn.Parameter(
|
667 |
+
torch.randn(4, in_channels) / in_channels**0.5
|
668 |
+
)
|
669 |
+
|
670 |
+
def _feed_spatial_noise(
|
671 |
+
self, hidden_states: torch.FloatTensor, per_channel_scale: torch.FloatTensor
|
672 |
+
) -> torch.FloatTensor:
|
673 |
+
spatial_shape = hidden_states.shape[-2:]
|
674 |
+
device = hidden_states.device
|
675 |
+
dtype = hidden_states.dtype
|
676 |
+
|
677 |
+
# similar to the "explicit noise inputs" method in style-gan
|
678 |
+
spatial_noise = torch.randn(spatial_shape, device=device, dtype=dtype)[None]
|
679 |
+
scaled_noise = (spatial_noise * per_channel_scale)[None, :, None, ...]
|
680 |
+
hidden_states = hidden_states + scaled_noise
|
681 |
+
|
682 |
+
return hidden_states
|
683 |
+
|
684 |
+
def forward(
|
685 |
+
self,
|
686 |
+
input_tensor: torch.FloatTensor,
|
687 |
+
causal: bool = True,
|
688 |
+
timestep: Optional[torch.Tensor] = None,
|
689 |
+
) -> torch.FloatTensor:
|
690 |
+
hidden_states = input_tensor
|
691 |
+
batch_size = hidden_states.shape[0]
|
692 |
+
|
693 |
+
hidden_states = self.norm1(hidden_states)
|
694 |
+
if self.timestep_conditioning:
|
695 |
+
assert (
|
696 |
+
timestep is not None
|
697 |
+
), "should pass timestep with timestep_conditioning=True"
|
698 |
+
ada_values = self.scale_shift_table[
|
699 |
+
None, ..., None, None, None
|
700 |
+
].to(device=hidden_states.device, dtype=hidden_states.dtype) + timestep.reshape(
|
701 |
+
batch_size,
|
702 |
+
4,
|
703 |
+
-1,
|
704 |
+
timestep.shape[-3],
|
705 |
+
timestep.shape[-2],
|
706 |
+
timestep.shape[-1],
|
707 |
+
)
|
708 |
+
shift1, scale1, shift2, scale2 = ada_values.unbind(dim=1)
|
709 |
+
|
710 |
+
hidden_states = hidden_states * (1 + scale1) + shift1
|
711 |
+
|
712 |
+
hidden_states = self.non_linearity(hidden_states)
|
713 |
+
|
714 |
+
hidden_states = self.conv1(hidden_states, causal=causal)
|
715 |
+
|
716 |
+
if self.inject_noise:
|
717 |
+
hidden_states = self._feed_spatial_noise(
|
718 |
+
hidden_states, self.per_channel_scale1.to(device=hidden_states.device, dtype=hidden_states.dtype)
|
719 |
+
)
|
720 |
+
|
721 |
+
hidden_states = self.norm2(hidden_states)
|
722 |
+
|
723 |
+
if self.timestep_conditioning:
|
724 |
+
hidden_states = hidden_states * (1 + scale2) + shift2
|
725 |
+
|
726 |
+
hidden_states = self.non_linearity(hidden_states)
|
727 |
+
|
728 |
+
hidden_states = self.dropout(hidden_states)
|
729 |
+
|
730 |
+
hidden_states = self.conv2(hidden_states, causal=causal)
|
731 |
+
|
732 |
+
if self.inject_noise:
|
733 |
+
hidden_states = self._feed_spatial_noise(
|
734 |
+
hidden_states, self.per_channel_scale2.to(device=hidden_states.device, dtype=hidden_states.dtype)
|
735 |
+
)
|
736 |
+
|
737 |
+
input_tensor = self.norm3(input_tensor)
|
738 |
+
|
739 |
+
batch_size = input_tensor.shape[0]
|
740 |
+
|
741 |
+
input_tensor = self.conv_shortcut(input_tensor)
|
742 |
+
|
743 |
+
output_tensor = input_tensor + hidden_states
|
744 |
+
|
745 |
+
return output_tensor
|
746 |
+
|
747 |
+
|
748 |
+
def patchify(x, patch_size_hw, patch_size_t=1):
|
749 |
+
if patch_size_hw == 1 and patch_size_t == 1:
|
750 |
+
return x
|
751 |
+
if x.dim() == 4:
|
752 |
+
x = rearrange(
|
753 |
+
x, "b c (h q) (w r) -> b (c r q) h w", q=patch_size_hw, r=patch_size_hw
|
754 |
+
)
|
755 |
+
elif x.dim() == 5:
|
756 |
+
x = rearrange(
|
757 |
+
x,
|
758 |
+
"b c (f p) (h q) (w r) -> b (c p r q) f h w",
|
759 |
+
p=patch_size_t,
|
760 |
+
q=patch_size_hw,
|
761 |
+
r=patch_size_hw,
|
762 |
+
)
|
763 |
+
else:
|
764 |
+
raise ValueError(f"Invalid input shape: {x.shape}")
|
765 |
+
|
766 |
+
return x
|
767 |
+
|
768 |
+
|
769 |
+
def unpatchify(x, patch_size_hw, patch_size_t=1):
|
770 |
+
if patch_size_hw == 1 and patch_size_t == 1:
|
771 |
+
return x
|
772 |
+
|
773 |
+
if x.dim() == 4:
|
774 |
+
x = rearrange(
|
775 |
+
x, "b (c r q) h w -> b c (h q) (w r)", q=patch_size_hw, r=patch_size_hw
|
776 |
+
)
|
777 |
+
elif x.dim() == 5:
|
778 |
+
x = rearrange(
|
779 |
+
x,
|
780 |
+
"b (c p r q) f h w -> b c (f p) (h q) (w r)",
|
781 |
+
p=patch_size_t,
|
782 |
+
q=patch_size_hw,
|
783 |
+
r=patch_size_hw,
|
784 |
+
)
|
785 |
+
|
786 |
+
return x
|
787 |
+
|
788 |
+
class processor(nn.Module):
|
789 |
+
def __init__(self):
|
790 |
+
super().__init__()
|
791 |
+
self.register_buffer("std-of-means", torch.empty(128))
|
792 |
+
self.register_buffer("mean-of-means", torch.empty(128))
|
793 |
+
self.register_buffer("mean-of-stds", torch.empty(128))
|
794 |
+
self.register_buffer("mean-of-stds_over_std-of-means", torch.empty(128))
|
795 |
+
self.register_buffer("channel", torch.empty(128))
|
796 |
+
|
797 |
+
def un_normalize(self, x):
|
798 |
+
return (x * self.get_buffer("std-of-means").view(1, -1, 1, 1, 1).to(x)) + self.get_buffer("mean-of-means").view(1, -1, 1, 1, 1).to(x)
|
799 |
+
|
800 |
+
def normalize(self, x):
|
801 |
+
return (x - self.get_buffer("mean-of-means").view(1, -1, 1, 1, 1).to(x)) / self.get_buffer("std-of-means").view(1, -1, 1, 1, 1).to(x)
|
802 |
+
|
803 |
+
class VideoVAE(nn.Module):
|
804 |
+
def __init__(self, version=0):
|
805 |
+
super().__init__()
|
806 |
+
|
807 |
+
if version == 0:
|
808 |
+
config = {
|
809 |
+
"_class_name": "CausalVideoAutoencoder",
|
810 |
+
"dims": 3,
|
811 |
+
"in_channels": 3,
|
812 |
+
"out_channels": 3,
|
813 |
+
"latent_channels": 128,
|
814 |
+
"blocks": [
|
815 |
+
["res_x", 4],
|
816 |
+
["compress_all", 1],
|
817 |
+
["res_x_y", 1],
|
818 |
+
["res_x", 3],
|
819 |
+
["compress_all", 1],
|
820 |
+
["res_x_y", 1],
|
821 |
+
["res_x", 3],
|
822 |
+
["compress_all", 1],
|
823 |
+
["res_x", 3],
|
824 |
+
["res_x", 4],
|
825 |
+
],
|
826 |
+
"scaling_factor": 1.0,
|
827 |
+
"norm_layer": "pixel_norm",
|
828 |
+
"patch_size": 4,
|
829 |
+
"latent_log_var": "uniform",
|
830 |
+
"use_quant_conv": False,
|
831 |
+
"causal_decoder": False,
|
832 |
+
}
|
833 |
+
else:
|
834 |
+
config = {
|
835 |
+
"_class_name": "CausalVideoAutoencoder",
|
836 |
+
"dims": 3,
|
837 |
+
"in_channels": 3,
|
838 |
+
"out_channels": 3,
|
839 |
+
"latent_channels": 128,
|
840 |
+
"decoder_blocks": [
|
841 |
+
["res_x", {"num_layers": 5, "inject_noise": True}],
|
842 |
+
["compress_all", {"residual": True, "multiplier": 2}],
|
843 |
+
["res_x", {"num_layers": 6, "inject_noise": True}],
|
844 |
+
["compress_all", {"residual": True, "multiplier": 2}],
|
845 |
+
["res_x", {"num_layers": 7, "inject_noise": True}],
|
846 |
+
["compress_all", {"residual": True, "multiplier": 2}],
|
847 |
+
["res_x", {"num_layers": 8, "inject_noise": False}]
|
848 |
+
],
|
849 |
+
"encoder_blocks": [
|
850 |
+
["res_x", {"num_layers": 4}],
|
851 |
+
["compress_all", {}],
|
852 |
+
["res_x_y", 1],
|
853 |
+
["res_x", {"num_layers": 3}],
|
854 |
+
["compress_all", {}],
|
855 |
+
["res_x_y", 1],
|
856 |
+
["res_x", {"num_layers": 3}],
|
857 |
+
["compress_all", {}],
|
858 |
+
["res_x", {"num_layers": 3}],
|
859 |
+
["res_x", {"num_layers": 4}]
|
860 |
+
],
|
861 |
+
"scaling_factor": 1.0,
|
862 |
+
"norm_layer": "pixel_norm",
|
863 |
+
"patch_size": 4,
|
864 |
+
"latent_log_var": "uniform",
|
865 |
+
"use_quant_conv": False,
|
866 |
+
"causal_decoder": False,
|
867 |
+
"timestep_conditioning": True,
|
868 |
+
}
|
869 |
+
|
870 |
+
double_z = config.get("double_z", True)
|
871 |
+
latent_log_var = config.get(
|
872 |
+
"latent_log_var", "per_channel" if double_z else "none"
|
873 |
+
)
|
874 |
+
|
875 |
+
self.encoder = Encoder(
|
876 |
+
dims=config["dims"],
|
877 |
+
in_channels=config.get("in_channels", 3),
|
878 |
+
out_channels=config["latent_channels"],
|
879 |
+
blocks=config.get("encoder_blocks", config.get("encoder_blocks", config.get("blocks"))),
|
880 |
+
patch_size=config.get("patch_size", 1),
|
881 |
+
latent_log_var=latent_log_var,
|
882 |
+
norm_layer=config.get("norm_layer", "group_norm"),
|
883 |
+
)
|
884 |
+
|
885 |
+
self.decoder = Decoder(
|
886 |
+
dims=config["dims"],
|
887 |
+
in_channels=config["latent_channels"],
|
888 |
+
out_channels=config.get("out_channels", 3),
|
889 |
+
blocks=config.get("decoder_blocks", config.get("decoder_blocks", config.get("blocks"))),
|
890 |
+
patch_size=config.get("patch_size", 1),
|
891 |
+
norm_layer=config.get("norm_layer", "group_norm"),
|
892 |
+
causal=config.get("causal_decoder", False),
|
893 |
+
timestep_conditioning=config.get("timestep_conditioning", False),
|
894 |
+
)
|
895 |
+
|
896 |
+
self.timestep_conditioning = config.get("timestep_conditioning", False)
|
897 |
+
self.per_channel_statistics = processor()
|
898 |
+
|
899 |
+
def encode(self, x):
|
900 |
+
means, logvar = torch.chunk(self.encoder(x), 2, dim=1)
|
901 |
+
return self.per_channel_statistics.normalize(means)
|
902 |
+
|
903 |
+
def decode(self, x, timestep=0.05, noise_scale=0.025):
|
904 |
+
if self.timestep_conditioning: #TODO: seed
|
905 |
+
x = torch.randn_like(x) * noise_scale + (1.0 - noise_scale) * x
|
906 |
+
return self.decoder(self.per_channel_statistics.un_normalize(x), timestep=timestep)
|
907 |
+
|
vae (1)/conv_nd_factory.py
ADDED
@@ -0,0 +1,82 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Tuple, Union
|
2 |
+
|
3 |
+
|
4 |
+
from .dual_conv3d import DualConv3d
|
5 |
+
from .causal_conv3d import CausalConv3d
|
6 |
+
import comfy.ops
|
7 |
+
ops = comfy.ops.disable_weight_init
|
8 |
+
|
9 |
+
def make_conv_nd(
|
10 |
+
dims: Union[int, Tuple[int, int]],
|
11 |
+
in_channels: int,
|
12 |
+
out_channels: int,
|
13 |
+
kernel_size: int,
|
14 |
+
stride=1,
|
15 |
+
padding=0,
|
16 |
+
dilation=1,
|
17 |
+
groups=1,
|
18 |
+
bias=True,
|
19 |
+
causal=False,
|
20 |
+
):
|
21 |
+
if dims == 2:
|
22 |
+
return ops.Conv2d(
|
23 |
+
in_channels=in_channels,
|
24 |
+
out_channels=out_channels,
|
25 |
+
kernel_size=kernel_size,
|
26 |
+
stride=stride,
|
27 |
+
padding=padding,
|
28 |
+
dilation=dilation,
|
29 |
+
groups=groups,
|
30 |
+
bias=bias,
|
31 |
+
)
|
32 |
+
elif dims == 3:
|
33 |
+
if causal:
|
34 |
+
return CausalConv3d(
|
35 |
+
in_channels=in_channels,
|
36 |
+
out_channels=out_channels,
|
37 |
+
kernel_size=kernel_size,
|
38 |
+
stride=stride,
|
39 |
+
padding=padding,
|
40 |
+
dilation=dilation,
|
41 |
+
groups=groups,
|
42 |
+
bias=bias,
|
43 |
+
)
|
44 |
+
return ops.Conv3d(
|
45 |
+
in_channels=in_channels,
|
46 |
+
out_channels=out_channels,
|
47 |
+
kernel_size=kernel_size,
|
48 |
+
stride=stride,
|
49 |
+
padding=padding,
|
50 |
+
dilation=dilation,
|
51 |
+
groups=groups,
|
52 |
+
bias=bias,
|
53 |
+
)
|
54 |
+
elif dims == (2, 1):
|
55 |
+
return DualConv3d(
|
56 |
+
in_channels=in_channels,
|
57 |
+
out_channels=out_channels,
|
58 |
+
kernel_size=kernel_size,
|
59 |
+
stride=stride,
|
60 |
+
padding=padding,
|
61 |
+
bias=bias,
|
62 |
+
)
|
63 |
+
else:
|
64 |
+
raise ValueError(f"unsupported dimensions: {dims}")
|
65 |
+
|
66 |
+
|
67 |
+
def make_linear_nd(
|
68 |
+
dims: int,
|
69 |
+
in_channels: int,
|
70 |
+
out_channels: int,
|
71 |
+
bias=True,
|
72 |
+
):
|
73 |
+
if dims == 2:
|
74 |
+
return ops.Conv2d(
|
75 |
+
in_channels=in_channels, out_channels=out_channels, kernel_size=1, bias=bias
|
76 |
+
)
|
77 |
+
elif dims == 3 or dims == (2, 1):
|
78 |
+
return ops.Conv3d(
|
79 |
+
in_channels=in_channels, out_channels=out_channels, kernel_size=1, bias=bias
|
80 |
+
)
|
81 |
+
else:
|
82 |
+
raise ValueError(f"unsupported dimensions: {dims}")
|
vae (1)/dual_conv3d.py
ADDED
@@ -0,0 +1,195 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
from typing import Tuple, Union
|
3 |
+
|
4 |
+
import torch
|
5 |
+
import torch.nn as nn
|
6 |
+
import torch.nn.functional as F
|
7 |
+
from einops import rearrange
|
8 |
+
|
9 |
+
|
10 |
+
class DualConv3d(nn.Module):
|
11 |
+
def __init__(
|
12 |
+
self,
|
13 |
+
in_channels,
|
14 |
+
out_channels,
|
15 |
+
kernel_size,
|
16 |
+
stride: Union[int, Tuple[int, int, int]] = 1,
|
17 |
+
padding: Union[int, Tuple[int, int, int]] = 0,
|
18 |
+
dilation: Union[int, Tuple[int, int, int]] = 1,
|
19 |
+
groups=1,
|
20 |
+
bias=True,
|
21 |
+
):
|
22 |
+
super(DualConv3d, self).__init__()
|
23 |
+
|
24 |
+
self.in_channels = in_channels
|
25 |
+
self.out_channels = out_channels
|
26 |
+
# Ensure kernel_size, stride, padding, and dilation are tuples of length 3
|
27 |
+
if isinstance(kernel_size, int):
|
28 |
+
kernel_size = (kernel_size, kernel_size, kernel_size)
|
29 |
+
if kernel_size == (1, 1, 1):
|
30 |
+
raise ValueError(
|
31 |
+
"kernel_size must be greater than 1. Use make_linear_nd instead."
|
32 |
+
)
|
33 |
+
if isinstance(stride, int):
|
34 |
+
stride = (stride, stride, stride)
|
35 |
+
if isinstance(padding, int):
|
36 |
+
padding = (padding, padding, padding)
|
37 |
+
if isinstance(dilation, int):
|
38 |
+
dilation = (dilation, dilation, dilation)
|
39 |
+
|
40 |
+
# Set parameters for convolutions
|
41 |
+
self.groups = groups
|
42 |
+
self.bias = bias
|
43 |
+
|
44 |
+
# Define the size of the channels after the first convolution
|
45 |
+
intermediate_channels = (
|
46 |
+
out_channels if in_channels < out_channels else in_channels
|
47 |
+
)
|
48 |
+
|
49 |
+
# Define parameters for the first convolution
|
50 |
+
self.weight1 = nn.Parameter(
|
51 |
+
torch.Tensor(
|
52 |
+
intermediate_channels,
|
53 |
+
in_channels // groups,
|
54 |
+
1,
|
55 |
+
kernel_size[1],
|
56 |
+
kernel_size[2],
|
57 |
+
)
|
58 |
+
)
|
59 |
+
self.stride1 = (1, stride[1], stride[2])
|
60 |
+
self.padding1 = (0, padding[1], padding[2])
|
61 |
+
self.dilation1 = (1, dilation[1], dilation[2])
|
62 |
+
if bias:
|
63 |
+
self.bias1 = nn.Parameter(torch.Tensor(intermediate_channels))
|
64 |
+
else:
|
65 |
+
self.register_parameter("bias1", None)
|
66 |
+
|
67 |
+
# Define parameters for the second convolution
|
68 |
+
self.weight2 = nn.Parameter(
|
69 |
+
torch.Tensor(
|
70 |
+
out_channels, intermediate_channels // groups, kernel_size[0], 1, 1
|
71 |
+
)
|
72 |
+
)
|
73 |
+
self.stride2 = (stride[0], 1, 1)
|
74 |
+
self.padding2 = (padding[0], 0, 0)
|
75 |
+
self.dilation2 = (dilation[0], 1, 1)
|
76 |
+
if bias:
|
77 |
+
self.bias2 = nn.Parameter(torch.Tensor(out_channels))
|
78 |
+
else:
|
79 |
+
self.register_parameter("bias2", None)
|
80 |
+
|
81 |
+
# Initialize weights and biases
|
82 |
+
self.reset_parameters()
|
83 |
+
|
84 |
+
def reset_parameters(self):
|
85 |
+
nn.init.kaiming_uniform_(self.weight1, a=math.sqrt(5))
|
86 |
+
nn.init.kaiming_uniform_(self.weight2, a=math.sqrt(5))
|
87 |
+
if self.bias:
|
88 |
+
fan_in1, _ = nn.init._calculate_fan_in_and_fan_out(self.weight1)
|
89 |
+
bound1 = 1 / math.sqrt(fan_in1)
|
90 |
+
nn.init.uniform_(self.bias1, -bound1, bound1)
|
91 |
+
fan_in2, _ = nn.init._calculate_fan_in_and_fan_out(self.weight2)
|
92 |
+
bound2 = 1 / math.sqrt(fan_in2)
|
93 |
+
nn.init.uniform_(self.bias2, -bound2, bound2)
|
94 |
+
|
95 |
+
def forward(self, x, use_conv3d=False, skip_time_conv=False):
|
96 |
+
if use_conv3d:
|
97 |
+
return self.forward_with_3d(x=x, skip_time_conv=skip_time_conv)
|
98 |
+
else:
|
99 |
+
return self.forward_with_2d(x=x, skip_time_conv=skip_time_conv)
|
100 |
+
|
101 |
+
def forward_with_3d(self, x, skip_time_conv):
|
102 |
+
# First convolution
|
103 |
+
x = F.conv3d(
|
104 |
+
x,
|
105 |
+
self.weight1,
|
106 |
+
self.bias1,
|
107 |
+
self.stride1,
|
108 |
+
self.padding1,
|
109 |
+
self.dilation1,
|
110 |
+
self.groups,
|
111 |
+
)
|
112 |
+
|
113 |
+
if skip_time_conv:
|
114 |
+
return x
|
115 |
+
|
116 |
+
# Second convolution
|
117 |
+
x = F.conv3d(
|
118 |
+
x,
|
119 |
+
self.weight2,
|
120 |
+
self.bias2,
|
121 |
+
self.stride2,
|
122 |
+
self.padding2,
|
123 |
+
self.dilation2,
|
124 |
+
self.groups,
|
125 |
+
)
|
126 |
+
|
127 |
+
return x
|
128 |
+
|
129 |
+
def forward_with_2d(self, x, skip_time_conv):
|
130 |
+
b, c, d, h, w = x.shape
|
131 |
+
|
132 |
+
# First 2D convolution
|
133 |
+
x = rearrange(x, "b c d h w -> (b d) c h w")
|
134 |
+
# Squeeze the depth dimension out of weight1 since it's 1
|
135 |
+
weight1 = self.weight1.squeeze(2)
|
136 |
+
# Select stride, padding, and dilation for the 2D convolution
|
137 |
+
stride1 = (self.stride1[1], self.stride1[2])
|
138 |
+
padding1 = (self.padding1[1], self.padding1[2])
|
139 |
+
dilation1 = (self.dilation1[1], self.dilation1[2])
|
140 |
+
x = F.conv2d(x, weight1, self.bias1, stride1, padding1, dilation1, self.groups)
|
141 |
+
|
142 |
+
_, _, h, w = x.shape
|
143 |
+
|
144 |
+
if skip_time_conv:
|
145 |
+
x = rearrange(x, "(b d) c h w -> b c d h w", b=b)
|
146 |
+
return x
|
147 |
+
|
148 |
+
# Second convolution which is essentially treated as a 1D convolution across the 'd' dimension
|
149 |
+
x = rearrange(x, "(b d) c h w -> (b h w) c d", b=b)
|
150 |
+
|
151 |
+
# Reshape weight2 to match the expected dimensions for conv1d
|
152 |
+
weight2 = self.weight2.squeeze(-1).squeeze(-1)
|
153 |
+
# Use only the relevant dimension for stride, padding, and dilation for the 1D convolution
|
154 |
+
stride2 = self.stride2[0]
|
155 |
+
padding2 = self.padding2[0]
|
156 |
+
dilation2 = self.dilation2[0]
|
157 |
+
x = F.conv1d(x, weight2, self.bias2, stride2, padding2, dilation2, self.groups)
|
158 |
+
x = rearrange(x, "(b h w) c d -> b c d h w", b=b, h=h, w=w)
|
159 |
+
|
160 |
+
return x
|
161 |
+
|
162 |
+
@property
|
163 |
+
def weight(self):
|
164 |
+
return self.weight2
|
165 |
+
|
166 |
+
|
167 |
+
def test_dual_conv3d_consistency():
|
168 |
+
# Initialize parameters
|
169 |
+
in_channels = 3
|
170 |
+
out_channels = 5
|
171 |
+
kernel_size = (3, 3, 3)
|
172 |
+
stride = (2, 2, 2)
|
173 |
+
padding = (1, 1, 1)
|
174 |
+
|
175 |
+
# Create an instance of the DualConv3d class
|
176 |
+
dual_conv3d = DualConv3d(
|
177 |
+
in_channels=in_channels,
|
178 |
+
out_channels=out_channels,
|
179 |
+
kernel_size=kernel_size,
|
180 |
+
stride=stride,
|
181 |
+
padding=padding,
|
182 |
+
bias=True,
|
183 |
+
)
|
184 |
+
|
185 |
+
# Example input tensor
|
186 |
+
test_input = torch.randn(1, 3, 10, 10, 10)
|
187 |
+
|
188 |
+
# Perform forward passes with both 3D and 2D settings
|
189 |
+
output_conv3d = dual_conv3d(test_input, use_conv3d=True)
|
190 |
+
output_2d = dual_conv3d(test_input, use_conv3d=False)
|
191 |
+
|
192 |
+
# Assert that the outputs from both methods are sufficiently close
|
193 |
+
assert torch.allclose(
|
194 |
+
output_conv3d, output_2d, atol=1e-6
|
195 |
+
), "Outputs are not consistent between 3D and 2D convolutions."
|
vae (1)/pixel_norm.py
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from torch import nn
|
3 |
+
|
4 |
+
|
5 |
+
class PixelNorm(nn.Module):
|
6 |
+
def __init__(self, dim=1, eps=1e-8):
|
7 |
+
super(PixelNorm, self).__init__()
|
8 |
+
self.dim = dim
|
9 |
+
self.eps = eps
|
10 |
+
|
11 |
+
def forward(self, x):
|
12 |
+
return x / torch.sqrt(torch.mean(x**2, dim=self.dim, keepdim=True) + self.eps)
|
vae (2)/model.py
ADDED
@@ -0,0 +1,711 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#original code from https://github.com/genmoai/models under apache 2.0 license
|
2 |
+
#adapted to ComfyUI
|
3 |
+
|
4 |
+
from typing import List, Optional, Tuple, Union
|
5 |
+
from functools import partial
|
6 |
+
import math
|
7 |
+
|
8 |
+
import torch
|
9 |
+
import torch.nn as nn
|
10 |
+
import torch.nn.functional as F
|
11 |
+
from einops import rearrange
|
12 |
+
|
13 |
+
from comfy.ldm.modules.attention import optimized_attention
|
14 |
+
|
15 |
+
import comfy.ops
|
16 |
+
ops = comfy.ops.disable_weight_init
|
17 |
+
|
18 |
+
# import mochi_preview.dit.joint_model.context_parallel as cp
|
19 |
+
# from mochi_preview.vae.cp_conv import cp_pass_frames, gather_all_frames
|
20 |
+
|
21 |
+
|
22 |
+
def cast_tuple(t, length=1):
|
23 |
+
return t if isinstance(t, tuple) else ((t,) * length)
|
24 |
+
|
25 |
+
|
26 |
+
class GroupNormSpatial(ops.GroupNorm):
|
27 |
+
"""
|
28 |
+
GroupNorm applied per-frame.
|
29 |
+
"""
|
30 |
+
|
31 |
+
def forward(self, x: torch.Tensor, *, chunk_size: int = 8):
|
32 |
+
B, C, T, H, W = x.shape
|
33 |
+
x = rearrange(x, "B C T H W -> (B T) C H W")
|
34 |
+
# Run group norm in chunks.
|
35 |
+
output = torch.empty_like(x)
|
36 |
+
for b in range(0, B * T, chunk_size):
|
37 |
+
output[b : b + chunk_size] = super().forward(x[b : b + chunk_size])
|
38 |
+
return rearrange(output, "(B T) C H W -> B C T H W", B=B, T=T)
|
39 |
+
|
40 |
+
class PConv3d(ops.Conv3d):
|
41 |
+
def __init__(
|
42 |
+
self,
|
43 |
+
in_channels,
|
44 |
+
out_channels,
|
45 |
+
kernel_size: Union[int, Tuple[int, int, int]],
|
46 |
+
stride: Union[int, Tuple[int, int, int]],
|
47 |
+
causal: bool = True,
|
48 |
+
context_parallel: bool = True,
|
49 |
+
**kwargs,
|
50 |
+
):
|
51 |
+
self.causal = causal
|
52 |
+
self.context_parallel = context_parallel
|
53 |
+
kernel_size = cast_tuple(kernel_size, 3)
|
54 |
+
stride = cast_tuple(stride, 3)
|
55 |
+
height_pad = (kernel_size[1] - 1) // 2
|
56 |
+
width_pad = (kernel_size[2] - 1) // 2
|
57 |
+
|
58 |
+
super().__init__(
|
59 |
+
in_channels=in_channels,
|
60 |
+
out_channels=out_channels,
|
61 |
+
kernel_size=kernel_size,
|
62 |
+
stride=stride,
|
63 |
+
dilation=(1, 1, 1),
|
64 |
+
padding=(0, height_pad, width_pad),
|
65 |
+
**kwargs,
|
66 |
+
)
|
67 |
+
|
68 |
+
def forward(self, x: torch.Tensor):
|
69 |
+
# Compute padding amounts.
|
70 |
+
context_size = self.kernel_size[0] - 1
|
71 |
+
if self.causal:
|
72 |
+
pad_front = context_size
|
73 |
+
pad_back = 0
|
74 |
+
else:
|
75 |
+
pad_front = context_size // 2
|
76 |
+
pad_back = context_size - pad_front
|
77 |
+
|
78 |
+
# Apply padding.
|
79 |
+
assert self.padding_mode == "replicate" # DEBUG
|
80 |
+
mode = "constant" if self.padding_mode == "zeros" else self.padding_mode
|
81 |
+
x = F.pad(x, (0, 0, 0, 0, pad_front, pad_back), mode=mode)
|
82 |
+
return super().forward(x)
|
83 |
+
|
84 |
+
|
85 |
+
class Conv1x1(ops.Linear):
|
86 |
+
"""*1x1 Conv implemented with a linear layer."""
|
87 |
+
|
88 |
+
def __init__(self, in_features: int, out_features: int, *args, **kwargs):
|
89 |
+
super().__init__(in_features, out_features, *args, **kwargs)
|
90 |
+
|
91 |
+
def forward(self, x: torch.Tensor):
|
92 |
+
"""Forward pass.
|
93 |
+
|
94 |
+
Args:
|
95 |
+
x: Input tensor. Shape: [B, C, *] or [B, *, C].
|
96 |
+
|
97 |
+
Returns:
|
98 |
+
x: Output tensor. Shape: [B, C', *] or [B, *, C'].
|
99 |
+
"""
|
100 |
+
x = x.movedim(1, -1)
|
101 |
+
x = super().forward(x)
|
102 |
+
x = x.movedim(-1, 1)
|
103 |
+
return x
|
104 |
+
|
105 |
+
|
106 |
+
class DepthToSpaceTime(nn.Module):
|
107 |
+
def __init__(
|
108 |
+
self,
|
109 |
+
temporal_expansion: int,
|
110 |
+
spatial_expansion: int,
|
111 |
+
):
|
112 |
+
super().__init__()
|
113 |
+
self.temporal_expansion = temporal_expansion
|
114 |
+
self.spatial_expansion = spatial_expansion
|
115 |
+
|
116 |
+
# When printed, this module should show the temporal and spatial expansion factors.
|
117 |
+
def extra_repr(self):
|
118 |
+
return f"texp={self.temporal_expansion}, sexp={self.spatial_expansion}"
|
119 |
+
|
120 |
+
def forward(self, x: torch.Tensor):
|
121 |
+
"""Forward pass.
|
122 |
+
|
123 |
+
Args:
|
124 |
+
x: Input tensor. Shape: [B, C, T, H, W].
|
125 |
+
|
126 |
+
Returns:
|
127 |
+
x: Rearranged tensor. Shape: [B, C/(st*s*s), T*st, H*s, W*s].
|
128 |
+
"""
|
129 |
+
x = rearrange(
|
130 |
+
x,
|
131 |
+
"B (C st sh sw) T H W -> B C (T st) (H sh) (W sw)",
|
132 |
+
st=self.temporal_expansion,
|
133 |
+
sh=self.spatial_expansion,
|
134 |
+
sw=self.spatial_expansion,
|
135 |
+
)
|
136 |
+
|
137 |
+
# cp_rank, _ = cp.get_cp_rank_size()
|
138 |
+
if self.temporal_expansion > 1: # and cp_rank == 0:
|
139 |
+
# Drop the first self.temporal_expansion - 1 frames.
|
140 |
+
# This is because we always want the 3x3x3 conv filter to only apply
|
141 |
+
# to the first frame, and the first frame doesn't need to be repeated.
|
142 |
+
assert all(x.shape)
|
143 |
+
x = x[:, :, self.temporal_expansion - 1 :]
|
144 |
+
assert all(x.shape)
|
145 |
+
|
146 |
+
return x
|
147 |
+
|
148 |
+
|
149 |
+
def norm_fn(
|
150 |
+
in_channels: int,
|
151 |
+
affine: bool = True,
|
152 |
+
):
|
153 |
+
return GroupNormSpatial(affine=affine, num_groups=32, num_channels=in_channels)
|
154 |
+
|
155 |
+
|
156 |
+
class ResBlock(nn.Module):
|
157 |
+
"""Residual block that preserves the spatial dimensions."""
|
158 |
+
|
159 |
+
def __init__(
|
160 |
+
self,
|
161 |
+
channels: int,
|
162 |
+
*,
|
163 |
+
affine: bool = True,
|
164 |
+
attn_block: Optional[nn.Module] = None,
|
165 |
+
causal: bool = True,
|
166 |
+
prune_bottleneck: bool = False,
|
167 |
+
padding_mode: str,
|
168 |
+
bias: bool = True,
|
169 |
+
):
|
170 |
+
super().__init__()
|
171 |
+
self.channels = channels
|
172 |
+
|
173 |
+
assert causal
|
174 |
+
self.stack = nn.Sequential(
|
175 |
+
norm_fn(channels, affine=affine),
|
176 |
+
nn.SiLU(inplace=True),
|
177 |
+
PConv3d(
|
178 |
+
in_channels=channels,
|
179 |
+
out_channels=channels // 2 if prune_bottleneck else channels,
|
180 |
+
kernel_size=(3, 3, 3),
|
181 |
+
stride=(1, 1, 1),
|
182 |
+
padding_mode=padding_mode,
|
183 |
+
bias=bias,
|
184 |
+
causal=causal,
|
185 |
+
),
|
186 |
+
norm_fn(channels, affine=affine),
|
187 |
+
nn.SiLU(inplace=True),
|
188 |
+
PConv3d(
|
189 |
+
in_channels=channels // 2 if prune_bottleneck else channels,
|
190 |
+
out_channels=channels,
|
191 |
+
kernel_size=(3, 3, 3),
|
192 |
+
stride=(1, 1, 1),
|
193 |
+
padding_mode=padding_mode,
|
194 |
+
bias=bias,
|
195 |
+
causal=causal,
|
196 |
+
),
|
197 |
+
)
|
198 |
+
|
199 |
+
self.attn_block = attn_block if attn_block else nn.Identity()
|
200 |
+
|
201 |
+
def forward(self, x: torch.Tensor):
|
202 |
+
"""Forward pass.
|
203 |
+
|
204 |
+
Args:
|
205 |
+
x: Input tensor. Shape: [B, C, T, H, W].
|
206 |
+
"""
|
207 |
+
residual = x
|
208 |
+
x = self.stack(x)
|
209 |
+
x = x + residual
|
210 |
+
del residual
|
211 |
+
|
212 |
+
return self.attn_block(x)
|
213 |
+
|
214 |
+
|
215 |
+
class Attention(nn.Module):
|
216 |
+
def __init__(
|
217 |
+
self,
|
218 |
+
dim: int,
|
219 |
+
head_dim: int = 32,
|
220 |
+
qkv_bias: bool = False,
|
221 |
+
out_bias: bool = True,
|
222 |
+
qk_norm: bool = True,
|
223 |
+
) -> None:
|
224 |
+
super().__init__()
|
225 |
+
self.head_dim = head_dim
|
226 |
+
self.num_heads = dim // head_dim
|
227 |
+
self.qk_norm = qk_norm
|
228 |
+
|
229 |
+
self.qkv = nn.Linear(dim, 3 * dim, bias=qkv_bias)
|
230 |
+
self.out = nn.Linear(dim, dim, bias=out_bias)
|
231 |
+
|
232 |
+
def forward(
|
233 |
+
self,
|
234 |
+
x: torch.Tensor,
|
235 |
+
) -> torch.Tensor:
|
236 |
+
"""Compute temporal self-attention.
|
237 |
+
|
238 |
+
Args:
|
239 |
+
x: Input tensor. Shape: [B, C, T, H, W].
|
240 |
+
chunk_size: Chunk size for large tensors.
|
241 |
+
|
242 |
+
Returns:
|
243 |
+
x: Output tensor. Shape: [B, C, T, H, W].
|
244 |
+
"""
|
245 |
+
B, _, T, H, W = x.shape
|
246 |
+
|
247 |
+
if T == 1:
|
248 |
+
# No attention for single frame.
|
249 |
+
x = x.movedim(1, -1) # [B, C, T, H, W] -> [B, T, H, W, C]
|
250 |
+
qkv = self.qkv(x)
|
251 |
+
_, _, x = qkv.chunk(3, dim=-1) # Throw away queries and keys.
|
252 |
+
x = self.out(x)
|
253 |
+
return x.movedim(-1, 1) # [B, T, H, W, C] -> [B, C, T, H, W]
|
254 |
+
|
255 |
+
# 1D temporal attention.
|
256 |
+
x = rearrange(x, "B C t h w -> (B h w) t C")
|
257 |
+
qkv = self.qkv(x)
|
258 |
+
|
259 |
+
# Input: qkv with shape [B, t, 3 * num_heads * head_dim]
|
260 |
+
# Output: x with shape [B, num_heads, t, head_dim]
|
261 |
+
q, k, v = qkv.view(qkv.shape[0], qkv.shape[1], 3, self.num_heads, self.head_dim).transpose(1, 3).unbind(2)
|
262 |
+
|
263 |
+
if self.qk_norm:
|
264 |
+
q = F.normalize(q, p=2, dim=-1)
|
265 |
+
k = F.normalize(k, p=2, dim=-1)
|
266 |
+
|
267 |
+
x = optimized_attention(q, k, v, self.num_heads, skip_reshape=True)
|
268 |
+
|
269 |
+
assert x.size(0) == q.size(0)
|
270 |
+
|
271 |
+
x = self.out(x)
|
272 |
+
x = rearrange(x, "(B h w) t C -> B C t h w", B=B, h=H, w=W)
|
273 |
+
return x
|
274 |
+
|
275 |
+
|
276 |
+
class AttentionBlock(nn.Module):
|
277 |
+
def __init__(
|
278 |
+
self,
|
279 |
+
dim: int,
|
280 |
+
**attn_kwargs,
|
281 |
+
) -> None:
|
282 |
+
super().__init__()
|
283 |
+
self.norm = norm_fn(dim)
|
284 |
+
self.attn = Attention(dim, **attn_kwargs)
|
285 |
+
|
286 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
287 |
+
return x + self.attn(self.norm(x))
|
288 |
+
|
289 |
+
|
290 |
+
class CausalUpsampleBlock(nn.Module):
|
291 |
+
def __init__(
|
292 |
+
self,
|
293 |
+
in_channels: int,
|
294 |
+
out_channels: int,
|
295 |
+
num_res_blocks: int,
|
296 |
+
*,
|
297 |
+
temporal_expansion: int = 2,
|
298 |
+
spatial_expansion: int = 2,
|
299 |
+
**block_kwargs,
|
300 |
+
):
|
301 |
+
super().__init__()
|
302 |
+
|
303 |
+
blocks = []
|
304 |
+
for _ in range(num_res_blocks):
|
305 |
+
blocks.append(block_fn(in_channels, **block_kwargs))
|
306 |
+
self.blocks = nn.Sequential(*blocks)
|
307 |
+
|
308 |
+
self.temporal_expansion = temporal_expansion
|
309 |
+
self.spatial_expansion = spatial_expansion
|
310 |
+
|
311 |
+
# Change channels in the final convolution layer.
|
312 |
+
self.proj = Conv1x1(
|
313 |
+
in_channels,
|
314 |
+
out_channels * temporal_expansion * (spatial_expansion**2),
|
315 |
+
)
|
316 |
+
|
317 |
+
self.d2st = DepthToSpaceTime(
|
318 |
+
temporal_expansion=temporal_expansion, spatial_expansion=spatial_expansion
|
319 |
+
)
|
320 |
+
|
321 |
+
def forward(self, x):
|
322 |
+
x = self.blocks(x)
|
323 |
+
x = self.proj(x)
|
324 |
+
x = self.d2st(x)
|
325 |
+
return x
|
326 |
+
|
327 |
+
|
328 |
+
def block_fn(channels, *, affine: bool = True, has_attention: bool = False, **block_kwargs):
|
329 |
+
attn_block = AttentionBlock(channels) if has_attention else None
|
330 |
+
return ResBlock(channels, affine=affine, attn_block=attn_block, **block_kwargs)
|
331 |
+
|
332 |
+
|
333 |
+
class DownsampleBlock(nn.Module):
|
334 |
+
def __init__(
|
335 |
+
self,
|
336 |
+
in_channels: int,
|
337 |
+
out_channels: int,
|
338 |
+
num_res_blocks,
|
339 |
+
*,
|
340 |
+
temporal_reduction=2,
|
341 |
+
spatial_reduction=2,
|
342 |
+
**block_kwargs,
|
343 |
+
):
|
344 |
+
"""
|
345 |
+
Downsample block for the VAE encoder.
|
346 |
+
|
347 |
+
Args:
|
348 |
+
in_channels: Number of input channels.
|
349 |
+
out_channels: Number of output channels.
|
350 |
+
num_res_blocks: Number of residual blocks.
|
351 |
+
temporal_reduction: Temporal reduction factor.
|
352 |
+
spatial_reduction: Spatial reduction factor.
|
353 |
+
"""
|
354 |
+
super().__init__()
|
355 |
+
layers = []
|
356 |
+
|
357 |
+
# Change the channel count in the strided convolution.
|
358 |
+
# This lets the ResBlock have uniform channel count,
|
359 |
+
# as in ConvNeXt.
|
360 |
+
assert in_channels != out_channels
|
361 |
+
layers.append(
|
362 |
+
PConv3d(
|
363 |
+
in_channels=in_channels,
|
364 |
+
out_channels=out_channels,
|
365 |
+
kernel_size=(temporal_reduction, spatial_reduction, spatial_reduction),
|
366 |
+
stride=(temporal_reduction, spatial_reduction, spatial_reduction),
|
367 |
+
# First layer in each block always uses replicate padding
|
368 |
+
padding_mode="replicate",
|
369 |
+
bias=block_kwargs["bias"],
|
370 |
+
)
|
371 |
+
)
|
372 |
+
|
373 |
+
for _ in range(num_res_blocks):
|
374 |
+
layers.append(block_fn(out_channels, **block_kwargs))
|
375 |
+
|
376 |
+
self.layers = nn.Sequential(*layers)
|
377 |
+
|
378 |
+
def forward(self, x):
|
379 |
+
return self.layers(x)
|
380 |
+
|
381 |
+
|
382 |
+
def add_fourier_features(inputs: torch.Tensor, start=6, stop=8, step=1):
|
383 |
+
num_freqs = (stop - start) // step
|
384 |
+
assert inputs.ndim == 5
|
385 |
+
C = inputs.size(1)
|
386 |
+
|
387 |
+
# Create Base 2 Fourier features.
|
388 |
+
freqs = torch.arange(start, stop, step, dtype=inputs.dtype, device=inputs.device)
|
389 |
+
assert num_freqs == len(freqs)
|
390 |
+
w = torch.pow(2.0, freqs) * (2 * torch.pi) # [num_freqs]
|
391 |
+
C = inputs.shape[1]
|
392 |
+
w = w.repeat(C)[None, :, None, None, None] # [1, C * num_freqs, 1, 1, 1]
|
393 |
+
|
394 |
+
# Interleaved repeat of input channels to match w.
|
395 |
+
h = inputs.repeat_interleave(num_freqs, dim=1) # [B, C * num_freqs, T, H, W]
|
396 |
+
# Scale channels by frequency.
|
397 |
+
h = w * h
|
398 |
+
|
399 |
+
return torch.cat(
|
400 |
+
[
|
401 |
+
inputs,
|
402 |
+
torch.sin(h),
|
403 |
+
torch.cos(h),
|
404 |
+
],
|
405 |
+
dim=1,
|
406 |
+
)
|
407 |
+
|
408 |
+
|
409 |
+
class FourierFeatures(nn.Module):
|
410 |
+
def __init__(self, start: int = 6, stop: int = 8, step: int = 1):
|
411 |
+
super().__init__()
|
412 |
+
self.start = start
|
413 |
+
self.stop = stop
|
414 |
+
self.step = step
|
415 |
+
|
416 |
+
def forward(self, inputs):
|
417 |
+
"""Add Fourier features to inputs.
|
418 |
+
|
419 |
+
Args:
|
420 |
+
inputs: Input tensor. Shape: [B, C, T, H, W]
|
421 |
+
|
422 |
+
Returns:
|
423 |
+
h: Output tensor. Shape: [B, (1 + 2 * num_freqs) * C, T, H, W]
|
424 |
+
"""
|
425 |
+
return add_fourier_features(inputs, self.start, self.stop, self.step)
|
426 |
+
|
427 |
+
|
428 |
+
class Decoder(nn.Module):
|
429 |
+
def __init__(
|
430 |
+
self,
|
431 |
+
*,
|
432 |
+
out_channels: int = 3,
|
433 |
+
latent_dim: int,
|
434 |
+
base_channels: int,
|
435 |
+
channel_multipliers: List[int],
|
436 |
+
num_res_blocks: List[int],
|
437 |
+
temporal_expansions: Optional[List[int]] = None,
|
438 |
+
spatial_expansions: Optional[List[int]] = None,
|
439 |
+
has_attention: List[bool],
|
440 |
+
output_norm: bool = True,
|
441 |
+
nonlinearity: str = "silu",
|
442 |
+
output_nonlinearity: str = "silu",
|
443 |
+
causal: bool = True,
|
444 |
+
**block_kwargs,
|
445 |
+
):
|
446 |
+
super().__init__()
|
447 |
+
self.input_channels = latent_dim
|
448 |
+
self.base_channels = base_channels
|
449 |
+
self.channel_multipliers = channel_multipliers
|
450 |
+
self.num_res_blocks = num_res_blocks
|
451 |
+
self.output_nonlinearity = output_nonlinearity
|
452 |
+
assert nonlinearity == "silu"
|
453 |
+
assert causal
|
454 |
+
|
455 |
+
ch = [mult * base_channels for mult in channel_multipliers]
|
456 |
+
self.num_up_blocks = len(ch) - 1
|
457 |
+
assert len(num_res_blocks) == self.num_up_blocks + 2
|
458 |
+
|
459 |
+
blocks = []
|
460 |
+
|
461 |
+
first_block = [
|
462 |
+
ops.Conv3d(latent_dim, ch[-1], kernel_size=(1, 1, 1))
|
463 |
+
] # Input layer.
|
464 |
+
# First set of blocks preserve channel count.
|
465 |
+
for _ in range(num_res_blocks[-1]):
|
466 |
+
first_block.append(
|
467 |
+
block_fn(
|
468 |
+
ch[-1],
|
469 |
+
has_attention=has_attention[-1],
|
470 |
+
causal=causal,
|
471 |
+
**block_kwargs,
|
472 |
+
)
|
473 |
+
)
|
474 |
+
blocks.append(nn.Sequential(*first_block))
|
475 |
+
|
476 |
+
assert len(temporal_expansions) == len(spatial_expansions) == self.num_up_blocks
|
477 |
+
assert len(num_res_blocks) == len(has_attention) == self.num_up_blocks + 2
|
478 |
+
|
479 |
+
upsample_block_fn = CausalUpsampleBlock
|
480 |
+
|
481 |
+
for i in range(self.num_up_blocks):
|
482 |
+
block = upsample_block_fn(
|
483 |
+
ch[-i - 1],
|
484 |
+
ch[-i - 2],
|
485 |
+
num_res_blocks=num_res_blocks[-i - 2],
|
486 |
+
has_attention=has_attention[-i - 2],
|
487 |
+
temporal_expansion=temporal_expansions[-i - 1],
|
488 |
+
spatial_expansion=spatial_expansions[-i - 1],
|
489 |
+
causal=causal,
|
490 |
+
**block_kwargs,
|
491 |
+
)
|
492 |
+
blocks.append(block)
|
493 |
+
|
494 |
+
assert not output_norm
|
495 |
+
|
496 |
+
# Last block. Preserve channel count.
|
497 |
+
last_block = []
|
498 |
+
for _ in range(num_res_blocks[0]):
|
499 |
+
last_block.append(
|
500 |
+
block_fn(
|
501 |
+
ch[0], has_attention=has_attention[0], causal=causal, **block_kwargs
|
502 |
+
)
|
503 |
+
)
|
504 |
+
blocks.append(nn.Sequential(*last_block))
|
505 |
+
|
506 |
+
self.blocks = nn.ModuleList(blocks)
|
507 |
+
self.output_proj = Conv1x1(ch[0], out_channels)
|
508 |
+
|
509 |
+
def forward(self, x):
|
510 |
+
"""Forward pass.
|
511 |
+
|
512 |
+
Args:
|
513 |
+
x: Latent tensor. Shape: [B, input_channels, t, h, w]. Scaled [-1, 1].
|
514 |
+
|
515 |
+
Returns:
|
516 |
+
x: Reconstructed video tensor. Shape: [B, C, T, H, W]. Scaled to [-1, 1].
|
517 |
+
T + 1 = (t - 1) * 4.
|
518 |
+
H = h * 16, W = w * 16.
|
519 |
+
"""
|
520 |
+
for block in self.blocks:
|
521 |
+
x = block(x)
|
522 |
+
|
523 |
+
if self.output_nonlinearity == "silu":
|
524 |
+
x = F.silu(x, inplace=not self.training)
|
525 |
+
else:
|
526 |
+
assert (
|
527 |
+
not self.output_nonlinearity
|
528 |
+
) # StyleGAN3 omits the to-RGB nonlinearity.
|
529 |
+
|
530 |
+
return self.output_proj(x).contiguous()
|
531 |
+
|
532 |
+
class LatentDistribution:
|
533 |
+
def __init__(self, mean: torch.Tensor, logvar: torch.Tensor):
|
534 |
+
"""Initialize latent distribution.
|
535 |
+
|
536 |
+
Args:
|
537 |
+
mean: Mean of the distribution. Shape: [B, C, T, H, W].
|
538 |
+
logvar: Logarithm of variance of the distribution. Shape: [B, C, T, H, W].
|
539 |
+
"""
|
540 |
+
assert mean.shape == logvar.shape
|
541 |
+
self.mean = mean
|
542 |
+
self.logvar = logvar
|
543 |
+
|
544 |
+
def sample(self, temperature=1.0, generator: torch.Generator = None, noise=None):
|
545 |
+
if temperature == 0.0:
|
546 |
+
return self.mean
|
547 |
+
|
548 |
+
if noise is None:
|
549 |
+
noise = torch.randn(self.mean.shape, device=self.mean.device, dtype=self.mean.dtype, generator=generator)
|
550 |
+
else:
|
551 |
+
assert noise.device == self.mean.device
|
552 |
+
noise = noise.to(self.mean.dtype)
|
553 |
+
|
554 |
+
if temperature != 1.0:
|
555 |
+
raise NotImplementedError(f"Temperature {temperature} is not supported.")
|
556 |
+
|
557 |
+
# Just Gaussian sample with no scaling of variance.
|
558 |
+
return noise * torch.exp(self.logvar * 0.5) + self.mean
|
559 |
+
|
560 |
+
def mode(self):
|
561 |
+
return self.mean
|
562 |
+
|
563 |
+
class Encoder(nn.Module):
|
564 |
+
def __init__(
|
565 |
+
self,
|
566 |
+
*,
|
567 |
+
in_channels: int,
|
568 |
+
base_channels: int,
|
569 |
+
channel_multipliers: List[int],
|
570 |
+
num_res_blocks: List[int],
|
571 |
+
latent_dim: int,
|
572 |
+
temporal_reductions: List[int],
|
573 |
+
spatial_reductions: List[int],
|
574 |
+
prune_bottlenecks: List[bool],
|
575 |
+
has_attentions: List[bool],
|
576 |
+
affine: bool = True,
|
577 |
+
bias: bool = True,
|
578 |
+
input_is_conv_1x1: bool = False,
|
579 |
+
padding_mode: str,
|
580 |
+
):
|
581 |
+
super().__init__()
|
582 |
+
self.temporal_reductions = temporal_reductions
|
583 |
+
self.spatial_reductions = spatial_reductions
|
584 |
+
self.base_channels = base_channels
|
585 |
+
self.channel_multipliers = channel_multipliers
|
586 |
+
self.num_res_blocks = num_res_blocks
|
587 |
+
self.latent_dim = latent_dim
|
588 |
+
|
589 |
+
self.fourier_features = FourierFeatures()
|
590 |
+
ch = [mult * base_channels for mult in channel_multipliers]
|
591 |
+
num_down_blocks = len(ch) - 1
|
592 |
+
assert len(num_res_blocks) == num_down_blocks + 2
|
593 |
+
|
594 |
+
layers = (
|
595 |
+
[ops.Conv3d(in_channels, ch[0], kernel_size=(1, 1, 1), bias=True)]
|
596 |
+
if not input_is_conv_1x1
|
597 |
+
else [Conv1x1(in_channels, ch[0])]
|
598 |
+
)
|
599 |
+
|
600 |
+
assert len(prune_bottlenecks) == num_down_blocks + 2
|
601 |
+
assert len(has_attentions) == num_down_blocks + 2
|
602 |
+
block = partial(block_fn, padding_mode=padding_mode, affine=affine, bias=bias)
|
603 |
+
|
604 |
+
for _ in range(num_res_blocks[0]):
|
605 |
+
layers.append(block(ch[0], has_attention=has_attentions[0], prune_bottleneck=prune_bottlenecks[0]))
|
606 |
+
prune_bottlenecks = prune_bottlenecks[1:]
|
607 |
+
has_attentions = has_attentions[1:]
|
608 |
+
|
609 |
+
assert len(temporal_reductions) == len(spatial_reductions) == len(ch) - 1
|
610 |
+
for i in range(num_down_blocks):
|
611 |
+
layer = DownsampleBlock(
|
612 |
+
ch[i],
|
613 |
+
ch[i + 1],
|
614 |
+
num_res_blocks=num_res_blocks[i + 1],
|
615 |
+
temporal_reduction=temporal_reductions[i],
|
616 |
+
spatial_reduction=spatial_reductions[i],
|
617 |
+
prune_bottleneck=prune_bottlenecks[i],
|
618 |
+
has_attention=has_attentions[i],
|
619 |
+
affine=affine,
|
620 |
+
bias=bias,
|
621 |
+
padding_mode=padding_mode,
|
622 |
+
)
|
623 |
+
|
624 |
+
layers.append(layer)
|
625 |
+
|
626 |
+
# Additional blocks.
|
627 |
+
for _ in range(num_res_blocks[-1]):
|
628 |
+
layers.append(block(ch[-1], has_attention=has_attentions[-1], prune_bottleneck=prune_bottlenecks[-1]))
|
629 |
+
|
630 |
+
self.layers = nn.Sequential(*layers)
|
631 |
+
|
632 |
+
# Output layers.
|
633 |
+
self.output_norm = norm_fn(ch[-1])
|
634 |
+
self.output_proj = Conv1x1(ch[-1], 2 * latent_dim, bias=False)
|
635 |
+
|
636 |
+
@property
|
637 |
+
def temporal_downsample(self):
|
638 |
+
return math.prod(self.temporal_reductions)
|
639 |
+
|
640 |
+
@property
|
641 |
+
def spatial_downsample(self):
|
642 |
+
return math.prod(self.spatial_reductions)
|
643 |
+
|
644 |
+
def forward(self, x) -> LatentDistribution:
|
645 |
+
"""Forward pass.
|
646 |
+
|
647 |
+
Args:
|
648 |
+
x: Input video tensor. Shape: [B, C, T, H, W]. Scaled to [-1, 1]
|
649 |
+
|
650 |
+
Returns:
|
651 |
+
means: Latent tensor. Shape: [B, latent_dim, t, h, w]. Scaled [-1, 1].
|
652 |
+
h = H // 8, w = W // 8, t - 1 = (T - 1) // 6
|
653 |
+
logvar: Shape: [B, latent_dim, t, h, w].
|
654 |
+
"""
|
655 |
+
assert x.ndim == 5, f"Expected 5D input, got {x.shape}"
|
656 |
+
x = self.fourier_features(x)
|
657 |
+
|
658 |
+
x = self.layers(x)
|
659 |
+
|
660 |
+
x = self.output_norm(x)
|
661 |
+
x = F.silu(x, inplace=True)
|
662 |
+
x = self.output_proj(x)
|
663 |
+
|
664 |
+
means, logvar = torch.chunk(x, 2, dim=1)
|
665 |
+
|
666 |
+
assert means.ndim == 5
|
667 |
+
assert logvar.shape == means.shape
|
668 |
+
assert means.size(1) == self.latent_dim
|
669 |
+
|
670 |
+
return LatentDistribution(means, logvar)
|
671 |
+
|
672 |
+
|
673 |
+
class VideoVAE(nn.Module):
|
674 |
+
def __init__(self):
|
675 |
+
super().__init__()
|
676 |
+
self.encoder = Encoder(
|
677 |
+
in_channels=15,
|
678 |
+
base_channels=64,
|
679 |
+
channel_multipliers=[1, 2, 4, 6],
|
680 |
+
num_res_blocks=[3, 3, 4, 6, 3],
|
681 |
+
latent_dim=12,
|
682 |
+
temporal_reductions=[1, 2, 3],
|
683 |
+
spatial_reductions=[2, 2, 2],
|
684 |
+
prune_bottlenecks=[False, False, False, False, False],
|
685 |
+
has_attentions=[False, True, True, True, True],
|
686 |
+
affine=True,
|
687 |
+
bias=True,
|
688 |
+
input_is_conv_1x1=True,
|
689 |
+
padding_mode="replicate"
|
690 |
+
)
|
691 |
+
self.decoder = Decoder(
|
692 |
+
out_channels=3,
|
693 |
+
base_channels=128,
|
694 |
+
channel_multipliers=[1, 2, 4, 6],
|
695 |
+
temporal_expansions=[1, 2, 3],
|
696 |
+
spatial_expansions=[2, 2, 2],
|
697 |
+
num_res_blocks=[3, 3, 4, 6, 3],
|
698 |
+
latent_dim=12,
|
699 |
+
has_attention=[False, False, False, False, False],
|
700 |
+
padding_mode="replicate",
|
701 |
+
output_norm=False,
|
702 |
+
nonlinearity="silu",
|
703 |
+
output_nonlinearity="silu",
|
704 |
+
causal=True,
|
705 |
+
)
|
706 |
+
|
707 |
+
def encode(self, x):
|
708 |
+
return self.encoder(x).mode()
|
709 |
+
|
710 |
+
def decode(self, x):
|
711 |
+
return self.decoder(x)
|
vae.py
ADDED
@@ -0,0 +1,131 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# SPDX-FileCopyrightText: Copyright (c) 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
2 |
+
# SPDX-License-Identifier: Apache-2.0
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
"""The causal continuous video tokenizer with VAE or AE formulation for 3D data.."""
|
16 |
+
|
17 |
+
import logging
|
18 |
+
import torch
|
19 |
+
from torch import nn
|
20 |
+
from enum import Enum
|
21 |
+
import math
|
22 |
+
|
23 |
+
from .cosmos_tokenizer.layers3d import (
|
24 |
+
EncoderFactorized,
|
25 |
+
DecoderFactorized,
|
26 |
+
CausalConv3d,
|
27 |
+
)
|
28 |
+
|
29 |
+
|
30 |
+
class IdentityDistribution(torch.nn.Module):
|
31 |
+
def __init__(self):
|
32 |
+
super().__init__()
|
33 |
+
|
34 |
+
def forward(self, parameters):
|
35 |
+
return parameters, (torch.tensor([0.0]), torch.tensor([0.0]))
|
36 |
+
|
37 |
+
|
38 |
+
class GaussianDistribution(torch.nn.Module):
|
39 |
+
def __init__(self, min_logvar: float = -30.0, max_logvar: float = 20.0):
|
40 |
+
super().__init__()
|
41 |
+
self.min_logvar = min_logvar
|
42 |
+
self.max_logvar = max_logvar
|
43 |
+
|
44 |
+
def sample(self, mean, logvar):
|
45 |
+
std = torch.exp(0.5 * logvar)
|
46 |
+
return mean + std * torch.randn_like(mean)
|
47 |
+
|
48 |
+
def forward(self, parameters):
|
49 |
+
mean, logvar = torch.chunk(parameters, 2, dim=1)
|
50 |
+
logvar = torch.clamp(logvar, self.min_logvar, self.max_logvar)
|
51 |
+
return self.sample(mean, logvar), (mean, logvar)
|
52 |
+
|
53 |
+
|
54 |
+
class ContinuousFormulation(Enum):
|
55 |
+
VAE = GaussianDistribution
|
56 |
+
AE = IdentityDistribution
|
57 |
+
|
58 |
+
|
59 |
+
class CausalContinuousVideoTokenizer(nn.Module):
|
60 |
+
def __init__(
|
61 |
+
self, z_channels: int, z_factor: int, latent_channels: int, **kwargs
|
62 |
+
) -> None:
|
63 |
+
super().__init__()
|
64 |
+
self.name = kwargs.get("name", "CausalContinuousVideoTokenizer")
|
65 |
+
self.latent_channels = latent_channels
|
66 |
+
self.sigma_data = 0.5
|
67 |
+
|
68 |
+
# encoder_name = kwargs.get("encoder", Encoder3DType.BASE.name)
|
69 |
+
self.encoder = EncoderFactorized(
|
70 |
+
z_channels=z_factor * z_channels, **kwargs
|
71 |
+
)
|
72 |
+
if kwargs.get("temporal_compression", 4) == 4:
|
73 |
+
kwargs["channels_mult"] = [2, 4]
|
74 |
+
# decoder_name = kwargs.get("decoder", Decoder3DType.BASE.name)
|
75 |
+
self.decoder = DecoderFactorized(
|
76 |
+
z_channels=z_channels, **kwargs
|
77 |
+
)
|
78 |
+
|
79 |
+
self.quant_conv = CausalConv3d(
|
80 |
+
z_factor * z_channels,
|
81 |
+
z_factor * latent_channels,
|
82 |
+
kernel_size=1,
|
83 |
+
padding=0,
|
84 |
+
)
|
85 |
+
self.post_quant_conv = CausalConv3d(
|
86 |
+
latent_channels, z_channels, kernel_size=1, padding=0
|
87 |
+
)
|
88 |
+
|
89 |
+
# formulation_name = kwargs.get("formulation", ContinuousFormulation.AE.name)
|
90 |
+
self.distribution = IdentityDistribution() # ContinuousFormulation[formulation_name].value()
|
91 |
+
|
92 |
+
num_parameters = sum(param.numel() for param in self.parameters())
|
93 |
+
logging.debug(f"model={self.name}, num_parameters={num_parameters:,}")
|
94 |
+
logging.debug(
|
95 |
+
f"z_channels={z_channels}, latent_channels={self.latent_channels}."
|
96 |
+
)
|
97 |
+
|
98 |
+
latent_temporal_chunk = 16
|
99 |
+
self.latent_mean = nn.Parameter(torch.zeros([self.latent_channels * latent_temporal_chunk], dtype=torch.float32))
|
100 |
+
self.latent_std = nn.Parameter(torch.ones([self.latent_channels * latent_temporal_chunk], dtype=torch.float32))
|
101 |
+
|
102 |
+
|
103 |
+
def encode(self, x):
|
104 |
+
h = self.encoder(x)
|
105 |
+
moments = self.quant_conv(h)
|
106 |
+
z, posteriors = self.distribution(moments)
|
107 |
+
latent_ch = z.shape[1]
|
108 |
+
latent_t = z.shape[2]
|
109 |
+
in_dtype = z.dtype
|
110 |
+
mean = self.latent_mean.view(latent_ch, -1)
|
111 |
+
std = self.latent_std.view(latent_ch, -1)
|
112 |
+
|
113 |
+
mean = mean.repeat(1, math.ceil(latent_t / mean.shape[-1]))[:, : latent_t].reshape([1, latent_ch, -1, 1, 1]).to(dtype=in_dtype, device=z.device)
|
114 |
+
std = std.repeat(1, math.ceil(latent_t / std.shape[-1]))[:, : latent_t].reshape([1, latent_ch, -1, 1, 1]).to(dtype=in_dtype, device=z.device)
|
115 |
+
return ((z - mean) / std) * self.sigma_data
|
116 |
+
|
117 |
+
def decode(self, z):
|
118 |
+
in_dtype = z.dtype
|
119 |
+
latent_ch = z.shape[1]
|
120 |
+
latent_t = z.shape[2]
|
121 |
+
mean = self.latent_mean.view(latent_ch, -1)
|
122 |
+
std = self.latent_std.view(latent_ch, -1)
|
123 |
+
|
124 |
+
mean = mean.repeat(1, math.ceil(latent_t / mean.shape[-1]))[:, : latent_t].reshape([1, latent_ch, -1, 1, 1]).to(dtype=in_dtype, device=z.device)
|
125 |
+
std = std.repeat(1, math.ceil(latent_t / std.shape[-1]))[:, : latent_t].reshape([1, latent_ch, -1, 1, 1]).to(dtype=in_dtype, device=z.device)
|
126 |
+
|
127 |
+
z = z / self.sigma_data
|
128 |
+
z = z * std + mean
|
129 |
+
z = self.post_quant_conv(z)
|
130 |
+
return self.decoder(z)
|
131 |
+
|
vae/put_vae_here
ADDED
File without changes
|