Spaces:
Sleeping
Sleeping
import gradio as gr | |
# from transformers import pipeline | |
from PIL import Image | |
import pytesseract | |
import cv2 | |
import os | |
# pipeline = pipeline(task="image-classification", model="julien-c/hotdog-not-hotdog") | |
# def predict(input_img): | |
# predictions = pipeline(input_img) | |
# return input_img, {p["label"]: p["score"] for p in predictions} | |
def recognize(input_img): | |
text = pytesseract.image_to_string(Image.open("./data/" + filename)) | |
return input_img, text | |
gradio_app = gr.Interface( | |
recognize, | |
inputs=gr.inputs.Textbox(lines=2, placeholder="Name Here..."), | |
inputs=gr.Image(label="Select hot dog candidate", sources=['upload', 'webcam'], type="pil"), | |
outputs=[gr.Image(label="Processed Image"), gr.Label(label="Result", num_top_classes=2)], | |
inputs=[gr.Image(label="Upload an Image", type="pil")], | |
outputs=[gr.Textbox(label="Text in the Image")], | |
title="Extrate Text From Image", | |
) | |
if __name__ == "__main__": | |
gradio_app.launch() |