Spaces:
Sleeping
Sleeping
from __future__ import annotations | |
import gradio as gr | |
import numpy as np | |
import torch | |
import torchaudio | |
from huggingface_hub import hf_hub_download | |
from seamless_communication.models.inference.translator import Translator | |
DESCRIPTION = """# TranslaTube""" | |
TASK_NAMES = [ | |
"S2ST (Speech to Speech translation)", | |
"S2TT (Speech to Text translation)", | |
"T2ST (Text to Speech translation)", | |
"T2TT (Text to Text translation)", | |
"ASR (Automatic Speech Recognition)", | |
] | |
# Language dict | |
language_code_to_name = { | |
"afr": "Afrikaans", | |
"amh": "Amharic", | |
"arb": "Modern Standard Arabic", | |
"ary": "Moroccan Arabic", | |
"arz": "Egyptian Arabic", | |
"asm": "Assamese", | |
"ast": "Asturian", | |
"azj": "North Azerbaijani", | |
"bel": "Belarusian", | |
"ben": "Bengali", | |
"bos": "Bosnian", | |
"bul": "Bulgarian", | |
"cat": "Catalan", | |
"ceb": "Cebuano", | |
"ces": "Czech", | |
"ckb": "Central Kurdish", | |
"cmn": "Mandarin Chinese", | |
"cym": "Welsh", | |
"dan": "Danish", | |
"deu": "German", | |
"ell": "Greek", | |
"eng": "English", | |
"est": "Estonian", | |
"eus": "Basque", | |
"fin": "Finnish", | |
"fra": "French", | |
"gaz": "West Central Oromo", | |
"gle": "Irish", | |
"glg": "Galician", | |
"guj": "Gujarati", | |
"heb": "Hebrew", | |
"hin": "Hindi", | |
"hrv": "Croatian", | |
"hun": "Hungarian", | |
"hye": "Armenian", | |
"ibo": "Igbo", | |
"ind": "Indonesian", | |
"isl": "Icelandic", | |
"ita": "Italian", | |
"jav": "Javanese", | |
"jpn": "Japanese", | |
"kam": "Kamba", | |
"kan": "Kannada", | |
"kat": "Georgian", | |
"kaz": "Kazakh", | |
"kea": "Kabuverdianu", | |
"khk": "Halh Mongolian", | |
"khm": "Khmer", | |
"kir": "Kyrgyz", | |
"kor": "Korean", | |
"lao": "Lao", | |
"lit": "Lithuanian", | |
"ltz": "Luxembourgish", | |
"lug": "Ganda", | |
"luo": "Luo", | |
"lvs": "Standard Latvian", | |
"mai": "Maithili", | |
"mal": "Malayalam", | |
"mar": "Marathi", | |
"mkd": "Macedonian", | |
"mlt": "Maltese", | |
"mni": "Meitei", | |
"mya": "Burmese", | |
"nld": "Dutch", | |
"nno": "Norwegian Nynorsk", | |
"nob": "Norwegian Bokm\u00e5l", | |
"npi": "Nepali", | |
"nya": "Nyanja", | |
"oci": "Occitan", | |
"ory": "Odia", | |
"pan": "Punjabi", | |
"pbt": "Southern Pashto", | |
"pes": "Western Persian", | |
"pol": "Polish", | |
"por": "Portuguese", | |
"ron": "Romanian", | |
"rus": "Russian", | |
"slk": "Slovak", | |
"slv": "Slovenian", | |
"sna": "Shona", | |
"snd": "Sindhi", | |
"som": "Somali", | |
"spa": "Spanish", | |
"srp": "Serbian", | |
"swe": "Swedish", | |
"swh": "Swahili", | |
"tam": "Tamil", | |
"tel": "Telugu", | |
"tgk": "Tajik", | |
"tgl": "Tagalog", | |
"tha": "Thai", | |
"tur": "Turkish", | |
"ukr": "Ukrainian", | |
"urd": "Urdu", | |
"uzn": "Northern Uzbek", | |
"vie": "Vietnamese", | |
"xho": "Xhosa", | |
"yor": "Yoruba", | |
"yue": "Cantonese", | |
"zlm": "Colloquial Malay", | |
"zsm": "Standard Malay", | |
"zul": "Zulu", | |
} | |
LANGUAGE_NAME_TO_CODE = {v: k for k, v in language_code_to_name.items()} | |
# Source langs: S2ST / S2TT / ASR don't need source lang | |
# T2TT / T2ST use this | |
text_source_language_codes = [ | |
"afr", | |
"amh", | |
"arb", | |
"ary", | |
"arz", | |
"asm", | |
"azj", | |
"bel", | |
"ben", | |
"bos", | |
"bul", | |
"cat", | |
"ceb", | |
"ces", | |
"ckb", | |
"cmn", | |
"cym", | |
"dan", | |
"deu", | |
"ell", | |
"eng", | |
"est", | |
"eus", | |
"fin", | |
"fra", | |
"gaz", | |
"gle", | |
"glg", | |
"guj", | |
"heb", | |
"hin", | |
"hrv", | |
"hun", | |
"hye", | |
"ibo", | |
"ind", | |
"isl", | |
"ita", | |
"jav", | |
"jpn", | |
"kan", | |
"kat", | |
"kaz", | |
"khk", | |
"khm", | |
"kir", | |
"kor", | |
"lao", | |
"lit", | |
"lug", | |
"luo", | |
"lvs", | |
"mai", | |
"mal", | |
"mar", | |
"mkd", | |
"mlt", | |
"mni", | |
"mya", | |
"nld", | |
"nno", | |
"nob", | |
"npi", | |
"nya", | |
"ory", | |
"pan", | |
"pbt", | |
"pes", | |
"pol", | |
"por", | |
"ron", | |
"rus", | |
"slk", | |
"slv", | |
"sna", | |
"snd", | |
"som", | |
"spa", | |
"srp", | |
"swe", | |
"swh", | |
"tam", | |
"tel", | |
"tgk", | |
"tgl", | |
"tha", | |
"tur", | |
"ukr", | |
"urd", | |
"uzn", | |
"vie", | |
"yor", | |
"yue", | |
"zsm", | |
"zul", | |
] | |
TEXT_SOURCE_LANGUAGE_NAMES = sorted( | |
[language_code_to_name[code] for code in text_source_language_codes] | |
) | |
# Target langs: | |
# S2ST / T2ST | |
s2st_target_language_codes = [ | |
"eng", | |
"arb", | |
"ben", | |
"cat", | |
"ces", | |
"cmn", | |
"cym", | |
"dan", | |
"deu", | |
"est", | |
"fin", | |
"fra", | |
"hin", | |
"ind", | |
"ita", | |
"jpn", | |
"kor", | |
"mlt", | |
"nld", | |
"pes", | |
"pol", | |
"por", | |
"ron", | |
"rus", | |
"slk", | |
"spa", | |
"swe", | |
"swh", | |
"tel", | |
"tgl", | |
"tha", | |
"tur", | |
"ukr", | |
"urd", | |
"uzn", | |
"vie", | |
] | |
S2ST_TARGET_LANGUAGE_NAMES = sorted( | |
[language_code_to_name[code] for code in s2st_target_language_codes] | |
) | |
# S2TT / ASR | |
S2TT_TARGET_LANGUAGE_NAMES = TEXT_SOURCE_LANGUAGE_NAMES | |
# T2TT | |
T2TT_TARGET_LANGUAGE_NAMES = TEXT_SOURCE_LANGUAGE_NAMES | |
# Download sample input audio files | |
filenames = ["assets/sample_input.mp3", "assets/sample_input_2.mp3"] | |
for filename in filenames: | |
hf_hub_download( | |
repo_id="facebook/seamless_m4t", | |
repo_type="space", | |
filename=filename, | |
local_dir=".", | |
) | |
AUDIO_SAMPLE_RATE = 16000.0 | |
MAX_INPUT_AUDIO_LENGTH = 60 # in seconds | |
DEFAULT_TARGET_LANGUAGE = "French" | |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") | |
translator = Translator( | |
model_name_or_card="seamlessM4T_large", | |
vocoder_name_or_card="vocoder_36langs", | |
device=device, | |
dtype=torch.float16 if "cuda" in device.type else torch.float32, | |
) | |
def predict( | |
task_name: str, | |
audio_source: str, | |
input_audio_mic: str | None, | |
input_audio_file: str | None, | |
input_text: str | None, | |
source_language: str | None, | |
target_language: str, | |
) -> tuple[tuple[int, np.ndarray] | None, str]: | |
task_name = task_name.split()[0] | |
source_language_code = ( | |
LANGUAGE_NAME_TO_CODE[source_language] if source_language else None | |
) | |
target_language_code = LANGUAGE_NAME_TO_CODE[target_language] | |
if task_name in ["S2ST", "S2TT", "ASR"]: | |
if audio_source == "microphone": | |
input_data = input_audio_mic | |
else: | |
input_data = input_audio_file | |
arr, org_sr = torchaudio.load(input_data) | |
new_arr = torchaudio.functional.resample( | |
arr, orig_freq=org_sr, new_freq=AUDIO_SAMPLE_RATE | |
) | |
max_length = int(MAX_INPUT_AUDIO_LENGTH * AUDIO_SAMPLE_RATE) | |
if new_arr.shape[1] > max_length: | |
new_arr = new_arr[:, :max_length] | |
gr.Warning( | |
f"Input audio is too long. Only the first {MAX_INPUT_AUDIO_LENGTH} seconds is used." | |
) | |
torchaudio.save(input_data, new_arr, sample_rate=int(AUDIO_SAMPLE_RATE)) | |
else: | |
input_data = input_text | |
text_out, wav, sr = translator.predict( | |
input=input_data, | |
task_str=task_name, | |
tgt_lang=target_language_code, | |
src_lang=source_language_code, | |
ngram_filtering=True, | |
) | |
if task_name in ["S2ST", "T2ST"]: | |
return (sr, wav.cpu().detach().numpy()), text_out | |
else: | |
return None, text_out | |
def process_s2st_example( | |
input_audio_file: str, target_language: str | |
) -> tuple[tuple[int, np.ndarray] | None, str]: | |
return predict( | |
task_name="S2ST", | |
audio_source="file", | |
input_audio_mic=None, | |
input_audio_file=input_audio_file, | |
input_text=None, | |
source_language=None, | |
target_language=target_language, | |
) | |
def process_s2tt_example( | |
input_audio_file: str, target_language: str | |
) -> tuple[tuple[int, np.ndarray] | None, str]: | |
return predict( | |
task_name="S2TT", | |
audio_source="file", | |
input_audio_mic=None, | |
input_audio_file=input_audio_file, | |
input_text=None, | |
source_language=None, | |
target_language=target_language, | |
) | |
def process_t2st_example( | |
input_text: str, source_language: str, target_language: str | |
) -> tuple[tuple[int, np.ndarray] | None, str]: | |
return predict( | |
task_name="T2ST", | |
audio_source="", | |
input_audio_mic=None, | |
input_audio_file=None, | |
input_text=input_text, | |
source_language=source_language, | |
target_language=target_language, | |
) | |
def process_t2tt_example( | |
input_text: str, source_language: str, target_language: str | |
) -> tuple[tuple[int, np.ndarray] | None, str]: | |
return predict( | |
task_name="T2TT", | |
audio_source="", | |
input_audio_mic=None, | |
input_audio_file=None, | |
input_text=input_text, | |
source_language=source_language, | |
target_language=target_language, | |
) | |
def process_asr_example( | |
input_audio_file: str, target_language: str | |
) -> tuple[tuple[int, np.ndarray] | None, str]: | |
return predict( | |
task_name="ASR", | |
audio_source="file", | |
input_audio_mic=None, | |
input_audio_file=input_audio_file, | |
input_text=None, | |
source_language=None, | |
target_language=target_language, | |
) | |
def update_audio_ui(audio_source: str) -> tuple[dict, dict]: | |
mic = audio_source == "microphone" | |
return ( | |
gr.update(visible=mic, value=None), # input_audio_mic | |
gr.update(visible=not mic, value=None), # input_audio_file | |
) | |
def update_input_ui(task_name: str) -> tuple[dict, dict, dict, dict]: | |
task_name = task_name.split()[0] | |
if task_name == "S2ST": | |
return ( | |
gr.update(visible=True), # audio_box | |
gr.update(visible=False), # input_text | |
gr.update(visible=False), # source_language | |
gr.update( | |
visible=True, | |
choices=S2ST_TARGET_LANGUAGE_NAMES, | |
value=DEFAULT_TARGET_LANGUAGE, | |
), # target_language | |
) | |
elif task_name == "S2TT": | |
return ( | |
gr.update(visible=True), # audio_box | |
gr.update(visible=False), # input_text | |
gr.update(visible=False), # source_language | |
gr.update( | |
visible=True, | |
choices=S2TT_TARGET_LANGUAGE_NAMES, | |
value=DEFAULT_TARGET_LANGUAGE, | |
), # target_language | |
) | |
elif task_name == "T2ST": | |
return ( | |
gr.update(visible=False), # audio_box | |
gr.update(visible=True), # input_text | |
gr.update(visible=True), # source_language | |
gr.update( | |
visible=True, | |
choices=S2ST_TARGET_LANGUAGE_NAMES, | |
value=DEFAULT_TARGET_LANGUAGE, | |
), # target_language | |
) | |
elif task_name == "T2TT": | |
return ( | |
gr.update(visible=False), # audio_box | |
gr.update(visible=True), # input_text | |
gr.update(visible=True), # source_language | |
gr.update( | |
visible=True, | |
choices=T2TT_TARGET_LANGUAGE_NAMES, | |
value=DEFAULT_TARGET_LANGUAGE, | |
), # target_language | |
) | |
elif task_name == "ASR": | |
return ( | |
gr.update(visible=True), # audio_box | |
gr.update(visible=False), # input_text | |
gr.update(visible=False), # source_language | |
gr.update( | |
visible=True, | |
choices=S2TT_TARGET_LANGUAGE_NAMES, | |
value=DEFAULT_TARGET_LANGUAGE, | |
), # target_language | |
) | |
else: | |
raise ValueError(f"Unknown task: {task_name}") | |
def update_output_ui(task_name: str) -> tuple[dict, dict]: | |
task_name = task_name.split()[0] | |
if task_name in ["S2ST", "T2ST"]: | |
return ( | |
gr.update(visible=True, value=None), # output_audio | |
gr.update(value=None), # output_text | |
) | |
elif task_name in ["S2TT", "T2TT", "ASR"]: | |
return ( | |
gr.update(visible=False, value=None), # output_audio | |
gr.update(value=None), # output_text | |
) | |
else: | |
raise ValueError(f"Unknown task: {task_name}") | |
def update_example_ui(task_name: str) -> tuple[dict, dict, dict, dict, dict]: | |
task_name = task_name.split()[0] | |
return ( | |
gr.update(visible=task_name == "S2ST"), # s2st_example_row | |
gr.update(visible=task_name == "S2TT"), # s2tt_example_row | |
gr.update(visible=task_name == "T2ST"), # t2st_example_row | |
gr.update(visible=task_name == "T2TT"), # t2tt_example_row | |
gr.update(visible=task_name == "ASR"), # asr_example_row | |
) | |
def check_url(url: str) -> bool: | |
if url.startswith("https://www.youtube.com/watch?v="): | |
print("URL is valid") | |
css = """ | |
h1 { | |
text-align: center; | |
} | |
.contain { | |
max-width: 730px; | |
margin: auto; | |
padding-top: 1.5rem; | |
} | |
""" | |
with gr.Blocks(css=css) as translatube: | |
# Title | |
gr.Markdown(DESCRIPTION) | |
# URL video | |
with gr.Group(): | |
url_text = gr.Textbox(label="URL video", placeholder="Paste URL video here") | |
with gr.Group() as tasks: | |
task_name = gr.Dropdown( | |
label="Task", | |
choices=TASK_NAMES, | |
value=TASK_NAMES[0], | |
) | |
with gr.Row(): | |
source_language = gr.Dropdown( | |
label="Source language", | |
choices=TEXT_SOURCE_LANGUAGE_NAMES, | |
value="English", | |
# visible=False, | |
) | |
target_language = gr.Dropdown( | |
label="Target language", | |
choices=S2ST_TARGET_LANGUAGE_NAMES, | |
value=DEFAULT_TARGET_LANGUAGE, | |
) | |
# with gr.Row() as audio_box: | |
# audio_source = gr.Radio( | |
# label="Audio source", | |
# choices=["file", "microphone"], | |
# value="file", | |
# ) | |
# input_audio_mic = gr.Audio( | |
# label="Input speech", | |
# type="filepath", | |
# source="microphone", | |
# visible=False, | |
# ) | |
# input_audio_file = gr.Audio( | |
# label="Input speech", | |
# type="filepath", | |
# source="upload", | |
# visible=True, | |
# ) | |
# input_text = gr.Textbox(label="Input text", visible=False) | |
btn = gr.Button("Translate") | |
with gr.Column(): | |
output_audio = gr.Audio( | |
label="Translated speech", | |
autoplay=False, | |
streaming=False, | |
type="numpy", | |
) | |
output_text = gr.Textbox(label="Translated text") | |
url_text.change( | |
fn=check_url, | |
inputs=url_text, | |
outputs=[], | |
queue=False, | |
api_name=False, | |
) | |
# audio_source.change( | |
# fn=update_audio_ui, | |
# inputs=audio_source, | |
# outputs=[ | |
# input_audio_mic, | |
# input_audio_file, | |
# ], | |
# queue=False, | |
# api_name=False, | |
# ) | |
task_name.change( | |
fn=update_input_ui, | |
inputs=task_name, | |
outputs=[ | |
# audio_box, | |
# input_text, | |
source_language, | |
target_language, | |
], | |
queue=False, | |
api_name=False, | |
).then( | |
fn=update_output_ui, | |
inputs=task_name, | |
outputs=[output_audio, output_text], | |
queue=False, | |
api_name=False, | |
) | |
btn.click( | |
fn=predict, | |
inputs=[ | |
task_name, | |
# audio_source, | |
# input_audio_mic, | |
# input_audio_file, | |
# input_text, | |
source_language, | |
target_language, | |
], | |
outputs=[output_audio, output_text], | |
api_name="run", | |
) | |
if __name__ == "__main__": | |
translatube.queue().launch() | |