Mattral commited on
Commit
e52300f
·
verified ·
1 Parent(s): 9ecaaeb

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +9 -4
app.py CHANGED
@@ -59,7 +59,7 @@ def index_docs(documents):
59
  def retrieve_docs(query):
60
  return vector_store.similarity_search(query)
61
 
62
- # Function to generate an answer based on retrieved documents
63
  def answer_question(question, documents):
64
  context = "\n\n".join([doc.page_content for doc in documents])
65
  full_context = f"{context}"
@@ -68,9 +68,14 @@ def answer_question(question, documents):
68
  # Format the prompt with the user's question and context
69
  question_with_context = prompt.format(question=question, context=full_context)
70
 
71
- # Use the Hugging Face InferenceClient to generate the response
72
- # Replacing the `query` method with `predict` method
73
- response = client.predict(question_with_context)
 
 
 
 
 
74
 
75
  # Assuming the response contains a 'generated_text' field with the model's output
76
  return response["generated_text"]
 
59
  def retrieve_docs(query):
60
  return vector_store.similarity_search(query)
61
 
62
+ # Function to generate an answer based on retrieved documents using text generation
63
  def answer_question(question, documents):
64
  context = "\n\n".join([doc.page_content for doc in documents])
65
  full_context = f"{context}"
 
68
  # Format the prompt with the user's question and context
69
  question_with_context = prompt.format(question=question, context=full_context)
70
 
71
+ # Use the Hugging Face InferenceClient's text_generation method
72
+ generate_kwargs = {
73
+ "temperature": 0.7, # Control the creativity of the generated response
74
+ "max_new_tokens": 150, # Limit the length of the output
75
+ "top_p": 0.9 # Control diversity via nucleus sampling
76
+ }
77
+
78
+ response = client.text_generation(question_with_context, **generate_kwargs)
79
 
80
  # Assuming the response contains a 'generated_text' field with the model's output
81
  return response["generated_text"]