Spaces:
Running
Running
File size: 10,729 Bytes
83f52e6 6a413a4 de3f921 6a413a4 b14461c 6a413a4 bdb661d 6a413a4 dd3991f 6a413a4 83f52e6 6a413a4 83f52e6 5e4fa5e 83f52e6 6a413a4 83f52e6 16fe302 83f52e6 6a413a4 83f52e6 6a413a4 83f52e6 6415e78 5e4fa5e 83f52e6 6a413a4 5e4fa5e 83f52e6 5e4fa5e 83f52e6 6a413a4 5e4fa5e 6a413a4 83f52e6 6a413a4 5e4fa5e 6a413a4 5e4fa5e 16fe302 6a413a4 83f52e6 5e4fa5e 83f52e6 860f2b5 6415e78 83f52e6 6a413a4 83f52e6 5e4fa5e 83f52e6 6a413a4 5e4fa5e 83f52e6 5e4fa5e 83f52e6 6a413a4 83f52e6 6a413a4 83f52e6 6a413a4 5e4fa5e 83f52e6 6a413a4 83f52e6 6a413a4 83f52e6 6a413a4 83f52e6 5e4fa5e 6a413a4 5e4fa5e 83f52e6 6a413a4 5e4fa5e 83f52e6 6a413a4 860f2b5 5e4fa5e 6a413a4 5e4fa5e 6a413a4 5e4fa5e 6a413a4 860f2b5 6a413a4 5e4fa5e 83f52e6 6a413a4 6415e78 83f52e6 6a413a4 83f52e6 6a413a4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 |
from functools import partial
import os
import torch
import numpy as np
import gradio as gr
import gdown
from load import load_model, load_json
from load import load_unit_motion_embs_splits, load_keyids_splits
WEBSITE = """
<div class="embed_hidden">
<h1 style='text-align: center'>TMR: Text-to-Motion Retrieval Using Contrastive 3D Human Motion Synthesis </h1>
<h2 style='text-align: center'>
<a href="https://mathis.petrovich.fr" target="_blank"><nobr>Mathis Petrovich</nobr></a>  
<a href="https://ps.is.mpg.de/~black" target="_blank"><nobr>Michael J. Black</nobr></a>  
<a href="https://imagine.enpc.fr/~varolg" target="_blank"><nobr>Gül Varol</nobr></a>
</h2>
<h2 style='text-align: center'>
<nobr>ICCV 2023</nobr>
</h2>
<h3 style="text-align:center;">
<a target="_blank" href="https://arxiv.org/abs/2305.00976"> <button type="button" class="btn btn-primary btn-lg"> Paper </button></a>
<a target="_blank" href="https://github.com/Mathux/TMR"> <button type="button" class="btn btn-primary btn-lg"> Code </button></a>
<a target="_blank" href="https://mathis.petrovich.fr/tmr"> <button type="button" class="btn btn-primary btn-lg"> Webpage </button></a>
<a target="_blank" href="https://mathis.petrovich.fr/tmr/tmr.bib"> <button type="button" class="btn btn-primary btn-lg"> BibTex </button></a>
</h3>
<h3> Description </h3>
<p>
This space illustrates <a href='https://mathis.petrovich.fr/tmr/' target='_blank'><b>TMR</b></a>, a method for text-to-motion retrieval. Given a gallery of 3D human motions (which can be unseen during training) and a text query, the goal is to search for motions which are close to the text query.
</p>
</div>
"""
EXAMPLES = [
"A person is walking slowly",
"A person is walking in a circle",
"A person is jumping rope",
"Someone is doing a backflip",
"A person is doing a moonwalk",
"A person walks forward and then turns back",
"Picking up an object",
"A person is swimming in the sea",
"A human is squatting",
"Someone is jumping with one foot",
"A person is chopping vegetables",
"Someone walks backward",
"Somebody is ascending a staircase",
"A person is sitting down",
"A person is taking the stairs",
"Someone is doing jumping jacks",
"The person walked forward and is picking up his toolbox",
"The person angrily punching the air",
]
# Show closest text in the training
# css to make videos look nice
# var(--block-border-color);
CSS = """
.retrieved_video {
position: relative;
margin: 0;
box-shadow: var(--block-shadow);
border-width: var(--block-border-width);
border-color: #000000;
border-radius: var(--block-radius);
background: var(--block-background-fill);
width: 100%;
line-height: var(--line-sm);
}
.contour_video {
display: flex;
flex-direction: column;
justify-content: center;
align-items: center;
z-index: var(--layer-5);
border-radius: var(--block-radius);
background: var(--background-fill-primary);
padding: 0 var(--size-6);
max-height: var(--size-screen-h);
overflow: hidden;
}
"""
DEFAULT_TEXT = "A person is "
def humanml3d_keyid_to_babel_rendered_url(h3d_index, amass_to_babel, keyid):
# Don't show the mirrored version of HumanMl3D
if "M" in keyid:
return None
dico = h3d_index[keyid]
path = dico["path"]
# HumanAct12 motions are not rendered online
# so we skip them for now
if "humanact12" in path:
return None
# This motion is not rendered in BABEL
# so we skip them for now
if path not in amass_to_babel:
return None
babel_id = amass_to_babel[path].zfill(6)
url = f"https://babel-renders.s3.eu-central-1.amazonaws.com/{babel_id}.mp4"
# For the demo, we retrieve from the first annotation only
ann = dico["annotations"][0]
start = ann["start"]
end = ann["end"]
text = ann["text"]
data = {
"url": url,
"start": start,
"end": end,
"text": text,
"keyid": keyid,
"babel_id": babel_id,
"path": path,
}
return data
def retrieve(
model, keyid_to_url, all_unit_motion_embs, all_keyids, text, splits=["test"], nmax=8
):
unit_motion_embs = torch.cat([all_unit_motion_embs[s] for s in splits])
keyids = np.concatenate([all_keyids[s] for s in splits])
scores = model.compute_scores(text, unit_embs=unit_motion_embs)
sorted_idxs = np.argsort(-scores)
best_keyids = keyids[sorted_idxs]
best_scores = scores[sorted_idxs]
datas = []
for keyid, score in zip(best_keyids, best_scores):
if len(datas) == nmax:
break
data = keyid_to_url(keyid)
if data is None:
continue
data["score"] = round(float(score), 2)
datas.append(data)
return datas
# HTML component
def get_video_html(data, video_id, width=700, height=700):
url = data["url"]
start = data["start"]
end = data["end"]
score = data["score"]
text = data["text"]
keyid = data["keyid"]
babel_id = data["babel_id"]
path = data["path"]
trim = f"#t={start},{end}"
title = f"""Score = {score}
Corresponding text: {text}
HumanML3D keyid: {keyid}
BABEL keyid: {babel_id}
AMASS path: {path}"""
# class="wrap default svelte-gjihhp hide"
# <div class="contour_video" style="position: absolute; padding: 10px;">
# width="{width}" height="{height}"
video_html = f"""
<video class="retrieved_video" width="{width}" height="{height}" preload="auto" muted playsinline onpause="this.load()"
autoplay loop disablepictureinpicture id="{video_id}" title="{title}">
<source src="{url}{trim}" type="video/mp4">
Your browser does not support the video tag.
</video>
"""
return video_html
def retrieve_component(retrieve_function, text, splits_choice, nvids, n_component=24):
if text == DEFAULT_TEXT or text == "" or text is None:
return [None for _ in range(n_component)]
# cannot produce more than n_compoenent
nvids = min(nvids, n_component)
if "Unseen" in splits_choice:
splits = ["test"]
else:
splits = ["train", "val", "test"]
datas = retrieve_function(text, splits=splits, nmax=nvids)
htmls = [get_video_html(data, idx) for idx, data in enumerate(datas)]
# get n_component exactly if asked less
# pad with dummy blocks
htmls = htmls + [None for _ in range(max(0, n_component - nvids))]
return htmls
if not os.path.exists("data"):
gdown.download_folder(
"https://drive.google.com/drive/folders/1MgPFgHZ28AMd01M1tJ7YW_1-ut3-4j08",
use_cookies=False,
)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# LOADING
model = load_model(device)
splits = ["train", "val", "test"]
all_unit_motion_embs = load_unit_motion_embs_splits(splits, device)
all_keyids = load_keyids_splits(splits)
h3d_index = load_json("amass-annotations/humanml3d.json")
amass_to_babel = load_json("amass-annotations/amass_to_babel.json")
keyid_to_url = partial(humanml3d_keyid_to_babel_rendered_url, h3d_index, amass_to_babel)
retrieve_function = partial(
retrieve, model, keyid_to_url, all_unit_motion_embs, all_keyids
)
# DEMO
theme = gr.themes.Default(primary_hue="blue", secondary_hue="gray")
retrieve_and_show = partial(retrieve_component, retrieve_function)
with gr.Blocks(css=CSS, theme=theme) as demo:
gr.Markdown(WEBSITE)
videos = []
with gr.Row():
with gr.Column(scale=3):
with gr.Column(scale=2):
text = gr.Textbox(
placeholder="Type the motion you want to search with a sentence",
show_label=True,
label="Text prompt",
value=DEFAULT_TEXT,
)
with gr.Column(scale=1):
btn = gr.Button("Retrieve", variant="primary")
clear = gr.Button("Clear", variant="secondary")
with gr.Row():
with gr.Column(scale=1):
splits_choice = gr.Radio(
["All motions", "Unseen motions"],
label="Gallery of motion",
value="All motions",
info="The motion gallery is coming from HumanML3D",
)
with gr.Column(scale=1):
# nvideo_slider = gr.Slider(minimum=4, maximum=24, step=4, value=8, label="Number of videos")
nvideo_slider = gr.Radio(
[4, 8, 12, 16, 24],
label="Videos",
value=8,
info="Number of videos to display",
)
with gr.Column(scale=2):
def retrieve_example(text, splits_choice, nvideo_slider):
return retrieve_and_show(text, splits_choice, nvideo_slider)
examples = gr.Examples(
examples=[[x, None, None] for x in EXAMPLES],
inputs=[text, splits_choice, nvideo_slider],
examples_per_page=20,
run_on_click=False,
cache_examples=False,
fn=retrieve_example,
outputs=[],
)
i = -1
# should indent
for _ in range(6):
with gr.Row():
for _ in range(4):
i += 1
video = gr.HTML()
videos.append(video)
# connect the examples to the output
# a bit hacky
examples.outputs = videos
def load_example(example_id):
processed_example = examples.non_none_processed_examples[example_id]
return gr.utils.resolve_singleton(processed_example)
examples.dataset.click(
load_example,
inputs=[examples.dataset],
outputs=examples.inputs_with_examples, # type: ignore
show_progress=False,
postprocess=False,
queue=False,
).then(fn=retrieve_example, inputs=examples.inputs, outputs=videos)
btn.click(
fn=retrieve_and_show,
inputs=[text, splits_choice, nvideo_slider],
outputs=videos,
)
text.submit(
fn=retrieve_and_show,
inputs=[text, splits_choice, nvideo_slider],
outputs=videos,
)
splits_choice.change(
fn=retrieve_and_show,
inputs=[text, splits_choice, nvideo_slider],
outputs=videos,
)
nvideo_slider.change(
fn=retrieve_and_show,
inputs=[text, splits_choice, nvideo_slider],
outputs=videos,
)
def clear_videos():
return [None for x in range(24)] + [DEFAULT_TEXT]
clear.click(fn=clear_videos, outputs=videos + [text])
demo.launch()
|