File size: 10,690 Bytes
b6c64a0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8074633
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b6c64a0
8074633
b6c64a0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
import torch
import open_clip
from PIL import Image
import requests
import json
import gradio as gr
import pandas as pd
from io import BytesIO
import os

# Load the Amazon taxonomy from a JSON file
with open("amazon.json", "r") as f:
    AMAZON_TAXONOMY = json.load(f)


base_model_name = "ViT-B-16"
model_base, _, preprocess_base = open_clip.create_model_and_transforms(base_model_name)
tokenizer_base = open_clip.get_tokenizer(base_model_name)
model_name_B = "hf-hub:Marqo/marqo-ecommerce-embeddings-B"
model_B, _, preprocess_B = open_clip.create_model_and_transforms(model_name_B)
tokenizer_B = open_clip.get_tokenizer(model_name_B)
model_name_L = "hf-hub:Marqo/marqo-ecommerce-embeddings-L"
model_L, _, preprocess_L = open_clip.create_model_and_transforms(model_name_L)
tokenizer_L = open_clip.get_tokenizer(model_name_L)

models = [base_model_name, model_name_B, model_name_L]

taxonomy_cache = {}
for model in models:
    with open(f'{model.split("/")[-1]}.json', "r") as f:
        taxonomy_cache[model] = json.load(f)


def cosine_similarity(a: torch.Tensor, b: torch.Tensor) -> torch.Tensor:
    numerator = (a * b).sum(dim=-1)
    denominator = torch.linalg.norm(a, ord=2, dim=-1) * torch.linalg.norm(
        b, ord=2, dim=-1
    )
    return 0.5 * (numerator / denominator + 1.0)


class BeamPath:
    def __init__(self, path: list, cumulative_score: float, current_layer: dict | list):
        self.path = path
        self.cumulative_score = cumulative_score
        self.current_layer = current_layer

    def __repr__(self):
        return f"BeamPath(path={self.path}, cumulative_score={self.cumulative_score})"


def _compute_similarities(classes: list, base_embedding: torch.Tensor, cache_key: str):
    text_features = torch.tensor(
        [taxonomy_cache[cache_key][class_name] for class_name in classes]
    )

    similarities = cosine_similarity(base_embedding, text_features)
    return similarities.cpu().numpy()


def map_taxonomy(
    base_image: Image.Image,
    taxonomy: dict,
    model,
    tokenizer,
    preprocess_val,
    cache_key,
    beam_width: int = 3,
) -> tuple[list[tuple[str, float]], float]:
    image_tensor = preprocess_val(base_image).unsqueeze(0)
    with torch.no_grad(), torch.cuda.amp.autocast():
        base_embedding = model.encode_image(image_tensor, normalize=True)

    initial_path = BeamPath(path=[], cumulative_score=0.0, current_layer=taxonomy)
    beam = [initial_path]

    final_paths = []
    is_first = True
    while beam:
        candidates = []
        candidate_entries = []

        for beam_path in beam:
            layer = beam_path.current_layer

            if isinstance(layer, dict):
                classes = list(layer.keys())
            elif isinstance(layer, list):
                classes = layer
                if classes == []:
                    final_paths.append(beam_path)
                    continue
            else:
                final_paths.append(beam_path)
                continue

            # current_path_class_names = [class_name for class_name, _ in beam_path.path]

            for class_name in classes:
                candidate_string = class_name
                if isinstance(layer, dict):
                    next_layer = layer[class_name]
                else:
                    next_layer = None
                candidate_entries.append(
                    (candidate_string, class_name, beam_path, next_layer)
                )

        if not candidate_entries:
            break

        candidate_strings = [
            candidate_string for candidate_string, _, _, _ in candidate_entries
        ]

        similarities = _compute_similarities(
            candidate_strings, base_embedding, cache_key
        )

        for (candidate_string, class_name, beam_path, next_layer), similarity in zip(
            candidate_entries, similarities
        ):
            new_path = beam_path.path + [(class_name, float(similarity))]
            new_cumulative_score = beam_path.cumulative_score + similarity
            candidate = BeamPath(
                path=new_path,
                cumulative_score=new_cumulative_score,
                current_layer=next_layer,
            )
            candidates.append(candidate)

        from collections import defaultdict

        by_parents = defaultdict(list)

        for candidate in candidates:
            by_parents[candidate.path[0][0]].append(candidate)

        beam = []
        for parent in by_parents:
            children = by_parents[parent]
            children.sort(
                key=lambda x: x.cumulative_score / len(x.path) + x.path[-1][1],
                reverse=True,
            )
            if is_first:
                beam.extend(children)
            else:
                beam.extend(children[:beam_width])

        is_first = False

    all_paths = beam + final_paths

    if all_paths:
        all_paths.sort(key=lambda x: x.cumulative_score / len(x.path), reverse=True)
        best_path = all_paths[0]
        return best_path.path, float(best_path.cumulative_score)
    else:
        return [], 0.0


# Function to classify image and map taxonomy
def classify_image(
    image_input: Image.Image | None,
    image_url: str | None,
    model_size: str,
    beam_width: int,
):
    if image_input is not None:
        image = image_input
    elif image_url:
        # Try to get image from URL
        try:
            response = requests.get(image_url)
            image = Image.open(BytesIO(response.content)).convert("RGB")
        except Exception as e:
            return pd.DataFrame({"Error": [str(e)]})
    else:
        return pd.DataFrame(
            {
                "Error": [
                    "Please provide an image, an image URL, or select an example image"
                ]
            }
        )

    # Select the model, tokenizer, and preprocess
    if model_size == "marqo-ecommerce-embeddings-L":
        key = "hf-hub:Marqo/marqo-ecommerce-embeddings-L"
        model = model_L
        preprocess_val = preprocess_L
        tokenizer = tokenizer_L
    elif model_size == "marqo-ecommerce-embeddings-B":
        key = "hf-hub:Marqo/marqo-ecommerce-embeddings-B"
        model = model_B
        preprocess_val = preprocess_B
        tokenizer = tokenizer_B
    elif model_size == "openai-ViT-B-16":
        key = "ViT-B-16"
        model = model_base
        preprocess_val = preprocess_base
        tokenizer = tokenizer_base
    else:
        return pd.DataFrame({"Error": ["Invalid model size"]})

    path, cumulative_score = map_taxonomy(
        base_image=image,
        taxonomy=AMAZON_TAXONOMY,
        model=model,
        tokenizer=tokenizer,
        preprocess_val=preprocess_val,
        cache_key=key,
        beam_width=beam_width,
    )

    output = []
    for idx, (category, score) in enumerate(path):
        level = idx + 1
        output.append({"Level": level, "Category": category, "Score": score})

    df = pd.DataFrame(output)
    return df


with gr.Blocks() as demo:
    gr.Markdown("# Image Classification with Taxonomy Mapping")
    gr.Markdown("""
        <div style="display: flex; gap: 10px;">
            <a href="https://www.marqo.ai/blog/introducing-marqos-ecommerce-embedding-models">
                <img src="https://img.shields.io/badge/Model_Release-Blog-blue?logo=font-awesome&logoColor=white&style=flat&logo=pencil-alt" alt="Blog">
            </a>
            <a href="https://huggingface.co/collections/Marqo/marqo-ecommerce-embeddings-66f611b9bb9d035a8d164fbb">
                <img src="https://img.shields.io/badge/πŸ€—-Hugging_Face-yellow?logo=hugging-face&logoColor=white&style=flat&logo=pencil-alt" alt="Hugging Face">
            </a>
            <a href="https://www.marqo.ai/blog/how-to-build-an-ecommerce-image-search-application">
                <img src="https://img.shields.io/badge/Ecommerce_Search_-Blog-red?logo=font-awesome&logoColor=white&style=flat&logo=pencil-alt" alt="Blog">
            </a>
            <a href="https://colab.research.google.com/drive/1Syl9Gde6LguyMjlpDANetbpvBNb9ddxw?usp=sharing">
                <img src="https://img.shields.io/badge/🀝_-Open_In_Google_Colab-orange?logo=font-awesome&logoColor=white&style=flat&logo=pencil-alt" alt="Colab">
            </a>
            <a href="https://join.slack.com/t/marqo-community/shared_invite/zt-2b4nsvbd2-TDf8agPszzWH5hYKBMIgDA">
                <img src="https://img.shields.io/badge/Slack-Join_Marqo_Community-purple?logo=Slack" alt="Slack Community">
            </a>
        </div>
        """)
    gr.Markdown(
        "## How to use this app\n\nThis app compares Marqo's Ecommerce embeddings to OpenAI's ViT-B-16 CLIP model for Ecommerce taxonomy mapping. A beam search is used to find the correct classification in the taxonomy. The original OpenAI CLIP models perform very poorly on Ecommerce data."
    )
    gr.Markdown(
        "Upload an image, provide an image URL, or select an example image, select the model size, and get the taxonomy mapping. The taxonomy is based on the Amazon product taxonomy."
    )

    with gr.Row():
        with gr.Column():
            image_input = gr.Image(type="pil", label="Upload Image", height=300)
            image_url_input = gr.Textbox(
                lines=1, placeholder="Image URL", label="Image URL"
            )
            gr.Markdown("### Or select an example image:")
            # Get example images from 'images' folder
            example_images_folder = "images"
            example_image_paths = [
                os.path.join(example_images_folder, img)
                for img in os.listdir(example_images_folder)
            ]
            gr.Examples(
                examples=[[img_path] for img_path in example_image_paths],
                inputs=image_input,
                label="Example Images",
                examples_per_page=100,
            )
        with gr.Column():
            model_size_input = gr.Radio(
                choices=[
                    "marqo-ecommerce-embeddings-L",
                    "marqo-ecommerce-embeddings-B",
                    "openai-ViT-B-16",
                ],
                label="Model",
                value="marqo-ecommerce-embeddings-L",
            )
            beam_width_input = gr.Number(
                label="Beam Width", value=5, minimum=1, step=1
            )
            classify_button = gr.Button("Classify")
            output_table = gr.Dataframe(headers=["Level", "Category", "Score"])

    classify_button.click(
        fn=classify_image,
        inputs=[image_input, image_url_input, model_size_input, beam_width_input],
        outputs=output_table,
    )

demo.launch()