File size: 2,555 Bytes
ffa9e8f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
import threading
from typing import Any
import insightface

import roop.globals
from roop.typing import Frame, Face

import cv2
from PIL import Image
from roop.capturer import get_video_frame
from roop.utilities import resolve_relative_path, conditional_download

FACE_ANALYSER = None
THREAD_LOCK_ANALYSER = threading.Lock()
THREAD_LOCK_SWAPPER = threading.Lock()
FACE_SWAPPER = None


def get_face_analyser() -> Any:
    global FACE_ANALYSER

    with THREAD_LOCK_ANALYSER:
        if FACE_ANALYSER is None:
            FACE_ANALYSER = insightface.app.FaceAnalysis(name='buffalo_l', providers=roop.globals.execution_providers)
            FACE_ANALYSER.prepare(ctx_id=0, det_size=(640, 640))
    return FACE_ANALYSER


def get_one_face(frame: Frame) -> Any:
    try:
        face = get_face_analyser().get(frame)
        return min(face, key=lambda x: x.bbox[0])
    except ValueError:
        return None


def get_many_faces(frame: Frame) -> Any:
    try:
        faces = get_face_analyser().get(frame)
        return sorted(faces, key = lambda x : x.bbox[0])
    except IndexError:
        return None

def extract_face_images(source_filename, video_info):
    face_data = []
    source_image = None
    
    if video_info[0]:
        frame = get_video_frame(source_filename, video_info[1])
        if frame is not None:
            source_image = frame
        else:
            return face_data
    else:
        source_image = cv2.imread(source_filename)

        
    faces = get_many_faces(source_image)

    i = 0
    for face in faces:
        (startX, startY, endX, endY) = face['bbox'].astype("int")
        face_temp = source_image[startY:endY, startX:endX]
        if face_temp.size < 1:
            continue
        i += 1
        face_data.append([face, face_temp])
    return face_data




def get_face_swapper() -> Any:
    global FACE_SWAPPER

    with THREAD_LOCK_SWAPPER:
        if FACE_SWAPPER is None:
            model_path = resolve_relative_path('../models/inswapper_128.onnx')
            FACE_SWAPPER = insightface.model_zoo.get_model(model_path, providers=roop.globals.execution_providers)
    return FACE_SWAPPER


def pre_check() -> bool:
    download_directory_path = resolve_relative_path('../models')
    conditional_download(download_directory_path, ['https://huggingface.co/countfloyd/deepfake/resolve/main/inswapper_128.onnx'])
    return True


def swap_face(source_face: Face, target_face: Face, temp_frame: Frame) -> Frame:
    return get_face_swapper().get(temp_frame, target_face, source_face, paste_back=True)