Spaces:
Sleeping
Sleeping
John Graham Reynolds
commited on
Commit
·
6c9f31e
1
Parent(s):
bbcb349
formatting
Browse files- .streamlit/config.toml +4 -4
- app.py +2 -2
- style.css +10 -1
.streamlit/config.toml
CHANGED
@@ -1,6 +1,6 @@
|
|
1 |
[theme]
|
2 |
-
primaryColor="#
|
3 |
-
backgroundColor="#
|
4 |
-
secondaryBackgroundColor="#
|
5 |
-
textColor="#
|
6 |
font="sans serif"
|
|
|
1 |
[theme]
|
2 |
+
primaryColor="#FC5D21"
|
3 |
+
backgroundColor="#1A4F75"
|
4 |
+
secondaryBackgroundColor="#FC5D21"
|
5 |
+
textColor="#FFFFFF"
|
6 |
font="sans serif"
|
app.py
CHANGED
@@ -20,9 +20,9 @@ EXAMPLE_PROMPTS = [
|
|
20 |
TITLE = "CyberSolve LinAlg 1.2"
|
21 |
DESCRIPTION= """Welcome to the CyberSolve LinAlg 1.2 demo! \n
|
22 |
|
23 |
-
**Overview and Usage**: This 🤗 Space is designed to demo the abilities of the **CyberSolve LinAlg 1.2** text-to-text language model. Specifically, the CyberSolve LinAlg 1
|
24 |
are downstream versions of the 783M parameter FLAN-T5 text-to-text transformer, fine-tuned on the Google DeepMind Mathematics dataset for the purpose of solving linear equations of a single variable.
|
25 |
-
To effectively query the model for its intended task, prompt the model solve an arbitrary linear equation of a single variable with a query of the form: "Solve 24 =
|
26 |
will return its prediciton in a simple format. The algebraic capabailites far exceed those of the base FLAN-T5 model. CyberSolve LinAlg 1.2 achieves a 90.7 percent exact match benchmark on the DeepMind Mathematics
|
27 |
evaluation dataset of 10,000 unique linear equations; the FLAN-T5 base model scores 9.6 percent. On the left is a sidebar of **Examples** that can be clicked to query to model.
|
28 |
|
|
|
20 |
TITLE = "CyberSolve LinAlg 1.2"
|
21 |
DESCRIPTION= """Welcome to the CyberSolve LinAlg 1.2 demo! \n
|
22 |
|
23 |
+
**Overview and Usage**: This 🤗 Space is designed to demo the abilities of the **CyberSolve LinAlg 1.2** text-to-text language model. Specifically, the **CyberSolve LinAlg 1.x** family of models
|
24 |
are downstream versions of the 783M parameter FLAN-T5 text-to-text transformer, fine-tuned on the Google DeepMind Mathematics dataset for the purpose of solving linear equations of a single variable.
|
25 |
+
To effectively query the model for its intended task, prompt the model solve an arbitrary linear equation of a single variable with a query of the form: *"Solve 24 = 1601c - 1605c for c."*; the model
|
26 |
will return its prediciton in a simple format. The algebraic capabailites far exceed those of the base FLAN-T5 model. CyberSolve LinAlg 1.2 achieves a 90.7 percent exact match benchmark on the DeepMind Mathematics
|
27 |
evaluation dataset of 10,000 unique linear equations; the FLAN-T5 base model scores 9.6 percent. On the left is a sidebar of **Examples** that can be clicked to query to model.
|
28 |
|
style.css
CHANGED
@@ -1,3 +1,12 @@
|
|
1 |
-
.st-emotion-cache-1tpusnk a{
|
2 |
color: #27497c;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
}
|
|
|
1 |
+
/* .st-emotion-cache-1tpusnk a{
|
2 |
color: #27497c;
|
3 |
+
} */
|
4 |
+
|
5 |
+
@import url('https://fonts.googleapis.com/css2?family=Orbitron:[email protected]&display=swap');
|
6 |
+
|
7 |
+
html, body, [class*="css"] {
|
8 |
+
font-family: 'Orbitron', sans-serif;
|
9 |
+
font-size: 18px;
|
10 |
+
font-weight: 600;
|
11 |
+
color: #FFFFFF;
|
12 |
}
|