John Graham Reynolds commited on
Commit
bcbab79
Β·
1 Parent(s): 86e4acf

change output to text, try adding example

Browse files
Files changed (1) hide show
  1. app.py +11 -4
app.py CHANGED
@@ -5,7 +5,7 @@ import evaluate
5
  import gradio as gr
6
  import pandas as pd
7
 
8
- title = "`Combine` multiple metrics with this πŸ€— Evaluate πŸͺ² Fix!"
9
 
10
  description = """<p style='text-align: center'>
11
  As I introduce myself to the entirety of the πŸ€— ecosystem, I've put together this Space to show off a temporary fix for a current πŸͺ² in the πŸ€— Evaluate library. \n
@@ -13,7 +13,8 @@ As I introduce myself to the entirety of the πŸ€— ecosystem, I've put together t
13
  Check out the original, longstanding issue [here](https://github.com/huggingface/evaluate/issues/234). This details how it is currently impossible to \
14
  `evaluate.combine()` multiple metrics related to multilabel text classification. Particularly, one cannot `combine` the `f1`, `precision`, and `recall` scores for \
15
  evaluation. I encountered this issue specifically while training [RoBERTa-base-DReiFT](https://huggingface.co/MarioBarbeque/RoBERTa-base-DReiFT) for multilabel \
16
- text classification of 805 labeled medical conditions based on drug reviews. \n
 
17
 
18
  This Space shows how one can instantiate these custom `evaluate.Metric`s, each with their own unique methodology for averaging across labels, before `combine`-ing them into a
19
  HF `evaluate.CombinedEvaluations` object. From here, we can easily compute each of the metrics simultaneously using `compute`.</p>
@@ -80,17 +81,23 @@ space = gr.Interface(
80
  datatype=["number", "number"],
81
  row_count=5,
82
  col_count=(2, "fixed"),
 
83
  ),
84
  gr.Dataframe(
85
  headers=["Metric", "Averaging Type"],
86
  datatype=["str", "str"],
87
- row_count=3,
88
  col_count=(2, "fixed"),
 
89
  )
90
  ],
91
- outputs="textbox",
92
  title=title,
93
  description=description,
94
  article=article,
 
 
 
 
95
  cache_examples=False
96
  ).launch()
 
5
  import gradio as gr
6
  import pandas as pd
7
 
8
+ title = "'Combine' multiple metrics with this πŸ€— Evaluate πŸͺ² Fix!"
9
 
10
  description = """<p style='text-align: center'>
11
  As I introduce myself to the entirety of the πŸ€— ecosystem, I've put together this Space to show off a temporary fix for a current πŸͺ² in the πŸ€— Evaluate library. \n
 
13
  Check out the original, longstanding issue [here](https://github.com/huggingface/evaluate/issues/234). This details how it is currently impossible to \
14
  `evaluate.combine()` multiple metrics related to multilabel text classification. Particularly, one cannot `combine` the `f1`, `precision`, and `recall` scores for \
15
  evaluation. I encountered this issue specifically while training [RoBERTa-base-DReiFT](https://huggingface.co/MarioBarbeque/RoBERTa-base-DReiFT) for multilabel \
16
+ text classification of 805 labeled medical conditions based on drug reviews. The [following workaround](https://github.com/johngrahamreynolds/FixedMetricsForHF) was
17
+ congifured. \n
18
 
19
  This Space shows how one can instantiate these custom `evaluate.Metric`s, each with their own unique methodology for averaging across labels, before `combine`-ing them into a
20
  HF `evaluate.CombinedEvaluations` object. From here, we can easily compute each of the metrics simultaneously using `compute`.</p>
 
81
  datatype=["number", "number"],
82
  row_count=5,
83
  col_count=(2, "fixed"),
84
+ label_name="Table of Predicted vs Actual Class Labels"
85
  ),
86
  gr.Dataframe(
87
  headers=["Metric", "Averaging Type"],
88
  datatype=["str", "str"],
89
+ row_count=(3, "fixed"),
90
  col_count=(2, "fixed"),
91
+ label_name="Table of Metrics and Averaging Method across Labels "
92
  )
93
  ],
94
+ outputs="text",
95
  title=title,
96
  description=description,
97
  article=article,
98
+ examples=[
99
+ [[[1,1],[1,0],[2,0],[1,2],[2,2]], [["f1", "weighted"], ["precision", "micro"], ["recall", "weighted"]]],
100
+ # [[["precision", "micro"], ["recall", "weighted"], ["f1", "macro"]]],
101
+ ]
102
  cache_examples=False
103
  ).launch()