John Graham Reynolds commited on
Commit
a9c64ab
·
1 Parent(s): 6a4f85e

add temporary demo to test formatting

Browse files
Files changed (1) hide show
  1. app.py +36 -18
app.py CHANGED
@@ -23,28 +23,46 @@ Try to use \t to write some code? \t or how does that work? </p>
23
  article = "<p style='text-align: center'> Check out the [original repo](https://github.com/johngrahamreynolds/FixedMetricsForHF) housing this code, and a quickly \
24
  trained [multilabel text classification model](https://github.com/johngrahamreynolds/RoBERTa-base-DReiFT/tree/main) that makes use of it during evaluation.</p>"
25
 
26
- def show_off(predictions: list[list]) -> str:
27
 
28
- # f1 = FixedF1(average=weighting_map["f1"])
29
- # precision = FixedPrecision(average=weighting_map["precision"])
30
- # recall = FixedRecall(average=weighting_map["recall"])
31
 
32
- # combined = evaluate.combine([f1, recall, precision])
33
 
34
- # combined.add_batch(prediction=predictions, reference=references)
35
- # outputs = combined.compute()
36
- outputs = predictions
37
 
38
- return "Your metrics are as follows: \n" + outputs
39
 
40
 
41
- gr.Interface(
42
- fn=show_off,
43
- inputs=gr.Dataframe(type="array", datatype="number", row_count=5, col_count=1),
44
- outputs="text",
45
- title=title,
46
- description=description,
47
- article=article,
48
- examples=[[1, 0, 2, 0, 1]],
49
- cache_examples=False
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
50
  ).launch()
 
23
  article = "<p style='text-align: center'> Check out the [original repo](https://github.com/johngrahamreynolds/FixedMetricsForHF) housing this code, and a quickly \
24
  trained [multilabel text classification model](https://github.com/johngrahamreynolds/RoBERTa-base-DReiFT/tree/main) that makes use of it during evaluation.</p>"
25
 
26
+ # def show_off(predictions: list[list]) -> str:
27
 
28
+ # # f1 = FixedF1(average=weighting_map["f1"])
29
+ # # precision = FixedPrecision(average=weighting_map["precision"])
30
+ # # recall = FixedRecall(average=weighting_map["recall"])
31
 
32
+ # # combined = evaluate.combine([f1, recall, precision])
33
 
34
+ # # combined.add_batch(prediction=predictions, reference=references)
35
+ # # outputs = combined.compute()
36
+ # outputs = predictions
37
 
38
+ # return "Your metrics are as follows: \n" + outputs
39
 
40
 
41
+ # gr.Interface(
42
+ # fn=show_off,
43
+ # inputs=gr.Dataframe(type="array", datatype="number", row_count=5, col_count=1),
44
+ # outputs="text",
45
+ # title=title,
46
+ # description=description,
47
+ # article=article,
48
+ # examples=[pd.DataFrame([1, 0, 2, 0, 1])],
49
+ # cache_examples=False
50
+ # ).launch()
51
+
52
+ def filter_records(records, gender):
53
+ return records[records["gender"] == gender]
54
+
55
+ demo = gr.Interface(
56
+ filter_records,
57
+ [
58
+ gr.Dataframe(
59
+ headers=["name", "age", "gender"],
60
+ datatype=["str", "number", "str"],
61
+ row_count=5,
62
+ col_count=(3, "fixed"),
63
+ ),
64
+ gr.Dropdown(["M", "F", "O"]),
65
+ ],
66
+ "dataframe",
67
+ description="Enter gender as 'M', 'F', or 'O' for other.",
68
  ).launch()