Spaces:
Build error
Build error
Update app.py (#3)
Browse files- Update app.py (f46c493ee0918191301804380b8116814c315750)
app.py
CHANGED
@@ -2,7 +2,7 @@ import gradio as gr
|
|
2 |
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
|
3 |
import logging
|
4 |
|
5 |
-
# Setup logging
|
6 |
logging.basicConfig(level=logging.DEBUG, format='%(asctime)s - %(levelname)s - %(message)s')
|
7 |
|
8 |
# Load the Flan-T5 Small model and tokenizer
|
@@ -12,81 +12,54 @@ model = AutoModelForSeq2SeqLM.from_pretrained(model_id)
|
|
12 |
|
13 |
def correct_htr(raw_htr_text, max_new_tokens, temperature):
|
14 |
try:
|
15 |
-
|
16 |
-
raise ValueError("Input text cannot be empty.")
|
17 |
-
|
18 |
-
logging.info("Processing HTR correction with Flan-T5 Small...")
|
19 |
prompt = f"Correct this text: {raw_htr_text}"
|
20 |
inputs = tokenizer(prompt, return_tensors="pt")
|
21 |
-
|
22 |
-
outputs = model.generate(**inputs, max_length=max_length, temperature=temperature)
|
23 |
corrected_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
24 |
-
logging.debug(f"Generated output for HTR correction: {corrected_text}")
|
25 |
return corrected_text
|
26 |
-
except ValueError as ve:
|
27 |
-
logging.warning(f"Validation error: {ve}")
|
28 |
-
return str(ve)
|
29 |
except Exception as e:
|
30 |
logging.error(f"Error in HTR correction: {e}", exc_info=True)
|
31 |
-
return
|
32 |
|
33 |
def summarize_text(legal_text, max_new_tokens, temperature):
|
34 |
try:
|
35 |
-
|
36 |
-
raise ValueError("Input text cannot be empty.")
|
37 |
-
|
38 |
-
logging.info("Processing summarization with Flan-T5 Small...")
|
39 |
prompt = f"Summarize the following legal text: {legal_text}"
|
40 |
inputs = tokenizer(prompt, return_tensors="pt")
|
41 |
-
|
42 |
-
outputs = model.generate(**inputs, max_length=max_length, temperature=temperature)
|
43 |
summary = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
44 |
-
logging.debug(f"Generated summary: {summary}")
|
45 |
return summary
|
46 |
-
except ValueError as ve:
|
47 |
-
logging.warning(f"Validation error: {ve}")
|
48 |
-
return str(ve)
|
49 |
except Exception as e:
|
50 |
logging.error(f"Error in summarization: {e}", exc_info=True)
|
51 |
-
return
|
52 |
|
53 |
def answer_question(legal_text, question, max_new_tokens, temperature):
|
54 |
try:
|
55 |
-
|
56 |
-
raise ValueError("Both legal text and question must be provided.")
|
57 |
-
|
58 |
-
logging.info("Processing question-answering with Flan-T5 Small...")
|
59 |
prompt = f"Answer the following question based on the provided context:\n\nQuestion: {question}\n\nContext: {legal_text}"
|
60 |
inputs = tokenizer(prompt, return_tensors="pt")
|
61 |
-
|
62 |
-
outputs = model.generate(**inputs, max_length=max_length, temperature=temperature)
|
63 |
answer = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
64 |
-
logging.debug(f"Generated answer: {answer}")
|
65 |
return answer
|
66 |
-
except ValueError as ve:
|
67 |
-
logging.warning(f"Validation error: {ve}")
|
68 |
-
return str(ve)
|
69 |
except Exception as e:
|
70 |
logging.error(f"Error in question-answering: {e}", exc_info=True)
|
71 |
-
return
|
72 |
-
|
73 |
-
def clear_fields():
|
74 |
-
return "", "", ""
|
75 |
|
76 |
# Create the Gradio Blocks interface
|
77 |
-
with gr.Blocks(
|
78 |
gr.Markdown("# Flan-T5 Small Legal Assistant")
|
79 |
gr.Markdown("Use this tool to correct raw HTR, summarize legal texts, or answer questions about legal cases (powered by Flan-T5 Small).")
|
80 |
-
|
81 |
with gr.Row():
|
82 |
gr.HTML('''
|
83 |
<div style="display: flex; gap: 10px;">
|
84 |
-
<div style="border: 2px solid black; padding: 10px;
|
85 |
<a href="http://www.marinelives.org/wiki/Tools:_Admiralty_court_legal_glossary" target="_blank">
|
86 |
<button style="font-weight:bold;">Admiralty Court Legal Glossary</button>
|
87 |
</a>
|
88 |
</div>
|
89 |
-
<div style="border: 2px solid black; padding: 10px;
|
90 |
<a href="https://raw.githubusercontent.com/Addaci/HCA/refs/heads/main/HCA_13_70_Full_Volume_Processed_Text_EDITED_Ver.1.2_18062024.txt" target="_blank">
|
91 |
<button style="font-weight:bold;">HCA 13/70 Ground Truth (1654-55)</button>
|
92 |
</a>
|
@@ -94,38 +67,27 @@ with gr.Blocks(css=".block .input-slider { color: blue !important }") as demo:
|
|
94 |
</div>
|
95 |
''')
|
96 |
|
|
|
97 |
with gr.Tab("Correct HTR"):
|
98 |
gr.Markdown("### Correct Raw HTR Text")
|
99 |
raw_htr_input = gr.Textbox(lines=5, placeholder="Enter raw HTR text here...")
|
100 |
corrected_output = gr.Textbox(lines=5, placeholder="Corrected HTR text")
|
101 |
correct_button = gr.Button("Correct HTR")
|
102 |
clear_button = gr.Button("Clear")
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
correct_button.click(correct_htr, inputs=[raw_htr_input, correct_max_new_tokens, correct_temperature], outputs=corrected_output)
|
107 |
-
clear_button.click(clear_fields, outputs=[raw_htr_input, corrected_output])
|
108 |
-
|
109 |
-
gr.Markdown("### Set Parameters")
|
110 |
-
correct_max_new_tokens.render()
|
111 |
-
correct_temperature.render()
|
112 |
|
|
|
113 |
with gr.Tab("Summarize Legal Text"):
|
114 |
gr.Markdown("### Summarize Legal Text")
|
115 |
legal_text_input = gr.Textbox(lines=10, placeholder="Enter legal text to summarize...")
|
116 |
summary_output = gr.Textbox(lines=5, placeholder="Summary of legal text")
|
117 |
summarize_button = gr.Button("Summarize Text")
|
118 |
clear_button = gr.Button("Clear")
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
summarize_button.click(summarize_text, inputs=[legal_text_input, summarize_max_new_tokens, summarize_temperature], outputs=summary_output)
|
123 |
-
clear_button.click(clear_fields, outputs=[legal_text_input, summary_output])
|
124 |
-
|
125 |
-
gr.Markdown("### Set Parameters")
|
126 |
-
summarize_max_new_tokens.render()
|
127 |
-
summarize_temperature.render()
|
128 |
|
|
|
129 |
with gr.Tab("Answer Legal Question"):
|
130 |
gr.Markdown("### Answer a Question Based on Legal Text")
|
131 |
legal_text_input_q = gr.Textbox(lines=10, placeholder="Enter legal text...")
|
@@ -133,18 +95,8 @@ with gr.Blocks(css=".block .input-slider { color: blue !important }") as demo:
|
|
133 |
answer_output = gr.Textbox(lines=5, placeholder="Answer to your question")
|
134 |
answer_button = gr.Button("Get Answer")
|
135 |
clear_button = gr.Button("Clear")
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
answer_button.click(answer_question, inputs=[legal_text_input_q, question_input, answer_max_new_tokens, answer_temperature], outputs=answer_output)
|
140 |
-
clear_button.click(clear_fields, outputs=[legal_text_input_q, question_input, answer_output])
|
141 |
-
|
142 |
-
gr.Markdown("### Set Parameters")
|
143 |
-
answer_max_new_tokens.render()
|
144 |
-
answer_temperature.render()
|
145 |
-
|
146 |
-
# Model warm-up (optional, but useful for performance)
|
147 |
-
model.generate(**tokenizer("Warm-up", return_tensors="pt"), max_length=10)
|
148 |
|
149 |
# Launch the Gradio interface
|
150 |
if __name__ == "__main__":
|
|
|
2 |
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
|
3 |
import logging
|
4 |
|
5 |
+
# Setup logging
|
6 |
logging.basicConfig(level=logging.DEBUG, format='%(asctime)s - %(levelname)s - %(message)s')
|
7 |
|
8 |
# Load the Flan-T5 Small model and tokenizer
|
|
|
12 |
|
13 |
def correct_htr(raw_htr_text, max_new_tokens, temperature):
|
14 |
try:
|
15 |
+
logging.info("Processing HTR correction...")
|
|
|
|
|
|
|
16 |
prompt = f"Correct this text: {raw_htr_text}"
|
17 |
inputs = tokenizer(prompt, return_tensors="pt")
|
18 |
+
outputs = model.generate(**inputs, max_length=min(max_new_tokens, len(inputs['input_ids'][0]) + max_new_tokens), temperature=temperature)
|
|
|
19 |
corrected_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
|
|
20 |
return corrected_text
|
|
|
|
|
|
|
21 |
except Exception as e:
|
22 |
logging.error(f"Error in HTR correction: {e}", exc_info=True)
|
23 |
+
return str(e)
|
24 |
|
25 |
def summarize_text(legal_text, max_new_tokens, temperature):
|
26 |
try:
|
27 |
+
logging.info("Processing summarization...")
|
|
|
|
|
|
|
28 |
prompt = f"Summarize the following legal text: {legal_text}"
|
29 |
inputs = tokenizer(prompt, return_tensors="pt")
|
30 |
+
outputs = model.generate(**inputs, max_length=min(max_new_tokens, len(inputs['input_ids'][0]) + max_new_tokens), temperature=temperature)
|
|
|
31 |
summary = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
|
|
32 |
return summary
|
|
|
|
|
|
|
33 |
except Exception as e:
|
34 |
logging.error(f"Error in summarization: {e}", exc_info=True)
|
35 |
+
return str(e)
|
36 |
|
37 |
def answer_question(legal_text, question, max_new_tokens, temperature):
|
38 |
try:
|
39 |
+
logging.info("Processing question-answering...")
|
|
|
|
|
|
|
40 |
prompt = f"Answer the following question based on the provided context:\n\nQuestion: {question}\n\nContext: {legal_text}"
|
41 |
inputs = tokenizer(prompt, return_tensors="pt")
|
42 |
+
outputs = model.generate(**inputs, max_length=min(max_new_tokens, len(inputs['input_ids'][0]) + max_new_tokens), temperature=temperature)
|
|
|
43 |
answer = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
|
|
44 |
return answer
|
|
|
|
|
|
|
45 |
except Exception as e:
|
46 |
logging.error(f"Error in question-answering: {e}", exc_info=True)
|
47 |
+
return str(e)
|
|
|
|
|
|
|
48 |
|
49 |
# Create the Gradio Blocks interface
|
50 |
+
with gr.Blocks() as demo:
|
51 |
gr.Markdown("# Flan-T5 Small Legal Assistant")
|
52 |
gr.Markdown("Use this tool to correct raw HTR, summarize legal texts, or answer questions about legal cases (powered by Flan-T5 Small).")
|
53 |
+
|
54 |
with gr.Row():
|
55 |
gr.HTML('''
|
56 |
<div style="display: flex; gap: 10px;">
|
57 |
+
<div style="border: 2px solid black; padding: 10px;">
|
58 |
<a href="http://www.marinelives.org/wiki/Tools:_Admiralty_court_legal_glossary" target="_blank">
|
59 |
<button style="font-weight:bold;">Admiralty Court Legal Glossary</button>
|
60 |
</a>
|
61 |
</div>
|
62 |
+
<div style="border: 2px solid black; padding: 10px;">
|
63 |
<a href="https://raw.githubusercontent.com/Addaci/HCA/refs/heads/main/HCA_13_70_Full_Volume_Processed_Text_EDITED_Ver.1.2_18062024.txt" target="_blank">
|
64 |
<button style="font-weight:bold;">HCA 13/70 Ground Truth (1654-55)</button>
|
65 |
</a>
|
|
|
67 |
</div>
|
68 |
''')
|
69 |
|
70 |
+
# Tab 1: Correct HTR
|
71 |
with gr.Tab("Correct HTR"):
|
72 |
gr.Markdown("### Correct Raw HTR Text")
|
73 |
raw_htr_input = gr.Textbox(lines=5, placeholder="Enter raw HTR text here...")
|
74 |
corrected_output = gr.Textbox(lines=5, placeholder="Corrected HTR text")
|
75 |
correct_button = gr.Button("Correct HTR")
|
76 |
clear_button = gr.Button("Clear")
|
77 |
+
correct_button.click(correct_htr, inputs=[raw_htr_input, gr.Slider(minimum=10, maximum=512, value=128, step=1, label="Max New Tokens"), gr.Slider(minimum=0.1, maximum=1.0, value=0.7, step=0.1, label="Temperature")], outputs=corrected_output)
|
78 |
+
clear_button.click(lambda: ("", ""), outputs=[raw_htr_input, corrected_output])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
79 |
|
80 |
+
# Tab 2: Summarize Legal Text
|
81 |
with gr.Tab("Summarize Legal Text"):
|
82 |
gr.Markdown("### Summarize Legal Text")
|
83 |
legal_text_input = gr.Textbox(lines=10, placeholder="Enter legal text to summarize...")
|
84 |
summary_output = gr.Textbox(lines=5, placeholder="Summary of legal text")
|
85 |
summarize_button = gr.Button("Summarize Text")
|
86 |
clear_button = gr.Button("Clear")
|
87 |
+
summarize_button.click(summarize_text, inputs=[legal_text_input, gr.Slider(minimum=10, maximum=512, value=256, step=1, label="Max New Tokens"), gr.Slider(minimum=0.1, maximum=1.0, value=0.5, step=0.1, label="Temperature")], outputs=summary_output)
|
88 |
+
clear_button.click(lambda: ("", ""), outputs=[legal_text_input, summary_output])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
89 |
|
90 |
+
# Tab 3: Answer Legal Question
|
91 |
with gr.Tab("Answer Legal Question"):
|
92 |
gr.Markdown("### Answer a Question Based on Legal Text")
|
93 |
legal_text_input_q = gr.Textbox(lines=10, placeholder="Enter legal text...")
|
|
|
95 |
answer_output = gr.Textbox(lines=5, placeholder="Answer to your question")
|
96 |
answer_button = gr.Button("Get Answer")
|
97 |
clear_button = gr.Button("Clear")
|
98 |
+
answer_button.click(answer_question, inputs=[legal_text_input_q, question_input, gr.Slider(minimum=10, maximum=512, value=150, step=1, label="Max New Tokens"), gr.Slider(minimum=0.1, maximum=1.0, value=0.9, step=0.1, label="Temperature")], outputs=answer_output)
|
99 |
+
clear_button.click(lambda: ("", "", ""), outputs=[legal_text_input_q, question_input, answer_output])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
100 |
|
101 |
# Launch the Gradio interface
|
102 |
if __name__ == "__main__":
|