Spaces:
Build error
Build error
import gradio as gr | |
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer | |
import logging | |
# Setup logging | |
logging.basicConfig(level=logging.DEBUG, format='%(asctime)s - %(levelname)s - %(message)s') | |
# Load the Flan-T5 Small model and tokenizer | |
model_id = "google/flan-t5-small" | |
tokenizer = AutoTokenizer.from_pretrained(model_id) | |
model = AutoModelForSeq2SeqLM.from_pretrained(model_id) | |
def correct_htr(raw_htr_text, max_new_tokens, temperature): | |
try: | |
logging.info("Processing HTR correction...") | |
prompt = f"Correct this text: {raw_htr_text}" | |
inputs = tokenizer(prompt, return_tensors="pt") | |
outputs = model.generate(**inputs, max_length=min(max_new_tokens, len(inputs['input_ids'][0]) + max_new_tokens), temperature=temperature) | |
corrected_text = tokenizer.decode(outputs[0], skip_special_tokens=True) | |
return corrected_text | |
except Exception as e: | |
logging.error(f"Error in HTR correction: {e}", exc_info=True) | |
return str(e) | |
def summarize_text(legal_text, max_new_tokens, temperature): | |
try: | |
logging.info("Processing summarization...") | |
prompt = f"Summarize the following legal text: {legal_text}" | |
inputs = tokenizer(prompt, return_tensors="pt") | |
outputs = model.generate(**inputs, max_length=min(max_new_tokens, len(inputs['input_ids'][0]) + max_new_tokens), temperature=temperature) | |
summary = tokenizer.decode(outputs[0], skip_special_tokens=True) | |
return summary | |
except Exception as e: | |
logging.error(f"Error in summarization: {e}", exc_info=True) | |
return str(e) | |
def answer_question(legal_text, question, max_new_tokens, temperature): | |
try: | |
logging.info("Processing question-answering...") | |
prompt = f"Answer the following question based on the provided context:\n\nQuestion: {question}\n\nContext: {legal_text}" | |
inputs = tokenizer(prompt, return_tensors="pt") | |
outputs = model.generate(**inputs, max_length=min(max_new_tokens, len(inputs['input_ids'][0]) + max_new_tokens), temperature=temperature) | |
answer = tokenizer.decode(outputs[0], skip_special_tokens=True) | |
return answer | |
except Exception as e: | |
logging.error(f"Error in question-answering: {e}", exc_info=True) | |
return str(e) | |
# Create the Gradio Blocks interface | |
with gr.Blocks() as demo: | |
gr.Markdown("# Flan-T5 Small Legal Assistant") | |
gr.Markdown("Use this tool to correct raw HTR, summarize legal texts, or answer questions about legal cases (powered by Flan-T5 Small).") | |
with gr.Row(): | |
gr.HTML(''' | |
<div style="display: flex; gap: 10px;"> | |
<div style="border: 2px solid black; padding: 10px;"> | |
<a href="http://www.marinelives.org/wiki/Tools:_Admiralty_court_legal_glossary" target="_blank"> | |
<button style="font-weight:bold;">Admiralty Court Legal Glossary</button> | |
</a> | |
</div> | |
<div style="border: 2px solid black; padding: 10px;"> | |
<a href="https://raw.githubusercontent.com/Addaci/HCA/refs/heads/main/HCA_13_70_Full_Volume_Processed_Text_EDITED_Ver.1.2_18062024.txt" target="_blank"> | |
<button style="font-weight:bold;">HCA 13/70 Ground Truth (1654-55)</button> | |
</a> | |
</div> | |
</div> | |
''') | |
# Tab 1: Correct HTR | |
with gr.Tab("Correct HTR"): | |
gr.Markdown("### Correct Raw HTR Text") | |
raw_htr_input = gr.Textbox(lines=5, placeholder="Enter raw HTR text here...") | |
corrected_output = gr.Textbox(lines=5, placeholder="Corrected HTR text") | |
correct_button = gr.Button("Correct HTR") | |
clear_button = gr.Button("Clear") | |
correct_button.click(correct_htr, inputs=[raw_htr_input, gr.Slider(minimum=10, maximum=512, value=128, step=1, label="Max New Tokens"), gr.Slider(minimum=0.1, maximum=1.0, value=0.7, step=0.1, label="Temperature")], outputs=corrected_output) | |
clear_button.click(lambda: ("", ""), outputs=[raw_htr_input, corrected_output]) | |
# Tab 2: Summarize Legal Text | |
with gr.Tab("Summarize Legal Text"): | |
gr.Markdown("### Summarize Legal Text") | |
legal_text_input = gr.Textbox(lines=10, placeholder="Enter legal text to summarize...") | |
summary_output = gr.Textbox(lines=5, placeholder="Summary of legal text") | |
summarize_button = gr.Button("Summarize Text") | |
clear_button = gr.Button("Clear") | |
summarize_button.click(summarize_text, inputs=[legal_text_input, gr.Slider(minimum=10, maximum=512, value=256, step=1, label="Max New Tokens"), gr.Slider(minimum=0.1, maximum=1.0, value=0.5, step=0.1, label="Temperature")], outputs=summary_output) | |
clear_button.click(lambda: ("", ""), outputs=[legal_text_input, summary_output]) | |
# Tab 3: Answer Legal Question | |
with gr.Tab("Answer Legal Question"): | |
gr.Markdown("### Answer a Question Based on Legal Text") | |
legal_text_input_q = gr.Textbox(lines=10, placeholder="Enter legal text...") | |
question_input = gr.Textbox(lines=2, placeholder="Enter your question...") | |
answer_output = gr.Textbox(lines=5, placeholder="Answer to your question") | |
answer_button = gr.Button("Get Answer") | |
clear_button = gr.Button("Clear") | |
answer_button.click(answer_question, inputs=[legal_text_input_q, question_input, gr.Slider(minimum=10, maximum=512, value=150, step=1, label="Max New Tokens"), gr.Slider(minimum=0.1, maximum=1.0, value=0.9, step=0.1, label="Temperature")], outputs=answer_output) | |
clear_button.click(lambda: ("", "", ""), outputs=[legal_text_input_q, question_input, answer_output]) | |
# Launch the Gradio interface | |
if __name__ == "__main__": | |
demo.launch() |