Addaci's picture
Update app.py
f46c493 verified
raw
history blame
5.8 kB
import gradio as gr
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
import logging
# Setup logging
logging.basicConfig(level=logging.DEBUG, format='%(asctime)s - %(levelname)s - %(message)s')
# Load the Flan-T5 Small model and tokenizer
model_id = "google/flan-t5-small"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForSeq2SeqLM.from_pretrained(model_id)
def correct_htr(raw_htr_text, max_new_tokens, temperature):
try:
logging.info("Processing HTR correction...")
prompt = f"Correct this text: {raw_htr_text}"
inputs = tokenizer(prompt, return_tensors="pt")
outputs = model.generate(**inputs, max_length=min(max_new_tokens, len(inputs['input_ids'][0]) + max_new_tokens), temperature=temperature)
corrected_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
return corrected_text
except Exception as e:
logging.error(f"Error in HTR correction: {e}", exc_info=True)
return str(e)
def summarize_text(legal_text, max_new_tokens, temperature):
try:
logging.info("Processing summarization...")
prompt = f"Summarize the following legal text: {legal_text}"
inputs = tokenizer(prompt, return_tensors="pt")
outputs = model.generate(**inputs, max_length=min(max_new_tokens, len(inputs['input_ids'][0]) + max_new_tokens), temperature=temperature)
summary = tokenizer.decode(outputs[0], skip_special_tokens=True)
return summary
except Exception as e:
logging.error(f"Error in summarization: {e}", exc_info=True)
return str(e)
def answer_question(legal_text, question, max_new_tokens, temperature):
try:
logging.info("Processing question-answering...")
prompt = f"Answer the following question based on the provided context:\n\nQuestion: {question}\n\nContext: {legal_text}"
inputs = tokenizer(prompt, return_tensors="pt")
outputs = model.generate(**inputs, max_length=min(max_new_tokens, len(inputs['input_ids'][0]) + max_new_tokens), temperature=temperature)
answer = tokenizer.decode(outputs[0], skip_special_tokens=True)
return answer
except Exception as e:
logging.error(f"Error in question-answering: {e}", exc_info=True)
return str(e)
# Create the Gradio Blocks interface
with gr.Blocks() as demo:
gr.Markdown("# Flan-T5 Small Legal Assistant")
gr.Markdown("Use this tool to correct raw HTR, summarize legal texts, or answer questions about legal cases (powered by Flan-T5 Small).")
with gr.Row():
gr.HTML('''
<div style="display: flex; gap: 10px;">
<div style="border: 2px solid black; padding: 10px;">
<a href="http://www.marinelives.org/wiki/Tools:_Admiralty_court_legal_glossary" target="_blank">
<button style="font-weight:bold;">Admiralty Court Legal Glossary</button>
</a>
</div>
<div style="border: 2px solid black; padding: 10px;">
<a href="https://raw.githubusercontent.com/Addaci/HCA/refs/heads/main/HCA_13_70_Full_Volume_Processed_Text_EDITED_Ver.1.2_18062024.txt" target="_blank">
<button style="font-weight:bold;">HCA 13/70 Ground Truth (1654-55)</button>
</a>
</div>
</div>
''')
# Tab 1: Correct HTR
with gr.Tab("Correct HTR"):
gr.Markdown("### Correct Raw HTR Text")
raw_htr_input = gr.Textbox(lines=5, placeholder="Enter raw HTR text here...")
corrected_output = gr.Textbox(lines=5, placeholder="Corrected HTR text")
correct_button = gr.Button("Correct HTR")
clear_button = gr.Button("Clear")
correct_button.click(correct_htr, inputs=[raw_htr_input, gr.Slider(minimum=10, maximum=512, value=128, step=1, label="Max New Tokens"), gr.Slider(minimum=0.1, maximum=1.0, value=0.7, step=0.1, label="Temperature")], outputs=corrected_output)
clear_button.click(lambda: ("", ""), outputs=[raw_htr_input, corrected_output])
# Tab 2: Summarize Legal Text
with gr.Tab("Summarize Legal Text"):
gr.Markdown("### Summarize Legal Text")
legal_text_input = gr.Textbox(lines=10, placeholder="Enter legal text to summarize...")
summary_output = gr.Textbox(lines=5, placeholder="Summary of legal text")
summarize_button = gr.Button("Summarize Text")
clear_button = gr.Button("Clear")
summarize_button.click(summarize_text, inputs=[legal_text_input, gr.Slider(minimum=10, maximum=512, value=256, step=1, label="Max New Tokens"), gr.Slider(minimum=0.1, maximum=1.0, value=0.5, step=0.1, label="Temperature")], outputs=summary_output)
clear_button.click(lambda: ("", ""), outputs=[legal_text_input, summary_output])
# Tab 3: Answer Legal Question
with gr.Tab("Answer Legal Question"):
gr.Markdown("### Answer a Question Based on Legal Text")
legal_text_input_q = gr.Textbox(lines=10, placeholder="Enter legal text...")
question_input = gr.Textbox(lines=2, placeholder="Enter your question...")
answer_output = gr.Textbox(lines=5, placeholder="Answer to your question")
answer_button = gr.Button("Get Answer")
clear_button = gr.Button("Clear")
answer_button.click(answer_question, inputs=[legal_text_input_q, question_input, gr.Slider(minimum=10, maximum=512, value=150, step=1, label="Max New Tokens"), gr.Slider(minimum=0.1, maximum=1.0, value=0.9, step=0.1, label="Temperature")], outputs=answer_output)
clear_button.click(lambda: ("", "", ""), outputs=[legal_text_input_q, question_input, answer_output])
# Launch the Gradio interface
if __name__ == "__main__":
demo.launch()