Addaci's picture
ChatGPT-4o rewrite of GeminiPro app.py file with change to Flan-T5-small model
340628c verified
raw
history blame
7.15 kB
import gradio as gr
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
import logging
# Setup logging (optional, but helpful for debugging)
logging.basicConfig(level=logging.DEBUG, format='%(asctime)s - %(levelname)s - %(message)s')
# Load the Flan-T5 Small model and tokenizer
model_id = "google/flan-t5-small"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForSeq2SeqLM.from_pretrained(model_id)
# Define the sliders outside the gr.Row() block
max_new_tokens = gr.Slider(minimum=10, maximum=512, value=360, step=1, label="Max New Tokens") # Adjusted for smaller model
temperature = gr.Slider(minimum=0.1, maximum=1.0, value=0.7, step=0.1, label="Temperature")
def correct_htr(raw_htr_text, max_new_tokens, temperature):
try:
if not raw_htr_text:
raise ValueError("Input text cannot be empty.")
logging.info("Processing HTR correction with Flan-T5 Small...")
prompt = f"Correct this text: {raw_htr_text}"
inputs = tokenizer(prompt, return_tensors="pt")
max_length = min(max_new_tokens, len(inputs['input_ids'][0]) + max_new_tokens) # Cap max_length
outputs = model.generate(**inputs, max_length=max_length, temperature=temperature)
corrected_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
logging.debug(f"Generated output for HTR correction: {corrected_text}")
return corrected_text
except ValueError as ve:
logging.warning(f"Validation error: {ve}")
return str(ve)
except Exception as e:
logging.error(f"Error in HTR correction: {e}", exc_info=True)
return "An error occurred while processing the text."
def summarize_text(legal_text, max_new_tokens, temperature):
try:
if not legal_text:
raise ValueError("Input text cannot be empty.")
logging.info("Processing summarization with Flan-T5 Small...")
prompt = f"Summarize the following legal text: {legal_text}"
inputs = tokenizer(prompt, return_tensors="pt")
max_length = min(max_new_tokens, len(inputs['input_ids'][0]) + max_new_tokens) # Cap max_length
outputs = model.generate(**inputs, max_length=max_length, temperature=temperature)
summary = tokenizer.decode(outputs[0], skip_special_tokens=True)
logging.debug(f"Generated summary: {summary}")
return summary
except ValueError as ve:
logging.warning(f"Validation error: {ve}")
return str(ve)
except Exception as e:
logging.error(f"Error in summarization: {e}", exc_info=True)
return "An error occurred while summarizing the text."
def answer_question(legal_text, question, max_new_tokens, temperature):
try:
if not legal_text or not question:
raise ValueError("Both legal text and question must be provided.")
logging.info("Processing question-answering with Flan-T5 Small...")
prompt = f"Answer the following question based on the provided context:\n\nQuestion: {question}\n\nContext: {legal_text}"
inputs = tokenizer(prompt, return_tensors="pt")
max_length = min(max_new_tokens, len(inputs['input_ids'][0]) + max_new_tokens) # Cap max_length
outputs = model.generate(**inputs, max_length=max_length, temperature=temperature)
answer = tokenizer.decode(outputs[0], skip_special_tokens=True)
logging.debug(f"Generated answer: {answer}")
return answer
except ValueError as ve:
logging.warning(f"Validation error: {ve}")
return str(ve)
except Exception as e:
logging.error(f"Error in question-answering: {e}", exc_info=True)
return "An error occurred while answering the question."
def clear_fields():
return "", "", ""
# Create the Gradio Blocks interface
with gr.Blocks() as demo:
gr.Markdown("# Flan-T5 Small Legal Assistant")
gr.Markdown("Use this tool to correct raw HTR, summarize legal texts, or answer questions about legal cases (powered by Flan-T5 Small).")
with gr.Row():
gr.HTML('''
<div style="display: flex; gap: 10px;">
<div style="border: 2px solid black; padding: 10px; display: inline-block;">
<a href="http://www.marinelives.org/wiki/Tools:_Admiralty_court_legal_glossary" target="_blank">
<button style="font-weight:bold;">Admiralty Court Legal Glossary</button>
</a>
</div>
<div style="border: 2px solid black; padding: 10px; display: inline-block;">
<a href="https://raw.githubusercontent.com/Addaci/HCA/refs/heads/main/HCA_13_70_Full_Volume_Processed_Text_EDITED_Ver.1.2_18062024.txt" target="_blank">
<button style="font-weight:bold;">HCA 13/70 Ground Truth (1654-55)</button>
</a>
</div>
</div>
''')
with gr.Tab("Correct HTR"):
gr.Markdown("### Correct Raw HTR Text")
raw_htr_input = gr.Textbox(lines=5, placeholder="Enter raw HTR text here...")
corrected_output = gr.Textbox(lines=5, placeholder="Corrected HTR text")
correct_button = gr.Button("Correct HTR")
clear_button = gr.Button("Clear")
correct_button.click(correct_htr, inputs=[raw_htr_input, max_new_tokens, temperature], outputs=corrected_output)
clear_button.click(clear_fields, outputs=[raw_htr_input, corrected_output])
with gr.Tab("Summarize Legal Text"):
gr.Markdown("### Summarize Legal Text")
legal_text_input = gr.Textbox(lines=10, placeholder="Enter legal text to summarize...")
summary_output = gr.Textbox(lines=5, placeholder="Summary of legal text")
summarize_button = gr.Button("Summarize Text")
clear_button = gr.Button("Clear")
summarize_button.click(summarize_text, inputs=[legal_text_input, max_new_tokens, temperature], outputs=summary_output)
clear_button.click(clear_fields, outputs=[legal_text_input, summary_output])
with gr.Tab("Answer Legal Question"):
gr.Markdown("### Answer a Question Based on Legal Text")
legal_text_input_q = gr.Textbox(lines=10, placeholder="Enter legal text...")
question_input = gr.Textbox(lines=2, placeholder="Enter your question...")
answer_output = gr.Textbox(lines=5, placeholder="Answer to your question")
answer_button = gr.Button("Get Answer")
clear_button = gr.Button("Clear")
answer_button.click(answer_question, inputs=[legal_text_input_q, question_input, max_new_tokens, temperature], outputs=answer_output)
clear_button.click(clear_fields, outputs=[legal_text_input_q, question_input, answer_output])
# The sliders are already defined, so just include them in the layout
with gr.Row():
# No need to redefine max_new_tokens and temperature here
pass
# Model warm-up (optional, but useful for performance)
model.generate(**tokenizer("Warm-up", return_tensors="pt"), max_length=10)
# Launch the Gradio interface
if __name__ == "__main__":
demo.launch()